## **Drainage Narrative**

### **607 Calef Highway** Barrington, NH Tax Map 238, Lot 44

Prepared for

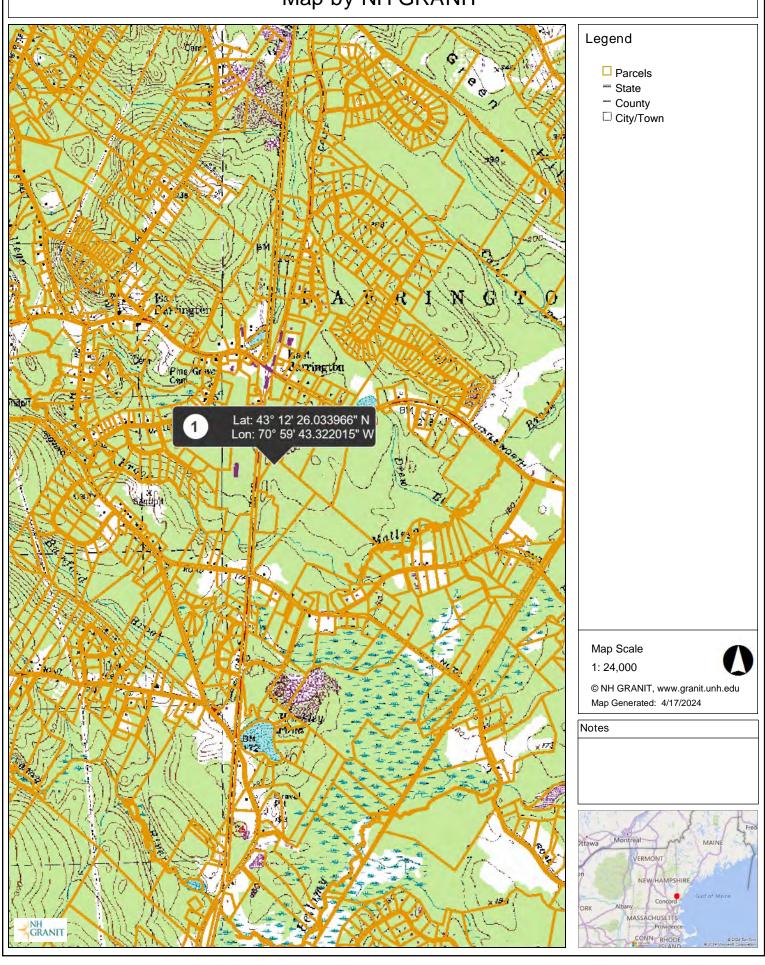
TURBOCAM, INC. 607 Calef Highway Suite 200 Barrington, NH 03825

Land of

Virtuous Realty, LLC 607 Calef Highway Suite 200 Barrington, NH 03825

Prepared By

Berry Surveying & Engineering 335 Second Crown Point Road Barrington, NH 03825




File Number DB2023-017

February 5, 2024 Revised: April 17, 2024

# Map by NH GRANIT Legend Parcels - State - County ☐ City/Town East Barrington Pine Grave Cem Lat: 43° 12' 26.033966" N Lon: 70° 59' 43.322015" W Map Scale 1: 10,000 ROAD © NH GRANIT, www.granit.unh.edu Map Generated: 4/17/2024 Notes VERMONT MASSACHUSETTS NH GRANIT CONN RHODE

## Map by NH GRANIT



Drainage Narrative April 17, 2024
TURBOCAM, INC., Calef Highway, Barrington, NH Tax Map 238, Lot 44 Page 1 of 21

#### **Table of Contents**

| USGS Qua  | idrangle Location Map               |         |
|-----------|-------------------------------------|---------|
| Design Me | ethod Objectives                    | Page 2  |
| 1.0       | Existing Conditions Analysis        | Page 3  |
| 2.0       | Proposed Site Plan Analysis         | Page 5  |
| 3.1       | Full Comparative Analysis           | Page 8  |
| 3.2       | Swale Capacity Analysis             | Page 8  |
| 4.0       | Erosion and Sediment Control, BMP's | Page 9  |
| 5.0       | Conclusion                          | Page 21 |

#### **Appendix I -** Existing Conditions Analysis

25 Yr-24 Hr. Full Summary 2 Yr-24 Hr. Node Listing 10 Yr-24 Hr. Node Listing 25 Yr-24 Hr. Node Listing 50 Yr-24 Hr. Node Listing

#### **Appendix II** - Proposed Conditions Analysis

25 Yr-24 Hr. Full Summary
2 Yr-24 Hr. Node Listing
10 Yr-24 Hr. Node Listing
25 Yr-24 Hr. Node Listing
50 Yr-24 Hr. Node Listing
50 YR-24-Hr. Swale Capacity Analysis

#### Appendix III - Calculations, Charts, & Graphs

Extreme Precipitation Tables
Rip Rap Calculations
AoT Stormwater Treatment Spreadsheets
NCRS USDA Web-soil Map

Site Specific Soil Survey Report & Plan

Stormwater System Management: Inspection & Maintenance Manual, Plan, Invasive Species & NHDES

Green SnoPro Utilization Chart Infiltration Feasibility Study & Report

Ksat Values for New Hampshire Soils, SSSNNE Special Publication #5, 2009 UNH Stormwater Center Hybrid Bioretention Template

Filtrexx Specifications Sheets

Enclosed: W-1 Sheet Existing Conditions Watershed Plan 4 Sheets

W-2 Sheet Post Construction Watershed Plan 4 Sheets

**Erosion & Sediment Control Plan** 

#### **DESIGN METHOD OBJECTIVES**

The owner / developer of Tax Map 238, Lot 44, TURBOCAM, INC. is proposing to develop the property at 607 Calef Highway. The site is currently vacant land. TURBOCAM, INC. is proposing two parking areas with a total of 113 parking spaces and outdoor recreation improvements.

An on-site topography survey was completed by field crews of Berry Surveying & Engineering in April of 2023 and a Site Specific Soil Survey was completed by John P. Hayes with a report generated on May 5, 2023. Soils on site are included in all four hydrologic soil groups: HSG A, HSG B, HSG C, and HSG D (No HSG D in analysis). (See attached report). A wetland delineation was completed as part of the existing conditions package. The off-site land which drains onto the locus parcel has been delineated by USDA / NRCS soils in Websoil and USGS Equivalent contours from public sources. (Google Tin & NH Lidar)

An Existing and Proposed Conditions analysis was conducted for the purpose of calculating the peak rate of stormwater run-off and to subsequently design adequate mitigation of drainage. There are three existing drainage discharge point which was identified in the existing analysis and duplicated in the proposed conditions analysis. This Discharge Point, or Point of Analysis, is considered the area contributing runoff to the westerly side of the wetlands, south of the existing Turbocam driveway, located on Lot 44-1 and Lot 44. Designing two watershed models we have compared the differences in these rates of peak run-off and surface water volume. Existing Conditions Watershed Plan, outlines the characteristics of the site in its existing or pre-construction conditions. The second analysis displays the proposed (postconstruction) conditions (See Sheet W2). HydroCAD uses a series of node suffixes for numbering purposes (S = Subcatchment, P = Pond Device, R = Reach), to simplify annotation these suffixes are left off the watershed plans and node type is denoted by the symbol shape according to the displayed legend which coincides with HydroCAD graphics. The analysis was conducted using data for; 2 Yr - 24 Hr (3.08"), 10 Yr - 24 Hr (4.65"), 25 Yr - 24 Hr (5.87"), 50 Yr - 24 Hr (7.02"), and 100 YR - 24 Hr (8.39") storm events. Storm event analysis was accomplished using the USDA SCS TR-20 method within the HydroCAD Stormwater Modeling System environment. Rainfall quantities are based on the Extreme Precipitation Table for this location from the Northeast Regional Climate Center / Cornell University (<a href="http://precip.eas.cornell.edu">http://precip.eas.cornell.edu</a>).

#### 1.0 Existing Conditions Analysis:

Reference: Sheet W1 - Existing Conditions Watershed Plan (Enclosed)

**Existing Conditions Plan** 

The existing parcel is currently an operating light manufacturing facility. The analyzed soils within the locus parcel are made up of multiple soil types, containing Hydrologic Soil Group (HSG) A, B, C, & D. See Site Specific Soils Map and report for more information. The land cover types involved are grassed land, woods, roofs, gravel, and pavement. Off-site soils are likewise HSG A and based on USDA / NRCS Websoil.

The land area analyzed consists of 11.40 acres of the 27.94 acre parcel as well as offsite land. The total area of analysis for the Existing Conditions Analysis is 16.92 acres. The land analyzed is made up of nine subcatchments analyzed at three individual non-point final reaches. These reaches include the westerly sideline of the jurisdictional wetland, to the south of the existing Turbocam driveway, the southeastern property line, and the existing drainage practice in front of the Turbocam building. There is a discrepancy in the area between the two models, due to the addition of 0.006 Ac in subcatchment #70 from the grading of the swale line adjacent to the parking area.

<u>Receiving Waters and Impairments</u>: The Mallego Brook (NHRIV600030903-02) watershed will receive all of the runoff from the site directly. The impairment of the watershed are as follows:

Mercury, NE Regional Mercury TMDL, December 20, 2008, TMDL #33883 pH, Low Priority TMDL

Dissolved Oxygen Saturation, Low Priority TMDL

Oxygen, Dissolved, Low Priority TMDL

#### Final Reach #400

**Subcatchment #72** is made up exclusively of offsite land along the eastern side of Calef Highway north of the locus parcel. The subcatchment extends back to the roof lines of the businesses along the highway, following the existing topography of the land. Runoff generally flows south down the side of Calef Highway and into an existing roadside depression (**Pond #72**) where it is infiltrated into the soil. Excess runoff flows over an offsite driveway and along a roadside swale (**Reach #72**) into a catch basin adjacent to the locus parcel (**Pond #71**) where it is directed onto the parcel through an outlet pipe and a swale (**Reaches #71a & #71b**).

**Subcatchment #71** encompasses offsite land spanning Calef Highway and extending up the driveway of the plaza across Calef Highway northwest of the parcel. This subcatchment encompasses a closed drainage system being analyzed as a single pond at the outlet of the final catch basin (**Pond #71**) before it directs runoff onto the parcel. This is done to analyze the runoff flowing onto the parcel and not to analyze the performance of the offsite drainage system.

**Subcatchment #70** consists of partially wooded land at the front of the parcel along Calef Highway. The subcatchment is defined by the crown of Calef Highway and the crown of the Turbocam driveway. Runoff generally flows east and southeast to a catch basin (**Pond #70**) which directs runoff through a driveway culvert to an existing

detention pond being analyzed as Final Reach #100.

#### Final Reach #200

**Subcatchment #2** is made up of land southwest of the Turbocam building extending from the crown of the main Turbocam driveway downhill through a recreation area and into undisturbed wooded land generally following the natural topography of the parcel. Runoff flows southwest to the eastern edge of the delineated wetland. The eastern wetland line is being evaluated as **Final Reach #200**.

#### Final Reach #300

**Subcatchment #3** is land area beginning at the high point of the open field to the east of the existing Turbocam building extending east to the property line. Runoff flows generally in a southeasterly direction to the property line being analyzed at **Final Reach #300**, which flows offsite.

**Subcatchment #30** is made up of a large portion of mostly grassed land south of the Turbocam building. Runoff flows to the stone trench toward the middle of the subcatchment (**Pond #30**) where a portion of runoff is infiltrated before outletting to a catch basin (**Pond #E03**) which is part of the closed drainage system eventually draining to the perforated HDPE infiltration pipe and the final catch basin in the system (**Pond #E04**) draining to **Final Reach #300** through the overland reaches (**Reaches #34a-#34d**). In some cases, the stone trench may flood and contribute runoff to **Final Reach #200** through a series of overland reaches (**Reaches #30a-#30d**). Catch Basin #3 (**Pond #E03**) also overflows in some cases contributing runoff to **Final Reach #300** through a separate series of overland reaches (**Reaches #33a & #34b-#34d**).

**Subcatchment #31** consists of a small portion of mostly paved parking area at the southeastern corner of the Turbocam building. Runoff flows in a northeast direction to a catch basin (**Pond #E01**) which is the first in a closed drainage system eventually draining to a perforated HDPE pipe which infiltrates a portion of runoff into the soils. Runoff that is not infiltrated will eventually exceed the storage of the system overflowing the final catch basin in the system (**Pond #E04**) and drain to **Final Reach #300** through a series of overland reaches (**Reaches #34a-#34d**)

**Subcatchment** #32 encompasses a portion of mostly paved parking area at the southern corner of the Turbocam building. Runoff flows in a southeast direction to a catch basin (**Pond** #E02) which is part of the closed drainage system eventually draining to the perforated HDPE infiltration pipe and the final catch basin in the system

(Pond #E04) draining to Final Reach #300 through the overland reaches (Reaches #34a-#34d).

**Subcatchment** #34 is a small area of land surrounding a catch basin (Pond #E04) which collects runoff as part of the closed drainage system eventually draining to the perforated HDPE infiltration pipe and the final catch basin in the system (**Pond** #E04) draining to **Final Reach** #300 through the overland reaches (**Reaches** #34a-#34d)

#### 2.0 Proposed Conditions Analysis:

Reference: Sheet W2 - Proposed Conditions Watershed Plan (Enclosed)

Proposed Grading & Drainage Plan

The applicant is proposing to improve the parcel with multiple parking areas and an outdoor function area. The proposal is supported by two Bioretention w/ ISR Systems, an Infiltration Basin, a Detention Pond, and a closed drainage system of catch basins and drain manholes to direct runoff to the practices.

#### Final Reach #400

**Subcatchments #72 & #71** are exclusively offsite and remain unchanged.

**Subcatchment #50** consists of a small portion of partially offsite land between the parcel and Calef Highway. The purpose of this subcatchment is the proposed inlet sump (**Pond #C50**) that intercepts the offsite runoff from **Subcatchments #72 & #71** and directs it to the existing detention and fire pond being analyzed as **Final Reach #400**.

**Subcatchment #70** is moderately decreased in size due to the construction of the inlet sump (**Pond #C50**). Land area in this subcatchment includes wooded, grassed, and paved areas. Runoff generally flows south and southeast to **Bioretention Pond w/ISR #201** directed to **Final Reach #400** through Drain Manhole #51 (**Pond #D51**) which is an upgraded catch basin structure (formerly **Pond #70**).

#### Final Reach #200

**Subcatchment #2** is mostly unchanged in area from existing to proposed. Runoff flows southwest to the eastern edge of the delineated wetland. This wetland line is being evaluated as **Final Reach #200**.

#### Final Reach #300

**Subcatchment #3** is greatly reduced in size due to the proposed development of the parcel and the construction of two drainage practices near the property line. The remaining are of **Subcatchment #3** consists of onsite, largely undisturbed land. Runoff still flows to the property line analyzed as **Final Reach #300**.

**Subcatchment** #4 is made up of the remaining portion of the existing **Subcatchment** #3 which crosses the northeast property line consisting of largely offsite land. Runoff still flows generally toward the southeast property line being analyzed as **Final Reach** #300.

**Subcatchments #43 & #44** encompass the majority of the western portion of the proposed paved parking area including the grassed island in the middle of the parking area. Runoff from these subcatchments flows southeast to their respective catch basins (**Ponds #C43 & #C44**) and into the closed drainage system that outlets to **Infiltration Pond #203** through **Bioretention Pond w/ISR #202**.

**Subcatchments** #45 & #46 consist of the eastern portion of the proposed paved parking area extending north to the rear of the existing storage building and east to the curbed edge of the pavement and the roof line of two proposed storage sheds. Runoff from these subcatchments flows southeast to the respective catch basins (**Ponds** #C45 & #C46) and into the closed drainage system directed to **Infiltration Pond** #203 through **Bioretention Pond** w/ISR #202.

**Subcatchment #47** includes a small portion of pavement at the southernmost edge of the paved parking area. Runoff flows generally south to a catch basin at the low point of the paved parking (**Pond #C47**) where it enters the closed drainage system combining with runoff from **Ponds #C44 & #C46** and is directed to **Infiltration Pond #203** through **Bioretention Pond w/ISR #202**.

**Subcatchment #62** is made up of the land area contributing runoff directly to **Bioretention Pond w/ISR #202**. The limits of this subcatchment extend north to the edge of the proposed paved parking area and west to the high point of the existing grassed field south of the Turbocam building. Runoff is treated in the ISR of the practice and outlets through an outlet structure and an emergency spillway to **Infiltration Pond #203** where it is infiltrated into the soil.

**Subcatchment #63** encompasses the land area contributing runoff directly to **Infiltration Pond #203**. The limits of the subcatchment extend west from the drainage practice to the high point of the field. Runoff flows east into the practice where it is infiltrated into the soil with any excess runoff flowing to **Final Reach #300** through an emergency spillway.

**Subcatchment #30** is slightly reduced in size due to the construction of the outdoor function area and the related gabion basket seating. Runoff still flows inward to the infiltration trench (**Pond #30**) near the middle of the subcatchment where it infiltrates and excess runoff flows to a six-inch drain pipe which outlets into the closed drainage system through a catch basin structure (**Pond #C42**) and subsequently proposed Drain Manhole #52 (**Pond #D52**) which is an upgraded catch basin structure (formerly **Pond #E04**). The closed drainage system directs runoff through a series of catch basins and drain manholes to **Detention Pond #204** and subsequently **Final Reach** 

**#300**. In some cases, excess runoff may also flood the trench and contribute to **Final Reach #200** through a series of overland reaches (**Reaches #30a-#30c**). The conveyance swale around the proposed EDA for lot 44-1 causes both the Tc. and the overflow reach to be longer in the proposed conditions than in the existing conditions.

**Subcatchment #41** is made up of the outer edge of the existing parking area and driveway along the southern end of the existing Turbocam building and extends northeast along the edge of pavement around the southeast corner of the building. Runoff flows generally northeast to a catch basin (**Pond #C41**) where it enters the closed drainage system which eventually outlets to Detention Pond #204 (**Pond #204**).

**Subcatchments #31 & #32** are both undisturbed subcatchments. Runoff in each subcatchment still flows to each catch basin (**Ponds #E01 & #E02** respectively) and into the closed drainage system flowing to **Detention Pond #204**.

**Subcatchment** #64 consists of the land area directly contributing runoff to **Detention Pond** #204. This area is mostly the disturbed grassed land in and around the pond with the exception of a small portion of wooded land. Runoff is directed to **Final Reach** #300 through an outlet structure and an emergency spillway, both mitigated by a stone level spreader.

#### 3.0a Stormwater Treatment:

Treatment takes place within the two Bioretention W/ ISRs designed to support the development on site. Pre-treatment will be provided in the sediment forebays of Bioretention W/ ISR #201 & #202. The water quality volume is treated within provided treatment area of the practices.

#### 3.0b Stormwater Infiltration:

Groundwater recharge volume requirements are satisfied by Infiltration Basin #203 (Pond #203) (Sheet P-203). See Infiltration Feasibility Study also prepared by Berry Surveying & Engineering and published on the same day.

#### 3.1 FULL COMPARATIVE ANALYSIS

#### ANALYSIS COMPONENT: PEAK RATE DISCHARGE (Cubic Feet / Second)

|                     |          | 2 Yr | 10 Yr | 25 Yr | 50 Yr |
|---------------------|----------|------|-------|-------|-------|
|                     |          |      |       |       |       |
| Final Reach #200    | Existing | 0.78 | 3.31  | 5.85  | 8.53  |
| Filiai Reacii # 200 | Proposed | 0.77 | 3.28  | 5.80  | 8.45  |
|                     |          |      |       |       |       |
| Final Reach #300    | Existing | 2.33 | 4.69  | 6.68  | 9.01  |
| rillal Reacti # 300 | Proposed | 1.55 | 3.49  | 4.82  | 6.43  |
|                     | ,        |      |       |       |       |
| Final Reach #400    | Existing | 0.40 | 2.18  | 4.22  | 6.45  |
| Filiai Reacii #400  | Proposed | 0.36 | 1.84  | 4.05  | 6.44  |

#### ANALYSIS <u>COMPONENT: VOLUME (Acre Feet)</u>

|                     |          | 2 Yr  | 10 Yr | 25 Yr | 50 Yr |  |
|---------------------|----------|-------|-------|-------|-------|--|
|                     | _        |       |       |       |       |  |
| Final Reach #200    | Existing | 0.123 | 0.362 | 0.598 | 0.857 |  |
| Filiai Reacii # 200 | Proposed | 0.124 | 0.365 | 0.602 | 0.852 |  |
|                     |          |       |       |       |       |  |
| Final Decem #200    | Existing | 0.276 | 0.696 | 1.117 | 1.561 |  |
| Final Reach #300    | Proposed | 0.217 | 0.599 | 1.034 | 1.461 |  |
|                     |          |       |       |       |       |  |
| Final Reach #400    | Existing | 0.095 | 0.373 | 0.663 | 0.978 |  |
| rillai Keacii #400  | Proposed | 0.089 | 0.367 | 0.668 | 0.991 |  |

#### 3.2 SWALE CAPACITY ANALYSIS

### ANALYSIS COMPONENT: PEAK RATE DISCHARGE (Cubic Feet / Second)

| 50YR 24-HR<br>Storm Event<br>Used | Area<br>(Ac.) | Swale<br>Depth<br>(ft.) | Bottom<br>Width<br>(Ft.) | Lt.<br>Slope<br>(X:1) | Rt.<br>Slope<br>(X:1) | Peak<br>Rate<br>(CFS) | 50Yr Avg.<br>Depth (Ft.) | Manning's<br>"n" |
|-----------------------------------|---------------|-------------------------|--------------------------|-----------------------|-----------------------|-----------------------|--------------------------|------------------|
| Reach #70a                        | 0.219         | 2                       | 2                        | 4                     | 3                     | 0.51                  | 0.11                     | 0.022            |

## 4.0 EROSION and SEDIMENT CONTROL PLAN & BEST MANAGEMENT PRACTICES (BMP's)

Reference: Proposed Site Plan and Grading Plan

Erosion & Sediment Control Plan Erosion & Sediment Control Details

The proposed site development is protected from erosion and the abutting easements and properties are protected from sediment by the use of Best Management Practices as outlined in the <a href="New Hampshire Stormwater Manual">New Hampshire Stormwater Manual</a>, Volume 2, Post-Construction Best Management Practices Selection & Design (December 2008, NHDES & US EPA). Any area disturbed by construction will be temporarily or permanently restabilized within 30 days and abutting easements and properties will not be adversely affected by this development. All swales and drainage structures will be constructed and stabilized prior to having run-off directed to them. Reference is also made to the <a href="Stormwater System Management: Inspection & Maintenance Manual">New Maintenance Manual</a> and Stormwater Operations, Inspection & Maintenance Plan which has been developed specifically for this project and available to the owner.

#### Perimeter Control (Silt Fence / SiltSoxx / Erosion Control Mix Berm)

The plan set demonstrates the location of perimeter sediment control. The Erosion and Sediment Control Details, Sheet E-101, has the specifications for installation and maintenance of the silt fence, Filtrexx mulch filled SiltSoxx (or approved equal), and Erosion Control Mix Berm. There are locations on the site, for example bio-media rain garden protection, where SiltSoxx protection is specified. An area of permanent perimeter control is shown by the well house for wetland buffer protection from steeper slopes.

#### Catch Basins (Without Sumps) & Drain Manholes

<u>Description:</u> Catch Basins are used throughout the site to capture and, along with culvert pipes and manhole, route surface water runoff to stormwater treatment and detention infrastructure. During construction the catch basins will be protected by inlet protection per the approved construction plans. The practice of street sweeping on a bi-annual basis will help reduce maintenance of these catch basins and culvert pipes.

Note: Deep sump catch basins are not allowed to be used on this proposed development due to wildlife concerns and any manufacturer sump resulting in a catch basin must be filled with washed crushed stone. Sediment should be trapped in the sediment forebays but is also a concern in earlier structures. See construction details for specifications of these conveyance practices.

<u>Maintenance Considerations:</u> Sediment must be removed from Catch Basins and Manholes on a regular basis, at least twice a year and more often if post-winter maintenance and street sweeping is not conducted. Inspections should be conducted

periodically. At a minimum they should be cleaned after snow-melt and after leaf-drop. Disposal of all material, sediment, and debris must be done in accordance with state and federal regulations. Culvert pipes will be inspected to ensure that surface water runoff is capable of leaving the structures. Drain manholes will be inspected to make sure there is not sediment build-up or blockages.

#### **Conveyance Swale**

<u>Description:</u> Conveyance swales are stabilized channels designed to convey runoff at non-erosive velocities. They may be stabilized using vegetation, riprap, or a combination, or with an alternative lining designed to accommodate design flows while protecting the integrity of the sides and bottom of the channel. Conveyance channels may provide incidental water quality benefits, but are not specifically designed to provide treatment. Conveyance swales are not considered a Treatment or Pretreatment Practice under the AoT regulations, unless they are also designed to meet the requirements of an acceptable Treatment/Pretreatment Practice as described elsewhere in this Chapter. See SWM Volume 2, 4-6.3 Conveyance Practices, Conveyance Swale, page 166.

<u>Maintenance Considerations</u>: Grassed channels should be inspected periodically (at least annually) for sediment accumulation, erosion, and condition of surface lining (vegetation or riprap). Repairs, including stone or vegetation replacement, should be made based on this inspection. Remove sediment and debris annually, or more frequently as warranted by inspection. Mow vegetated channels based on frequency specified by design. Mowing at least once per year is required to control establishment of woody vegetation. It is recommended to cut grass no shorter than 4 inches.

#### **Sediment Forebay**

<u>Description:</u> A sediment forebay is an impoundment, basin, or other storage structure designed to dissipate the energy of incoming runoff and allow for initial settling of coarse sediments. Forebays are used for pretreatment of runoff prior to discharge into the primary water quality treatment BMP. In some cases, forebays may be constructed as separate structures but often, they are integrated into the design of larger stormwater management structures. See SWM Volume 2, 4-4.1 Pre-treatment Practices, Sediment Forebay, page 140.

Maintenance Considerations: Forebays help reduce the sediment load to downstream BMPs, and will therefore require more frequent cleaning. Inspect at least annually; Conduct periodic mowing of embankments (generally two times per year) to control growth of woody vegetation on embankments; Remove debris from outlet structures at least once annually; Remove and dispose of accumulated sediment based on inspection; Install and maintain a staff gage or other measuring device, to indicate depth of sediment accumulation and level at which clean-out is required. Preserving the drainage between the Sediment Forebay and the stormwater BMP by inspecting and maintaining the connecting drainage pipes and perforations should be completed semi annually or as required to ensure the forebay is dry.

#### Bioretention W/ Internal Storage Reservoir (ISR)

<u>Description:</u> A practice that provides temporary storage of runoff for filtering through an engineered soil media, augmented for enhanced phosphorus removal, followed by detention and denitrification in a subsurface internal storage reservoir (ISR) comprised of gravel. Runoff flows are routed through filter media and directed to the underlying ISR via an impermeable membrane for temporary storage. An elevated outlet control at the top of the ISR is designed to provide a retention time of at least 24 hours in the system to allow for sufficient time for denitrification and nitrogen reduction to occur prior to discharge. The design storage capacity for using the cumulative performance curves is comprised of void spaces in the filter media, temporary ponding at the surface of the practice and the void spaces in the gravel ISR. The volume of the ISR will exceed 26% of the Water Quality Volume (WQV). Reference: <u>2017 NH Small MS4 General Permit</u>, Appendix F Attachment 3, and UNH Stormwater Center, "UNH Stormwater Center Hybrid Bioretention Template" (2020). *UNH Stormwater Center*. 73. https://scholars.unh.edu/stormwater/73

Maintenance Considerations: The outlet to the Internal Storage Reservoir consists of a 1.25" or 1.5" orifice in a threaded end-cap after the goose-neck pipe within the concrete outlet structure. The inlet manifold and threaded pipe outlet manifold system is designed so that the ISR, or anaerobic reservoir can be completely drained and the sump of the outlet structure pumped dry. The orifice requires periodic inspection, initially on a semi-annual basis. This time increment may need to be adjusted based on the experience on the maintenance of the device. The draining of the ISR would only be accomplished if issues developed.

The enhanced bio-media will require additional material rototilled into the top 10-inches to foot of the rain garden after a period of approximately 20 years. The timing of this maintenance period is a factor of the methodology applied during construction and will need to be evaluated as the rain gardens age.

Rain Gardens should be inspected at least twice annually and following any rainfall event exceeding 2.5 inches in a twenty-four hour period. Maintenance rehabilitation will be conducted as warranted by each inspection. Trash and debris will be removed at each inspection.

On an annual basis the infiltration capabilities need to be confirmed by evaluation the drawdown time. If the bioretention system does not drain within 72-hours following a rainfall event, a qualified professional will assess the condition of the rain garden to determine measures required to restore the infiltration function. This is normally the direct result of sediment accumulation which will be removed to restore the filter media ratio.

Proposed side slopes of 2:1 will be maintained with a weedwhacker, with vegetation being removed from the BMP with each maintenance application.

#### **Detention Basins**

<u>Description:</u> A detention basin is an impoundment designed to temporarily store runoff and release it at a controlled rate, reducing the intensity of peak flows during storm events. Conventional detention basins are typically designed to control peak runoff rates under a range of storm conditions, and can be used to control discharges as required under the AoT Regulations and other requirements, including, but not necessarily limited to: Storage and peak rate control to meet Channel Protection Requirements (see Section 2-17); Storage and peak rate control to meet Peak Runoff Control Requirements (see Section 2-18) (10-year and 50-year frequency, 24-hour storm events); Storage and peak rate control to prevent flood impacts within the 100-year flood plain; Storage and peak rate control to meet other regulatory requirements, including local permitting standards.

Detention basins may consist of surface basins (pond-type structures) or subsurface basins (enclosed structures located below ground. Surface basins should be designed with an emergency spillway or bypass meeting applicable dam safety standards (Env-Wr 100 - 700: Dam Safety Rules). Subsurface basins should also be designed to safely bypass flows exceeding the engineered capacity of the structure. Detention basins may be combined with treatment BMPs discussed in this guidance document, to provide for other stormwater management objectives. For example, a stormwater pond may be designed to provide treatment as well as detention. However, a detention basin is not by itself considered a "Treatment Practice" under the AoT Regulations. See SWM Volume 2, 4-6.1 Conveyance Practices, Detention Basins, page 156.

<u>Maintenance Considerations</u>: The bottoms, interior and exterior side slopes, and crest of earthen detention basins should be mowed, and the vegetation maintained in healthy condition, as appropriate to the function of the facility and type of vegetation. Vegetated embankments that serve as "berms" or "dams" that impound water should be mowed at least once annually to prevent the establishment of woody vegetation.

#### **In-Ground Infiltration Basin**

<u>Description:</u> Infiltration basins are impoundments designed to temporarily store runoff, allowing all or a portion of the water to infiltrate into the ground. An infiltration basin is designed to completely drain between storm events. An infiltration basin is specifically designed to retain and infiltrate the entire Water Quality Volume. Some infiltration basins may infiltrate additional volumes during larger storm events, but many will be designed to release stormwater exceeding the water quality volume from the larger storms. In a properly sited and designed infiltration basin, water quality treatment is provided by runoff pollutants binding to soil particles beneath the basin as water percolates into the subsurface. Biological and chemical processes occurring in the soil also contribute to the breakdown of pollutants. Infiltrated water is used by plants to support growth or it is recharged to the underlying groundwater. As with all impoundment BMPs, surface infiltration basins should be designed with an outlet structure to pass peak flows during a range of storm events, as well as with an

emergency spillway to pass peak flows around the embankment during extreme storm events that exceed the combined infiltration capacity and outlet structure capacity of the facility. See SWM Volume 2, 4-3.3b, Treatment Practices, In-Ground Infiltration Basin, page 88.

Maintenance Considerations: Removal of debris from inlet and outlet structures. Removal of accumulated sediment. Inspection and repair of outlet structures and appurtenances. Inspection of infiltration components at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24 hour period, with maintenance or rehabilitation conducted as warranted by such inspection. Inspection of pretreatment measures at least twice annually, and removal of accumulated sediment as warranted by inspection, but no less than once annually. If an infiltration system does not drain within 72-hours following a rainfall event, then a qualified professional should assess the condition of the facility to determine measures required to restore infiltration function, including but not limited to removal of accumulated sediments or reconstruction of the infiltration trench.

#### **Stone Berm Level Spreader**

<u>Description:</u> A stone berm level spreader is an outlet structure constructed at zero percent grade across a slope used to convert concentrated flow to "sheet flow." It disperses or "spreads" flow thinly over a receiving area, usually consisting of undisturbed, vegetated ground. The conversion of concentrated flow to shallow, sheet flow allows runoff to be discharged at non-erosive velocities onto natural ground. To stabilize the spreader outlet, a stone berm is provided to dissipate flow energy, and help disperse flows along the length of the spreader. Level spreaders are not designed to remove pollutants from stormwater; however, some suspended sediment and associated phosphorous, nitrogen, metals and hydrocarbons will settle out of the runoff through settlement, filtration, infiltration, absorption, decomposition and volatilization. See SWM Volume 2, 4-6.6 Conveyance Practices, Stone Berm Level Spreader, page 162.

<u>Maintenance Considerations</u>: Inspect at least once annually for accumulation of sediment and debris and for signs of erosion within approach channel, spreader channel or down-slope of the spreader. Remove debris whenever observed during inspection. Remove sediment when accumulation exceeds 25% of spreader channel depth. Mow as required by landscaping design. At a minimum, mow annually to control woody vegetation within the spreader. Snow should not be stored within or down-slope of the level spreader or its approach channel. Repair any erosion and re-grade or replace stone berm material, as warranted by inspection. Reconstruct the spreader if down-slope channelization indicates that the spreader is not level or that discharge has become concentrated, and corrections cannot be made through minor re-grading.

#### **Stockpiled Sediment or Soil**

Stockpiled materials including topsoil, excavated materials, borrow materials imported onto the site, construction aggregates, and sediment removed from temporary sediment traps will be located in designated areas at least 50 feet away form concentrated flows. All stockpiles will have erosion protection in the form of silt fence and diversion swales will be applied to protect the material and surrounding areas. Inactive stockpiles will be seeded for temporary stabilization. Erosion control measures will be inspected in accordance with the schedule for all other activities on site.

At a minimum, you must comply with following (EPA 2012 CGP Part 2.1.2.4d) "Do no hose down or sweep soil or sediment accumulated on pavement or other impervious surfaces into any stormwater conveyance (unless connected to a sediment basin, sediment trap, or similar effective control,) storm drain inlet, or surface water."

#### **Dewatering Practices**

Dewatering practices are not known to be required on this site. If during construction this becomes required, an addendum will be published specific for the requirements. As a general rule, ground water that needs to be removed from an excavation will be pumped to a sediment basin or a storm drain inlet prior to discharge from the site.

At a minimum, you must comply with following (EPA CGP Part 2.1.3.4) "With backwash water, either haul it away for disposal or return it to the beginning of the treatment process; and replace and clean the filter media used in dewatering devices when the pressure differential equals or exceeds the manufacturer's specifications."

Regarding dewatering practices in the State of New Hampshire, specifically see Construction General Permit Section 9.1.2 NHR12000 State of New Hampshire and "Clarification of Section 9.1.2 ... and other New Hampshire specific information for the U.S. EPA 2012 NPDES Construction General Permit (CGP), May 3, 2012"

Please be advised that should dewatering become required, the EPA CGP 2022 requires daily inspections, monitoring, and reporting quarterly to the agency.

#### **Stabilization for Long Term Cover**

Vegetated Stabilization – Original Planting

All areas that are disturbed during construction will be stabilized with vegetated material within 30 days of breaking ground. Construction will be managed in such a manner that erosion is prevented and that no abutter's property will be subjected to any siltation, unless otherwise permitted. All areas to be planted with grass for long-term cover will follow the specification and on Sheet E-102 using seeding mixture C, as follows:

| Mixture             | Pounds<br>per Acre | Pounds per<br>1,000 Sq. Ft. |
|---------------------|--------------------|-----------------------------|
| Tall Fescue         | 24                 | 0.55                        |
| Creeping Red Fescue | 24                 | 0.55                        |
| Total               | 48                 | 1.10                        |

#### **Conservation Mix**

| Virginia Wild Rye   | Native | FACW- |
|---------------------|--------|-------|
| Little Bluestem     | Native | FACU  |
| Big Bluestem        | Native | FAC   |
| Red Fescue          | Native | FACU  |
| Switch Grass        | Native | FAC   |
| Partridge Pea       | Native | FACU  |
| Showy Tick Trefoil  | Native | FAC   |
| Butterfly Milkweed  | Native | NI    |
| Beggar Ticks        | Native | FACW  |
| Purple Joe Pye Weed | Native | FAC   |
| Black Eyed Susan    | Native | FACU- |
| Total               | 25     | 0.57  |

Conservation Mix to be provided by New England Wetland Plants, Inc., Amherst, MA as outline in their New England Conservation / Wildlife Mix or approved equal. Mix to be applied at a rate of 25 lbs. per acre or one-lb. per 1750 square feet. Ratio of seed is proprietary and substitutions are not allowed.

Conservation Mix will used to stabilize all 2:1 slopes and all land area disturbed within the wetland buffer.

#### Stormwater BMP Mix:

The grass that is planted within a stormwater BMP will be a mix designed for both inundation and dry conditions such as Ernst Seeds, Retention Basin Floor Mix ERNMX-126.

<u>Maintenance Considerations:</u> Permanent seeded areas for long-term cover will be inspected on a periodic basis looking for signs of growth loss or erosion. Any areas found to be damaged will be repaired and replanted to reestablish the growth. The grass should be mowed at least twice per year and any dead material removed. Any woody growth that becomes established will need to be cut and removed.

Long-term maintenance of the land cover is critical and must be maintained at least 85% grass / vegetation coverage, must be inspected for concentrated flow, rills, and channels; and must be repaired as necessary to prevent erosion.

#### **Rolled Erosion Control Blanket**

Description: Rolled Erosion Control Blankets, such as American Excelsior Company Curlex III, (or equal), North American Green BioNet series, consist of interlocking fiber mesh which is bio-degradable, used to stabilize sloping earth while vegetation is being established. The product comes in rolls that are laid out over the earth, normally overlapped, and secured to the soil by the use of anchors or staples. The RECB may be anchored in the earth at the top of the slope to prevent wash-out. Construction specifications are included in the plan set and New Hampshire Stormwater Manual, Volume 3, 4-1 Erosion Control Practices, Temporary Erosion Control Blanket. See the chart on E-102 for compatible products with given slopes.

Construction Considerations: It is recommended that the blanket be installed in the same direction as the water flow or perpendicular to the slope. The manufacturer will recommend the amount of over-lap from one row to the next and on longer slopes between sections. Care must be taken that the RECB is laid directly on the earth / topsoil and that any existing vegetation not cause tenting as this will cause an issue with the blanket not staying in place. The staples or stakes are to be placed according to the manufacturer based on the slope of the receiving soil and forces that may be encountered. Care must be taken to utilize the correct product as specified. The choice of product are all different and in most cases are not interchangeable. NHDES or NH F&G may specify that some RECBs not be used in some applications.

Maintenance Considerations: RECBs will be inspected during the regular inspection schedule and any construction corrections made if the blanket is compromised.

#### **Inlet Protection / Storm Drain Inlets**

Storm drain inlet protection will be installed per the Erosion & Sediment Control Details as a sediment barrier installed around a storm drain inlet, catch basin, or curb inlet to reduce sediment intrusion into a system after it has been constructed and existing catch basins. These are to be constructed in accordance with the Erosion & Sediment Control Details, Sheet E-101 and maintained after every rain event.

At a minimum, you must comply with following (EPA CGP Part 2.1.2.9.b) "Clean, or remove and replace, the protection measures as sediment accumulates, the filter

becomes clogged, and/or performance is compromised. Where there is evidence of sediment accumulation adjacent to the inlet protection measure, you must remove the deposited sediment by the end of the same work day in which it is found or by the end of the following work day if removal by the same work day is not feasible."

#### **Stabilized Construction Entrance**

<u>Description:</u> A temporary gravel construction entrance provides an area where mud can be dislodged from tires before the vehicle leaves the construction site to reduce the amount of mud and sediment transported onto paved municipal and state roads. The stone size for the pad should be 3" angular aggregate, and the pad itself constructed to a minimum length of 75' for the full width of the access road. The aggregate should be placed at least six inches thick applied over a non-woven engineered fabric such as Mirafi 140N. A plan view and profile are shown on Sheet E-101- Erosion & Sediment Control Detail Plan.

<u>Maintenance Considerations</u>: The stone must be refreshed and kept clean in order for the practice to prevent tracking on the abutting roadway. If vehicle traffic by-pass the practice, it should either be channelized or the practice widened to be properly utilized. Tracking on the abutting roadway is not allowed and materials that are deposited on the abutting highway or any internal roadway must be swept daily.

#### **Environmental Dust Control**

Dust will be controlled on the site by the use of multiple Best Management Practices. Mulching and temporary seeding will be the first line of protection to be utilized where problems occur. If dust problems are not solved by these applications, the use of water and calcium chloride can be applied. Calcium chloride will be applied at a rate that will keep the surface moist but not cause pollution.

#### **Construction Sequence**

- 1. Cut and remove trees in construction area only as required.
- 2. Construct and/or install temporary and permanent sediment erosion and detention control facilities as specified. Erosion and sediment control measures shall be installed prior to any soil land disturbance.
- 3. Erosion, sediment and detention control facility shall be installed & stabilized prior to directing runoff to them, temporary diversions may be required. Post construction storm water management practices must be initiated and stabilized early in the process.
- 4. Clear, cut and dispose of debris in approved facility. Grubbing and stockpiling shall not occur until after erosion & sediment control measures are installed.
- 5. Construct temporary water diversions (swales, basins, etc.) as needed until site is stabilized.
- All swales are to be installed prior to rough grading of the site. Temporary water diversion (swales, etc.) must be used as necessary until areas are stabilized.
- 7. Construct roadways for access to desired construction areas. All roads shall be stabilized immediately.
- 8. Install pipe and construction associated appurtenances as required or directed. Install Bioretention W/ ISRs, Infiltration Pond, and stormtech system. All disturbed areas shall stabilized immediately after grading.
- 9. Begin permanent and temporary seeding and mulching. All cut and fill slopes and disturbed areas shall be seeded or mulched as required, or directed. Any area disturbed by construction will be re-stabilized within 45 days (Env-Wq 1504.16) and abutting properties will not be adversely affected by this development. All swales and drainage structures will be constructed and stabilized prior to having run-off directed to them. IAW EPA 2022 CGP 2.2.14, site stabilization will be initiated immediately in any areas of exposed soil where construction activities have permanently ceased or will be temporarily inactive for 14 or more calendar days. The installation of stabilization will be completed as soon as practicable but no later than 14 calendar days. All roadways and parking areas shall be stabilized within 72 hours of achieving finished grades. All cut and fill slopes shall be stabilized within 72 hours of achieving finished grades.

- 10. Construct temporary berms, drains ditches, silt fences, sediment traps, etc. Mulch and seed as required.
- 11. Inspect and maintain all erosion and sediment control measures during construction. All SWPPP inspections must be conducted by a qualified professional such as a professional engineer (PE), a certified professional in erosion and sediment control (CPESC), a certified erosion sediment and storm water inspector (CESSWI), or a certified professional in storm water quality (CPSWQ). Inspection reports shall be submitted to the Planning Department. Inspections shall be conducted weekly and within 24 hours of a 0.25 inch rain event.
- 12. Complete permanent seeding and landscaping.
- 13. Remove temporary erosion control measures after seeding areas have established themselves and site improvements are complete.
- 14. Smooth and revegetate all disturbed areas. Stabilization should occur within 14 days or removing temporary measures.
- 15. Finish paving all roadways.

#### **Temporary Erosion Control Measures**

- 1. The smallest practical area of land shall be exposed at any one time.
- 2. Erosion, sediment and detention measures shall be installed as shown on the plans and at locations as required, directed by the engineer.
- 3. All disturbed areas shall be returned to original grades and elevations. Disturbed areas shall be loamed with a minimum of 4" of loam and seeded with not less than one pound of seed per 50 square yards of area. Apply hay or straw mulch or straw mulch with rye grass seed to temporarily stabilize the area until final grade is achieved.
- 4. All disturbed areas will be restabilized within 45 days. At any one time, no more than 5 acres, (217,800 sq. Ft.) Will be disturbed.
- 5. Silt fences and perimeter barriers shall be inspected periodically and after every rain during the life of the project. All damaged areas shall be repaired, sediment deposits shall periodically be removed and disposed of.
- 6. After all disturbed areas have been stabilized, the temporary erosion and sediment control measures are to be removed and the area disturbed by the removal smoothed and re-vegetated.

- 7. Per the EPA CGP requirements there will be reports of the erosion control inspections IAW SWPPP prepared by BS&E. All erosion controls shall be inspected weekly and within 24 hours after 0.25" or greater rain event.
- 8. Ditches, swales, and basins shall be stabilized prior to directing runoff to them.
- 9. Do not traffic exposed soil surfaces with construction equipment. If feasible, perform excavations with equipment positioned outside the limits of the infiltration system.
- 10. Roadways, driveways and cut and fill slopes must be stabilized within 72 hours of achieving final grade.
- 11. Stabilization means:
  - 11.1. A minimum of 85% of vegetative cover has been established.
  - 11.2. A minimum of 3 inches of non-erosive material such as stone or rip rap has been installed, or
  - 11.3. Erosion control blankets have been installed.
- 12. This project is to be managed in a manner that meets the requirements and intent of RSA 430:53 and chapter AGR 3800 relative to invasive species.
- 13. The NHDES stormwater manual, in three volumes, dated December 2008, is a part of this plan set and the more restrictive will govern. (NH SWM)

#### **Inspection and Maintenance Schedule**

Perimeter control and catch basin inlet protection will be inspected during and after storm events of 0.25" or greater to ensure that the BMP still has integrity and is not allowing sediment to pass. Depending on SWPPP criteria, all BMP controls will be inspected once every 7 days and after storm events. Inspection reports must be submitted to Town of Barrington Planning Department. See also <u>Stormwater System Management</u>: <u>Inspection and Maintenance Manual</u> with accompanying plan published separately also by Berry Surveying & Engineering. See also Storm Water Pollution Prevention Plan (SWPPP) developed in accordance with EPA NPDES requirements & the Town of Barrington Stormwater regulations.

Corrective Action measures will be made in accordance with SWPPP requirements and records maintained on site by the Contractor.

#### 5.0 CONCLUSION

Peak rates of runoff flow are modeled to be reduced in the post-construction analysis, as compared to the pre-construction analysis. This reduction occurs at all storm events due to the installation of the low impact development stormwater devices.

The volume of stormwater discharge from the site at the final reaches is reduced at the 2Yr.-24Hr. storm event for channel protection purposes.

A Site Specific, Terrain Alteration Permit (RSA 485: A-17) is required for this site plan due to the area of disturbance being greater than 100,000 SF (162,000SF). This will be an amendment to the existing AoT Permit.

Respectfully Submitted, BERRY SURVEYING & ENGINEERING

Kevin R. Poulin, PE

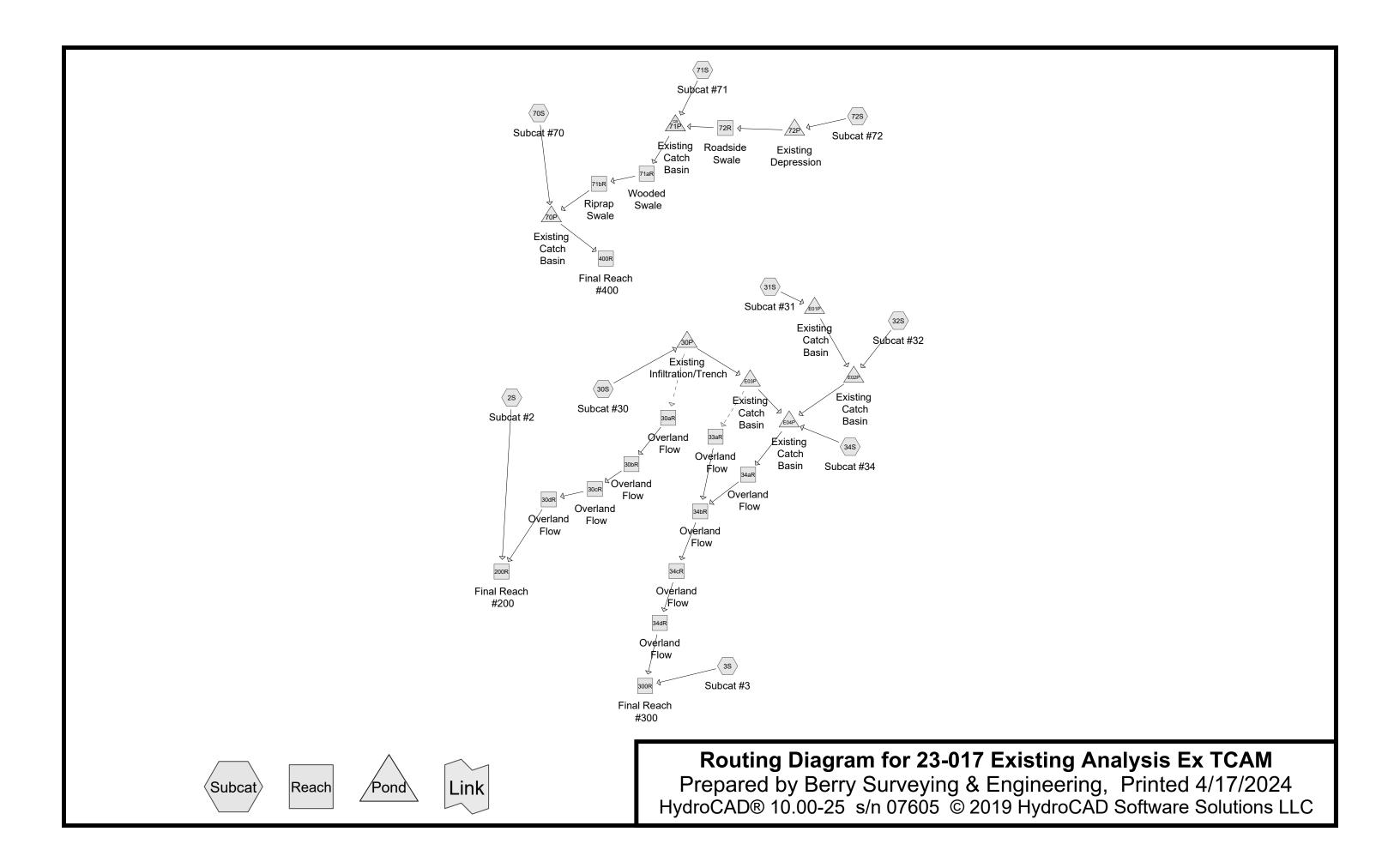
Design Engineer

Christopher R. Berry, SIT 567

Principal, President

Kenneth A. Berry PE, LLS, CPSWQ, CPESC, CESSWI

Principal, VP - Technical Operations


## **Appendix I** –Existing Conditions Analysis

25 Yr - 24 Hr. Full Summary 2 Yr - 24 Hr. Node Listing

10 Yr -24 Hr. Node Listing

25 Yr -24 Hr. Node Listing

50 Yr - 24 Hr. Node Listing



Printed 4/17/2024 Page 1

#### **Area Listing (all nodes)**

| Area    | CN | Description                                                     |
|---------|----|-----------------------------------------------------------------|
| (acres) |    | (subcatchment-numbers)                                          |
| 2.193   | 39 | >75% Grass cover, Good, HSG A (3S, 70S, 71S, 72S)               |
| 5.331   | 61 | >75% Grass cover, Good, HSG B (2S, 3S, 30S, 31S, 32S, 34S, 70S) |
| 0.867   | 96 | Gravel surface, HSG B (2S, 3S, 30S, 34S)                        |
| 1.541   | 98 | Paved parking, HSG A (70S, 71S, 72S)                            |
| 1.228   | 98 | Paved parking, HSG B (3S, 30S, 31S, 32S, 70S)                   |
| 0.044   | 98 | Roofs, HSG B (3S, 31S, 32S)                                     |
| 0.086   | 98 | Unconnected pavement, HSG B (2S)                                |
| 0.001   | 98 | Unconnected roofs, HSG B (2S)                                   |
| 2.953   | 30 | Woods, Good, HSG A (3S, 70S, 71S, 72S)                          |
| 2.697   | 55 | Woods, Good, HSG B (2S, 3S, 30S, 32S, 34S)                      |
| 16.942  | 60 | TOTAL AREA                                                      |

Printed 4/17/2024 Page 2

#### Soil Listing (all nodes)

| Area    | Soil  | Subcatchment                    |
|---------|-------|---------------------------------|
| (acres) | Group | Numbers                         |
| 6.688   | HSG A | 3S, 70S, 71S, 72S               |
| 10.254  | HSG B | 2S, 3S, 30S, 31S, 32S, 34S, 70S |
| 0.000   | HSG C |                                 |
| 0.000   | HSG D |                                 |
| 0.000   | Other |                                 |
| 16.942  |       | TOTAL AREA                      |

Printed 4/17/2024 Page 3

#### **Ground Covers (all nodes)**

| HSG-A   | HSG-B   | HSG-C   | HSG-D   | Other   | Total   | Ground                 | Subcatchment    |
|---------|---------|---------|---------|---------|---------|------------------------|-----------------|
| (acres) | (acres) | (acres) | (acres) | (acres) | (acres) | Cover                  | Numbers         |
| 2.193   | 5.331   | 0.000   | 0.000   | 0.000   | 7.524   | >75% Grass cover, Good | 2S, 3S,         |
|         |         |         |         |         |         |                        | 30S,            |
|         |         |         |         |         |         |                        | 31S,            |
|         |         |         |         |         |         |                        | 32S,            |
|         |         |         |         |         |         |                        | 34S,            |
|         |         |         |         |         |         |                        | 70S,            |
|         |         |         |         |         |         |                        | 71S, 72S        |
| 0.000   | 0.867   | 0.000   | 0.000   | 0.000   | 0.867   | Gravel surface         | 2S, 3S,         |
|         |         |         |         |         |         |                        | 30S, 34S        |
| 1.541   | 1.228   | 0.000   | 0.000   | 0.000   | 2.769   | Paved parking          | 3S, 30S,        |
|         |         |         |         |         |         |                        | 31S,            |
|         |         |         |         |         |         |                        | 32S,            |
|         |         |         |         |         |         |                        | 70S,            |
| 0.000   | 0.044   | 0.000   | 0.000   | 0.000   | 0.044   | Doofo                  | 71S, 72S        |
| 0.000   | 0.044   | 0.000   | 0.000   | 0.000   | 0.044   | Roofs                  | 3S, 31S,<br>32S |
| 0.000   | 0.086   | 0.000   | 0.000   | 0.000   | 0.086   | Unconnected pavement   | 32S<br>2S       |
| 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | Unconnected roofs      | 2S              |
| 2.953   | 2.697   | 0.000   | 0.000   | 0.000   | 5.651   | Woods, Good            | 2S, 3S,         |
| 2.900   | 2.031   | 0.000   | 0.000   | 0.000   | 3.031   | Woods, Good            | 30S,            |
|         |         |         |         |         |         |                        | 32S,            |
|         |         |         |         |         |         |                        | 34S,            |
|         |         |         |         |         |         |                        | 70S,            |
|         |         |         |         |         |         |                        | 71S, 72S        |
| 6.688   | 10.254  | 0.000   | 0.000   | 0.000   | 16.942  | TOTAL AREA             | ,               |
|         | -       |         |         |         |         |                        |                 |

Printed 4/17/2024 Page 4

#### Pipe Listing (all nodes)

| Line# | Node<br>Number | In-Invert<br>(feet) | Out-Invert<br>(feet) | Length<br>(feet) | Slope<br>(ft/ft) | n     | Diam/Width (inches) | Height (inches) | Inside-Fill (inches) |
|-------|----------------|---------------------|----------------------|------------------|------------------|-------|---------------------|-----------------|----------------------|
| 1     | 30P            | 183.15              | 183.15               | 1.0              | 0.0000           | 0.012 | 6.0                 | 0.0             | 0.0                  |
| 2     | 70P            | 180.14              | 179.01               | 62.8             | 0.0180           | 0.012 | 18.0                | 0.0             | 0.0                  |
| 3     | 71P            | 187.90              | 187.80               | 10.2             | 0.0098           | 0.012 | 18.0                | 0.0             | 0.0                  |
| 4     | E01P           | 183.50              | 183.22               | 57.0             | 0.0049           | 0.012 | 15.0                | 0.0             | 0.0                  |
| 5     | E02P           | 183.02              | 179.71               | 122.2            | 0.0271           | 0.012 | 24.0                | 0.0             | 0.0                  |
| 6     | E03P           | 179.56              | 179.56               | 36.8             | 0.0000           | 0.012 | 15.0                | 0.0             | 0.0                  |

#### 23-017 Existing Analysis Ex TCAM

Type III 24-hr 25YR-24HR Rainfall=5.87" Printed 4/17/2024

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 5

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

| Reach routing by Dyn-Stor-ind method - Pond routing by Dyn-Stor-ind method |                                                                                                                                    |  |  |  |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subcatchment 2S: Subcat #2                                                 | Runoff Area=163,452 sf 2.33% Impervious Runoff Depth>1.91" Flow Length=301' Tc=15.8 min CN=61 Runoff=5.85 cfs 0.598 af             |  |  |  |  |
| Subcatchment3S: Subcat#3                                                   | Runoff Area=222,064 sf 1.16% Impervious Runoff Depth>1.42" Flow Length=682' Tc=43.7 min CN=55 Runoff=3.57 cfs 0.605 af             |  |  |  |  |
| Subcatchment 30S: Subcat #30 Flow Length=                                  | Runoff Area=58,317 sf 10.64% Impervious Runoff Depth>2.25" 87' Slope=0.0110 '/' Tc=11.3 min CN=65 Runoff=2.87 cfs 0.251 af         |  |  |  |  |
| Subcatchment 31S: Subcat #31                                               | Runoff Area=19,678 sf 56.06% Impervious Runoff Depth>3.86"<br>Tc=6.0 min CN=82 Runoff=1.99 cfs 0.145 af                            |  |  |  |  |
| Subcatchment 32S: Subcat #32                                               | Runoff Area=40,270 sf 63.40% Impervious Runoff Depth>4.07"<br>Tc=6.0 min CN=84 Runoff=4.26 cfs 0.314 af                            |  |  |  |  |
| Subcatchment 34S: Subcat #34                                               | Runoff Area=1,936 sf 0.00% Impervious Runoff Depth>2.52"<br>Tc=6.0 min CN=68 Runoff=0.13 cfs 0.009 af                              |  |  |  |  |
| Subcatchment 70S: Subcat #70                                               | Runoff Area=62,561 sf 28.86% Impervious Runoff Depth>1.44" Flow Length=380' Tc=15.2 min CN=55 Runoff=1.58 cfs 0.172 af             |  |  |  |  |
| Subcatchment 71S: Subcat #71                                               | Runoff Area=100,796 sf 29.45% Impervious Runoff Depth>1.28" Flow Length=563' Tc=39.5 min CN=53 Runoff=1.48 cfs 0.246 af            |  |  |  |  |
| Subcatchment 72S: Subcat #72                                               | Runoff Area=68,928 sf 42.73% Impervious Runoff Depth>2.07" Flow Length=478' Tc=32.0 min CN=63 Runoff=2.04 cfs 0.273 af             |  |  |  |  |
| Reach 30aR: Overland Flow n=0.022                                          | Avg. Flow Depth=0.01' Max Vel=0.28 fps Inflow=0.01 cfs 0.000 af L=43.0' S=0.0105 '/' Capacity=16.58 cfs Outflow=0.01 cfs 0.000 af  |  |  |  |  |
| Reach 30bR: Overland Flow n=0.030                                          | Avg. Flow Depth=0.01' Max Vel=0.56 fps Inflow=0.01 cfs 0.000 af L=63.5' S=0.1339 '/' Capacity=43.48 cfs Outflow=0.00 cfs 0.000 af  |  |  |  |  |
| Reach 30cR: Overland Flow n=0.030                                          | Avg. Flow Depth=0.01' Max Vel=0.18 fps Inflow=0.00 cfs 0.000 af L=230.5' S=0.0130 '/' Capacity=13.56 cfs Outflow=0.00 cfs 0.000 af |  |  |  |  |
| Reach 30dR: Overland Flow n=0.030                                          | Avg. Flow Depth=0.00' Max Vel=0.41 fps Inflow=0.00 cfs 0.000 af L=11.0' S=0.1364 '/' Capacity=43.88 cfs Outflow=0.00 cfs 0.000 af  |  |  |  |  |
| Reach 33aR: Overland Flow n=0.016                                          | Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=50.0' S=0.0198 '/' Capacity=31.35 cfs Outflow=0.00 cfs 0.000 af  |  |  |  |  |
| Reach 34aR: Overland Flow n=0.016                                          | Avg. Flow Depth=0.25' Max Vel=3.36 fps Inflow=6.40 cfs 0.513 af L=35.0' S=0.0140 '/' Capacity=26.36 cfs Outflow=6.08 cfs 0.513 af  |  |  |  |  |
| Reach 34bR: Overland Flow n=0.016                                          | Avg. Flow Depth=0.27' Max Vel=3.03 fps Inflow=6.08 cfs 0.513 af L=194.0' S=0.0103 '/' Capacity=22.62 cfs Outflow=6.18 cfs 0.512 af |  |  |  |  |

Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 6

Reach 34cR: Overland Flow Avg. Flow Depth=0.20' Max Vel=5.07 fps Inflow=6.18 cfs 0.512 af

n=0.030 L=36.0' S=0.1597'/' Capacity=47.49 cfs Outflow=6.19 cfs 0.512 af

Reach 34dR: Overland Flow

Avg. Flow Depth=0.33' Max Vel=2.35 fps Inflow=6.19 cfs 0.512 af

n=0.030 L=43.0' S=0.0174'/' Capacity=15.69 cfs Outflow=6.20 cfs 0.512 af

Reach 71aR: Wooded Swale Avg. Flow Depth=0.46' Max Vel=1.53 fps Inflow=3.40 cfs 0.492 af

n=0.035 L=125.0' S=0.0064 '/' Capacity=79.88 cfs Outflow=3.39 cfs 0.492 af

Reach 71bR: Riprap Swale Avg. Flow Depth=0.35' Max Vel=1.61 fps Inflow=3.39 cfs 0.492 af

n=0.041 L=147.7' S=0.0135 '/' Capacity=31.94 cfs Outflow=3.39 cfs 0.491 af

Reach 72R: Roadside Swale Avg. Flow Depth=0.25' Max Vel=1.71 fps Inflow=2.00 cfs 0.247 af

n=0.022 L=495.6' S=0.0060 '/' Capacity=33.12 cfs Outflow=1.95 cfs 0.246 af

Reach 200R: Final Reach #200 Inflow=5.85 cfs 0.598 af

Outflow=5.85 cfs 0.598 af

Reach 300R: Final Reach #300 Inflow=6.68 cfs 1.117 af

Outflow=6.68 cfs 1.117 af

Reach 400R: Final Reach #400 Inflow=4.22 cfs 0.663 af

Outflow=4.22 cfs 0.663 af

**Pond 30P: Existing Infiltration/Trench**Peak Elev=183.96' Storage=3,170 cf Inflow=2.87 cfs 0.251 af Discarded=0.93 cfs 0.189 af Primary=0.65 cfs 0.053 af Secondary=0.01 cfs 0.000 af Outflow=1.47 cfs 0.242 af

Pond 70P: Existing Catch Basin Peak Elev=181.13' Storage=0.000 af Inflow=4.22 cfs 0.663 af

18.0" Round Culvert n=0.012 L=62.8' S=0.0180 '/' Outflow=4.22 cfs 0.663 af

Pond 71P: Existing Catch Basin Peak Elev=188.93' Inflow=3.40 cfs 0.492 af

18.0" Round Culvert n=0.012 L=10.2' S=0.0098 '/' Outflow=3.40 cfs 0.492 af

Pond 72P: Existing Depression Peak Elev=196.21' Storage=160 cf Inflow=2.04 cfs 0.273 af

Discarded=0.02 cfs 0.024 af Primary=2.00 cfs 0.247 af Outflow=2.02 cfs 0.271 af

Pond E01P: Existing Catch Basin Peak Elev=185.04' Storage=19 cf Inflow=1.99 cfs 0.145 af

15.0" Round Culvert n=0.012 L=57.0' S=0.0049 '/' Outflow=1.92 cfs 0.145 af

Pond E02P: Existing Catch Basin Peak Elev=184.97' Storage=135 cf Inflow=6.18 cfs 0.459 af

Discarded=0.01 cfs 0.006 af Primary=6.73 cfs 0.453 af Outflow=6.73 cfs 0.459 af

Pond E03P: Existing Catch Basin Peak Elev=184.31' Storage=60 cf Inflow=0.65 cfs 0.053 af

Primary=0.42 cfs 0.052 af Secondary=0.00 cfs 0.000 af Outflow=0.42 cfs 0.052 af

Pond E04P: Existing Catch Basin Peak Elev=184.75' Storage=75 cf Inflow=6.85 cfs 0.514 af

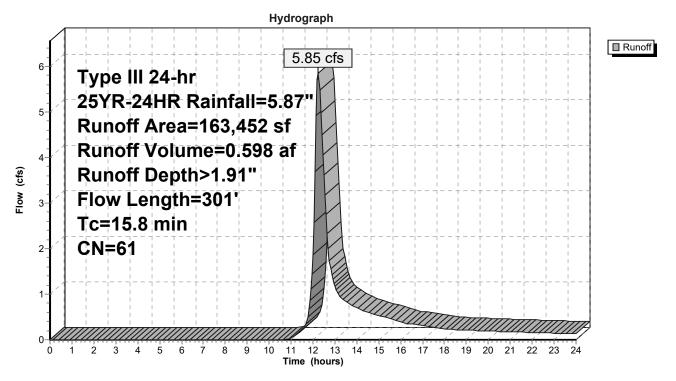
Outflow=6.40 cfs 0.513 af

Total Runoff Area = 16.942 ac Runoff Volume = 2.614 af Average Runoff Depth = 1.85" 82.88% Pervious = 14.041 ac 17.12% Impervious = 2.901 ac

Printed 4/17/2024

Page 7

#### **Summary for Subcatchment 2S: Subcat #2**


Runoff = 5.85 cfs @ 12.24 hrs, Volume= 0.598 af, Depth> 1.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| A     | rea (sf) | CN [    | Description                   |              |                                       |  |  |  |  |
|-------|----------|---------|-------------------------------|--------------|---------------------------------------|--|--|--|--|
|       | 86,449   | 61 >    | >75% Grass cover, Good, HSG B |              |                                       |  |  |  |  |
|       | 3,761    | 98 l    | Inconnected pavement, HSG B   |              |                                       |  |  |  |  |
|       | 48       | 98 l    | <b>Jnconnecte</b>             | ed roofs, HS | SG B                                  |  |  |  |  |
|       | 7,782    |         |                               | ace, HSG B   |                                       |  |  |  |  |
|       | 65,412   | 55 V    | Voods, Go                     | od, HSG B    |                                       |  |  |  |  |
| 1     | 63,452   | 61 V    | Veighted A                    | verage       |                                       |  |  |  |  |
|       | 59,643   |         |                               | vious Area   |                                       |  |  |  |  |
|       | 3,809    | 2       | 2.33% Impe                    | ervious Area | a                                     |  |  |  |  |
|       | 3,809    |         | •                             | nconnected   |                                       |  |  |  |  |
|       | -,       |         |                               |              |                                       |  |  |  |  |
| Tc    | Length   | Slope   | Velocity                      | Capacity     | Description                           |  |  |  |  |
| (min) | (feet)   | (ft/ft) | (ft/sec)                      | (cfs)        | ·                                     |  |  |  |  |
| 13.2  | 100      | 0.0100  | 0.13                          |              | Sheet Flow, Segment #1                |  |  |  |  |
|       |          |         |                               |              | Grass: Short n= 0.150 P2= 3.08"       |  |  |  |  |
| 1.6   | 78       | 0.0128  | 0.79                          |              | Shallow Concentrated Flow, Segment #2 |  |  |  |  |
|       |          |         |                               |              | Short Grass Pasture Kv= 7.0 fps       |  |  |  |  |
| 0.3   | 45       | 0.2000  | 2.24                          |              | Shallow Concentrated Flow, Segment #3 |  |  |  |  |
|       |          |         |                               |              | Woodland Kv= 5.0 fps                  |  |  |  |  |
| 0.4   | 49       | 0.1071  | 2.29                          |              | Shallow Concentrated Flow, Segment #4 |  |  |  |  |
|       |          |         |                               |              | Short Grass Pasture Kv= 7.0 fps       |  |  |  |  |
| 0.3   | 29       | 0.0690  | 1.84                          |              | Shallow Concentrated Flow, Segment #5 |  |  |  |  |
|       |          |         |                               |              | Short Grass Pasture Kv= 7.0 fps       |  |  |  |  |
| 15.8  | 301      | Total   | -                             |              | <u> </u>                              |  |  |  |  |

Page 8

#### **Subcatchment 2S: Subcat #2**



Printed 4/17/2024

Page 9

#### Summary for Subcatchment 3S: Subcat #3

Runoff = 3.57 cfs @ 12.68 hrs, Volume= 0.605 af, Depth> 1.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| Area (sf) | CN [                                                                                            | Description                                                                                       |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|-----------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 10,402    | 39 >                                                                                            | 39 >75% Grass cover, Good, HSG A                                                                  |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 65,404    | 30 \                                                                                            | Woods, Good, HSG A                                                                                |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 1,526     | 98 F                                                                                            | Roofs, HSG B                                                                                      |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 74,474    |                                                                                                 | >75% Grass cover, Good, HSG B                                                                     |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 1,060     |                                                                                                 |                                                                                                   |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|           |                                                                                                 | · · · · ·                                                                                         |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 28,346    | 96 (                                                                                            | 96 Gravel surface, HSG B                                                                          |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| ,         | 55 Weighted Average                                                                             |                                                                                                   |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| ,         |                                                                                                 |                                                                                                   |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 2,586     | 1.16% Impervious Area                                                                           |                                                                                                   |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|           | -                                                                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                 | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| •         |                                                                                                 |                                                                                                   |                                                                                                                                                                                                                                                                                                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|           |                                                                                                 |                                                                                                   | (CTS)                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 100       | 0.0100                                                                                          | 0.06                                                                                              |                                                                                                                                                                                                                                                                                                                 | Sheet Flow, Segment #1                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 050       | 0.0070                                                                                          | 0.40                                                                                              |                                                                                                                                                                                                                                                                                                                 | Woods: Light underbrush n= 0.400 P2= 3.08"                                                                                                                                                                                                                                                                                                                                                                              |  |
| 252       | 0.0070                                                                                          | 0.42                                                                                              |                                                                                                                                                                                                                                                                                                                 | Shallow Concentrated Flow, Segment #2                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 7.1       | 0.0070                                                                                          | 0.00                                                                                              |                                                                                                                                                                                                                                                                                                                 | Woodland Kv= 5.0 fps                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 74        | 0.0270                                                                                          | 0.82                                                                                              |                                                                                                                                                                                                                                                                                                                 | Shallow Concentrated Flow, Segment #3                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 157       | U U030                                                                                          | 1 11                                                                                              |                                                                                                                                                                                                                                                                                                                 | Woodland Kv= 5.0 fps                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 101       | 0.0020                                                                                          | 1.44                                                                                              |                                                                                                                                                                                                                                                                                                                 | Shallow Concentrated Flow, Segment #4 Woodland Kv= 5.0 fps                                                                                                                                                                                                                                                                                                                                                              |  |
| 00        | 0.0505                                                                                          | 1 12                                                                                              |                                                                                                                                                                                                                                                                                                                 | Shallow Concentrated Flow, Segment #5                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 99        | 0.0000                                                                                          | 1.12                                                                                              |                                                                                                                                                                                                                                                                                                                 | Woodland Kv= 5.0 fps                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|           | Total                                                                                           |                                                                                                   |                                                                                                                                                                                                                                                                                                                 | rroodidita ita- 0.0 ipo                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|           | 65,404<br>1,526<br>74,474<br>1,060<br>40,852<br>28,346<br>222,064<br>219,478<br>2,586<br>Length | 10,402 39 365,404 30 1,526 98 174,474 61 31,060 98 140,852 55 28,346 96 0222,064 55 219,478 2,586 | 10,402 39 >75% Gras 65,404 30 Woods, Go 1,526 98 Roofs, HSG 74,474 61 >75% Gras 1,060 98 Paved park 40,852 55 Woods, Go 28,346 96 Gravel surf 222,064 55 Weighted A 219,478 98.84% Per 1.16% Imped Length (feet) (ft/ft) (ft/sec) 100 0.0100 0.06 252 0.0070 0.42 74 0.0270 0.82 157 0.0828 1.44 99 0.0505 1.12 | 10,402 39 >75% Grass cover, Go 65,404 30 Woods, Good, HSG A 1,526 98 Roofs, HSG B 74,474 61 >75% Grass cover, Go 1,060 98 Paved parking, HSG B 40,852 55 Woods, Good, HSG B 28,346 96 Gravel surface, HSG B 222,064 55 Weighted Average 98.84% Pervious Area 1.16% Impervious Area 1.16% Impervious Area 1.16% (ft/ft) (ft/sec) (cfs) 100 0.0100 0.06  252 0.0070 0.42  74 0.0270 0.82  157 0.0828 1.44  99 0.0505 1.12 |  |

Page 10

#### Subcatchment 3S: Subcat #3



Printed 4/17/2024

<u>Page 11</u>

# Summary for Subcatchment 30S: Subcat #30

Runoff = 2.87 cfs @ 12.17 hrs, Volume= 0.251 af, Depth> 2.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| _ | Α     | rea (sf) | CN I    | Description           |             |                                 |  |  |  |
|---|-------|----------|---------|-----------------------|-------------|---------------------------------|--|--|--|
|   |       | 45,589   | 61      | >75% Gras             | s cover, Go | ood, HSG B                      |  |  |  |
|   |       | 6,207    | 98 I    | Paved park            | ing, HSG B  |                                 |  |  |  |
|   |       | 1,222    | 96      | Gravel surface, HSG B |             |                                 |  |  |  |
|   |       | 5,299    | 55      | Noods, Good, HSG B    |             |                                 |  |  |  |
|   |       | 58,317   | 65 \    | Weighted A            | verage      |                                 |  |  |  |
|   |       | 52,110   | ;       | 39.36% Per            | vious Area  |                                 |  |  |  |
|   |       | 6,207    |         | 10.64% lmp            | ervious Ar  | ea                              |  |  |  |
|   |       |          |         |                       |             |                                 |  |  |  |
|   | Тс    | Length   | Slope   | Velocity              | Capacity    | Description                     |  |  |  |
| _ | (min) | (feet)   | (ft/ft) | (ft/sec)              | (cfs)       |                                 |  |  |  |
|   | 11.3  | 87       | 0.0110  | 0.13                  |             | Sheet Flow, Segment #1          |  |  |  |
|   |       |          |         |                       |             | Grass: Short n= 0.150 P2= 3.08" |  |  |  |

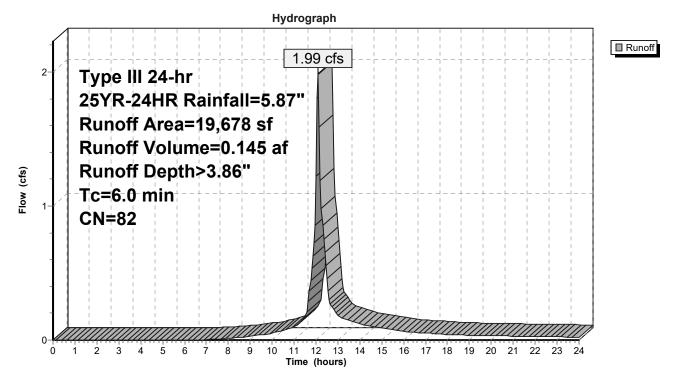
#### Subcatchment 30S: Subcat #30



Printed 4/17/2024

Page 12

### **Summary for Subcatchment 31S: Subcat #31**


Runoff 1.99 cfs @ 12.09 hrs, Volume= 0.145 af, Depth> 3.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| A     | rea (sf) | CN     | Description                   |             |               |              |  |  |  |
|-------|----------|--------|-------------------------------|-------------|---------------|--------------|--|--|--|
|       | 57       | 98     | Roofs, HSG                    | ВВ          |               |              |  |  |  |
|       | 8,646    | 61     | >75% Grass cover, Good, HSG B |             |               |              |  |  |  |
|       | 10,975   | 98     | Paved parking, HSG B          |             |               |              |  |  |  |
|       | 19,678   | 82     | Weighted Average              |             |               |              |  |  |  |
|       | 8,646    |        | 43.94% Pervious Area          |             |               |              |  |  |  |
|       | 11,032   |        | 56.06% Imp                    | ervious Are | ea            |              |  |  |  |
|       |          |        |                               |             |               |              |  |  |  |
|       | Length   | Slope  | ,                             | Capacity    | Description   |              |  |  |  |
| (min) | (feet)   | (ft/ft | (ft/sec)                      | (cfs)       |               |              |  |  |  |
| 6.0   |          |        |                               |             | Direct Entry, | Direct Entry |  |  |  |

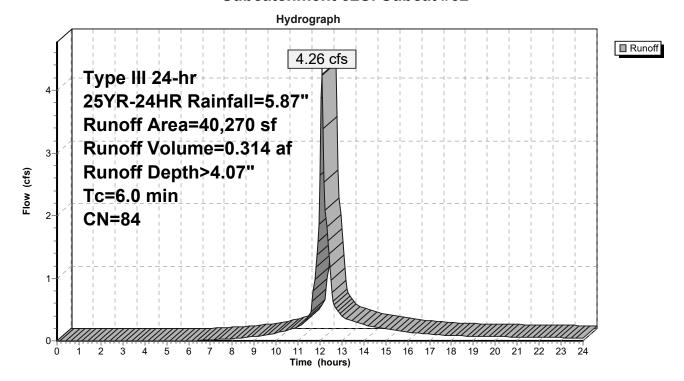
**Direct Entry, Direct Entry** 

### Subcatchment 31S: Subcat #31



Printed 4/17/2024

Page 13


### **Summary for Subcatchment 32S: Subcat #32**

Runoff = 4.26 cfs @ 12.09 hrs, Volume= 0.314 af, Depth> 4.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

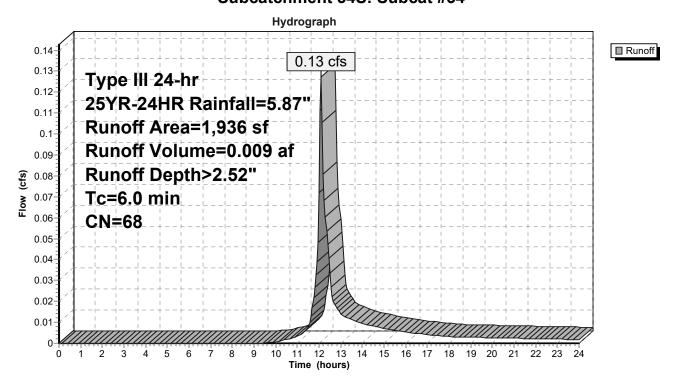
| A     | rea (sf) | CN     | Description          |                    |                            |  |  |  |  |  |
|-------|----------|--------|----------------------|--------------------|----------------------------|--|--|--|--|--|
|       | 341      | 98     | Roofs, HSG           | Roofs, HSG B       |                            |  |  |  |  |  |
|       | 9,068    | 61     | >75% Grass           | s cover, Go        | lood, HSG B                |  |  |  |  |  |
|       | 25,189   | 98     | Paved parki          | ng, HSG B          | В                          |  |  |  |  |  |
|       | 5,672    | 55     | Woods, God           | Woods, Good, HSG B |                            |  |  |  |  |  |
|       | 40,270   | 84     | Weighted Average     |                    |                            |  |  |  |  |  |
|       | 14,740   |        | 36.60% Pervious Area |                    |                            |  |  |  |  |  |
|       | 25,530   |        | 63.40% Imp           | ervious Are        | rea                        |  |  |  |  |  |
|       |          |        |                      |                    |                            |  |  |  |  |  |
| Тс    | Length   | Slop   |                      | Capacity           | •                          |  |  |  |  |  |
| (min) | (feet)   | (ft/ft | t) (ft/sec)          | (cfs)              |                            |  |  |  |  |  |
| 6.0   |          |        |                      |                    | Direct Entry, Direct Entry |  |  |  |  |  |

#### Subcatchment 32S: Subcat #32



Printed 4/17/2024

<u>Page 14</u>


# Summary for Subcatchment 34S: Subcat #34

Runoff = 0.13 cfs @ 12.10 hrs, Volume= 0.009 af, Depth> 2.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

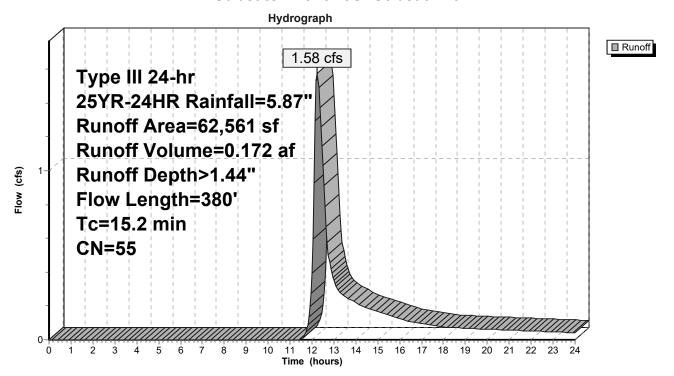
| A           | rea (sf)         | CN              | Description      |                               |                            |  |  |  |  |
|-------------|------------------|-----------------|------------------|-------------------------------|----------------------------|--|--|--|--|
|             | 1,270            | 61              | >75% Gras        | >75% Grass cover, Good, HSG B |                            |  |  |  |  |
|             | 260              | 55              | Woods, Go        | Noods, Good, HSG B            |                            |  |  |  |  |
|             | 406              | 96              | Gravel surfa     | Gravel surface, HSG B         |                            |  |  |  |  |
|             | 1,936            | 68              | Weighted Average |                               |                            |  |  |  |  |
|             | 1,936            |                 | 100.00% Pe       | ervious Are                   | ea                         |  |  |  |  |
| Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft | ,                | Capacity<br>(cfs)             | Description                |  |  |  |  |
| 6.0         |                  |                 |                  |                               | Direct Entry, Direct Entry |  |  |  |  |

### Subcatchment 34S: Subcat #34



Printed 4/17/2024

Page 15


### Summary for Subcatchment 70S: Subcat #70

Runoff = 1.58 cfs @ 12.24 hrs, Volume= 0.172 af, Depth> 1.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

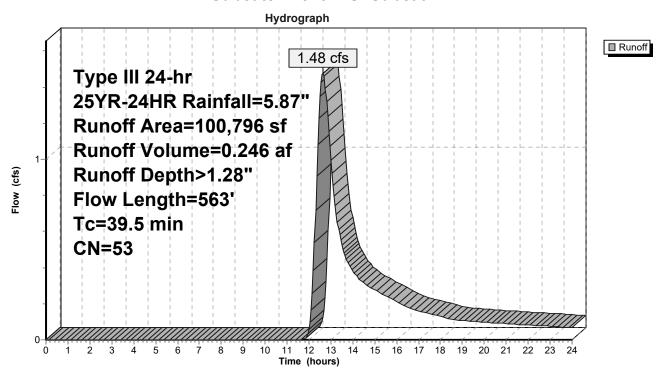
| A     | rea (sf) | CN [    | Description                      |             |                                       |  |  |
|-------|----------|---------|----------------------------------|-------------|---------------------------------------|--|--|
|       | 17,367   | 39 >    | 39 >75% Grass cover, Good, HSG A |             |                                       |  |  |
|       | 8,001    | 98 F    | Paved park                       | ing, HSG A  | <b>L</b>                              |  |  |
|       | 20,432   | 30 \    | Noods, Go                        | od, HSG A   |                                       |  |  |
|       | 6,708    | 61 >    | >75% Gras                        | s cover, Go | ood, HSG B                            |  |  |
|       | 10,053   | 98 F    | Paved park                       | ing, HSG B  |                                       |  |  |
|       | 62,561   | 55 \    | Weighted A                       | verage      |                                       |  |  |
|       | 44,507   | 7       | 71.14% Per                       | vious Area  |                                       |  |  |
|       | 18,054   | 2       | 28.86% Imp                       | pervious Ar | ea                                    |  |  |
|       |          |         |                                  |             |                                       |  |  |
| Tc    | Length   | Slope   | •                                | Capacity    | Description                           |  |  |
| (min) | (feet)   | (ft/ft) | (ft/sec)                         | (cfs)       |                                       |  |  |
| 7.9   | 94       | 0.0319  | 0.20                             |             | Sheet Flow, Segment #1                |  |  |
|       |          |         |                                  |             | Grass: Short n= 0.150 P2= 3.08"       |  |  |
| 5.9   | 136      | 0.0060  | 0.39                             |             | Shallow Concentrated Flow, Segment #2 |  |  |
|       |          |         |                                  |             | Woodland Kv= 5.0 fps                  |  |  |
| 1.4   | 150      | 0.0135  | 1.74                             |             | Shallow Concentrated Flow, Segment #3 |  |  |
|       |          |         |                                  |             | Grassed Waterway Kv= 15.0 fps         |  |  |
| 15.2  | 380      | Total   |                                  |             |                                       |  |  |

#### Subcatchment 70S: Subcat #70



Printed 4/17/2024

Page 16


### Summary for Subcatchment 71S: Subcat #71

Runoff = 1.48 cfs @ 12.63 hrs, Volume= 0.246 af, Depth> 1.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

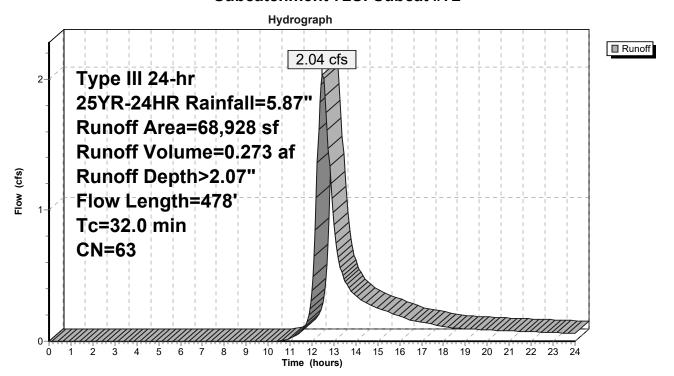
| _ | Α     | rea (sf) | CN E    | Description |             |                                            |
|---|-------|----------|---------|-------------|-------------|--------------------------------------------|
|   |       | 35,048   | 39 >    | 75% Gras    | s cover, Go | ood, HSG A                                 |
|   |       | 29,681   |         |             | ing, HSG A  |                                            |
| _ |       | 36,067   | 30 V    | Voods, Go   | od, HSG A   |                                            |
|   | 1     | 00,796   | 53 V    | Veighted A  | verage      |                                            |
|   |       | 71,115   |         |             | vious Area  |                                            |
|   |       | 29,681   | 2       | 29.45% lmp  | pervious Ar | ea                                         |
|   | т.    | 1 41-    | Olana.  | \           | 0           | Description                                |
|   | Tc    | Length   | Slope   | Velocity    | Capacity    | Description                                |
| _ | (min) | (feet)   | (ft/ft) | (ft/sec)    | (cfs)       |                                            |
|   | 24.6  | 100      | 0.0150  | 0.07        |             | Sheet Flow, Segment #1                     |
|   |       |          |         |             |             | Woods: Light underbrush n= 0.400 P2= 3.08" |
|   | 11.4  | 285      | 0.0070  | 0.42        |             | Shallow Concentrated Flow, Segment #2      |
|   |       |          |         |             |             | Woodland Kv= 5.0 fps                       |
|   | 0.6   | 65       | 0.0615  | 1.74        |             | Shallow Concentrated Flow, Segment #3      |
|   |       |          |         |             |             | Short Grass Pasture Kv= 7.0 fps            |
|   | 2.9   | 113      | 0.0088  | 0.66        |             | Shallow Concentrated Flow, Segment #4      |
| _ |       |          |         |             |             | Short Grass Pasture Kv= 7.0 fps            |
|   | 39.5  | 563      | Total   |             |             |                                            |

#### Subcatchment 71S: Subcat #71



Printed 4/17/2024

Page 17


### **Summary for Subcatchment 72S: Subcat #72**

Runoff = 2.04 cfs @ 12.48 hrs, Volume= 0.273 af, Depth> 2.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| _ | Α                            | rea (sf) | CN [    | escription |             |                                            |
|---|------------------------------|----------|---------|------------|-------------|--------------------------------------------|
|   |                              | 32,729   | 39 >    | 75% Gras   | s cover, Go | ood, HSG A                                 |
|   |                              | 29,456   | 98 F    | Paved park | ing, HSG A  | <b>L</b>                                   |
| _ |                              | 6,743    | 30 V    | Voods, Go  | od, HSG A   |                                            |
|   |                              | 68,928   | 63 V    | Veighted A | verage      |                                            |
|   | 39,472 57.27% Pervious Area  |          |         |            |             |                                            |
|   | 29,456 42.73% Impervious Are |          |         |            |             | ea                                         |
|   | _                            |          |         |            | _           |                                            |
|   | Tc                           | Length   | Slope   | Velocity   | Capacity    | Description                                |
| _ | (min)                        | (feet)   | (ft/ft) | (ft/sec)   | (cfs)       |                                            |
|   | 24.6                         | 100      | 0.0150  | 0.07       |             | Sheet Flow, Segment #1                     |
|   |                              |          |         |            |             | Woods: Light underbrush n= 0.400 P2= 3.08" |
|   | 0.7                          | 27       | 0.0150  | 0.61       |             | Shallow Concentrated Flow, Segment #2      |
|   |                              |          |         |            |             | Woodland Kv= 5.0 fps                       |
|   | 6.7                          | 351      | 0.0157  | 0.88       |             | Shallow Concentrated Flow, Segment #3      |
| _ |                              |          |         |            |             | Short Grass Pasture Kv= 7.0 fps            |
|   | 32 N                         | 478      | Total   |            |             |                                            |

#### Subcatchment 72S: Subcat #72



Page 18

### Summary for Reach 30aR: Overland Flow

[80] Warning: Exceeded Pond 30P by 0.33' @ 14.70 hrs (0.00 cfs 0.000 af)

Inflow = 0.01 cfs @ 12.65 hrs, Volume= 0.000 af

Outflow = 0.01 cfs @ 12.68 hrs, Volume= 0.000 af, Atten= 48%, Lag= 2.0 min

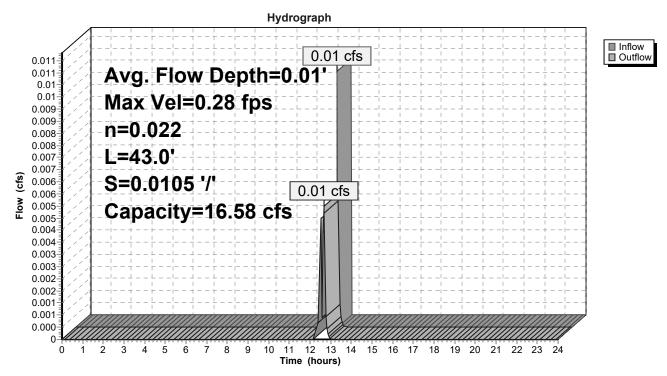
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 0.28 fps, Min. Travel Time= 2.5 min

Avg. Velocity = 0.20 fps, Avg. Travel Time= 3.6 min

Peak Storage= 1 cf @ 12.68 hrs

Average Depth at Peak Storage= 0.01'

Bank-Full Depth= 0.50' Flow Area= 5.0 sf, Capacity= 16.58 cfs


15.00' x 0.50' deep Parabolic Channel, n= 0.022 Earth, clean & straight

Length= 43.0' Slope= 0.0105 '/'

Inlet Invert= 183.95', Outlet Invert= 183.50'



#### Reach 30aR: Overland Flow



Printed 4/17/2024

Page 19

### Summary for Reach 30bR: Overland Flow

[61] Hint: Exceeded Reach 30aR outlet invert by 0.01' @ 12.70 hrs

Inflow = 0.01 cfs @ 12.68 hrs, Volume= 0.000 af

Outflow = 0.00 cfs @ 12.70 hrs, Volume= 0.000 af, Atten= 11%, Lag= 1.1 min

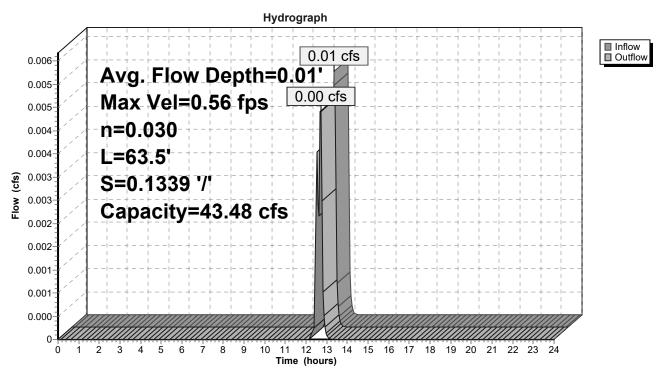
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 0.56 fps, Min. Travel Time= 1.9 min

Avg. Velocity = 0.45 fps, Avg. Travel Time= 2.4 min

Peak Storage= 1 cf @ 12.70 hrs

Average Depth at Peak Storage= 0.01'

Bank-Full Depth= 0.50' Flow Area= 5.0 sf, Capacity= 43.48 cfs


15.00' x 0.50' deep Parabolic Channel, n= 0.030 Earth, grassed & winding

Length= 63.5' Slope= 0.1339 '/'

Inlet Invert= 183.50', Outlet Invert= 175.00'



#### Reach 30bR: Overland Flow



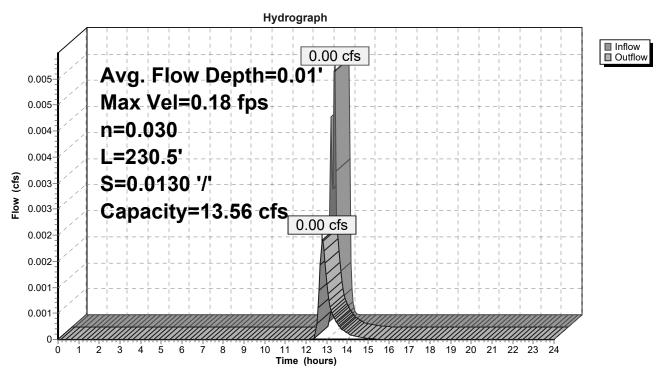
Page 20

### Summary for Reach 30cR: Overland Flow

[62] Hint: Exceeded Reach 30bR OUTLET depth by 0.01' @ 12.90 hrs

Inflow = 0.00 cfs @ 12.70 hrs, Volume= 0.000 at

Outflow = 0.00 cfs @ 12.78 hrs, Volume= 0.000 af, Atten= 61%, Lag= 4.7 min


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 0.18 fps, Min. Travel Time= 20.8 min Avg. Velocity = 0.13 fps, Avg. Travel Time= 28.8 min

Peak Storage= 2 cf @ 12.78 hrs Average Depth at Peak Storage= 0.01' Bank-Full Depth= 0.50' Flow Area= 5.0 sf, Capacity= 13.56 cfs

15.00' x 0.50' deep Parabolic Channel, n= 0.030 Earth, grassed & winding Length= 230.5' Slope= 0.0130 '/' Inlet Invert= 175.00', Outlet Invert= 172.00'



#### Reach 30cR: Overland Flow



Printed 4/17/2024

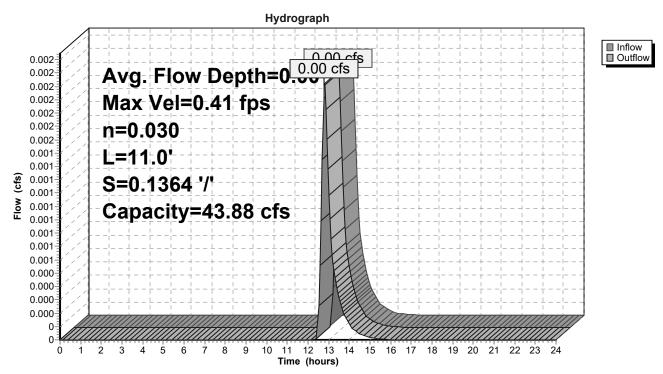
Page 21

### Summary for Reach 30dR: Overland Flow

Inflow = 0.00 cfs @ 12.78 hrs, Volume= 0.000 af

Outflow = 0.00 cfs @ 12.79 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.8 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs


Max. Velocity= 0.41 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.41 fps, Avg. Travel Time= 0.4 min

Peak Storage= 0 cf @ 12.79 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.50' Flow Area= 5.0 sf, Capacity= 43.88 cfs

15.00' x 0.50' deep Parabolic Channel, n= 0.030 Earth, grassed & winding Length= 11.0' Slope= 0.1364 '/' Inlet Invert= 172.00', Outlet Invert= 170.50'



#### Reach 30dR: Overland Flow



Type III 24-hr 25YR-24HR Rainfall=5.87" Printed 4/17/2024

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

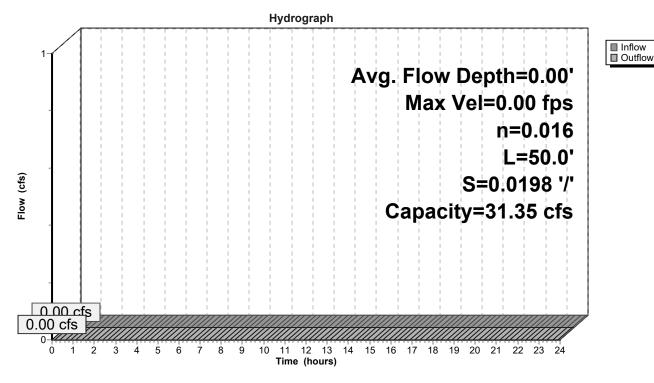
Page 22

### Summary for Reach 33aR: Overland Flow

Inflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs


Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.50' Flow Area= 5.0 sf, Capacity= 31.35 cfs

15.00' x 0.50' deep Parabolic Channel, n= 0.016 Asphalt, rough Length= 50.0' Slope= 0.0198 '/' Inlet Invert= 184.49', Outlet Invert= 183.50'



#### Reach 33aR: Overland Flow



Page 22

Page 23

### Summary for Reach 34aR: Overland Flow

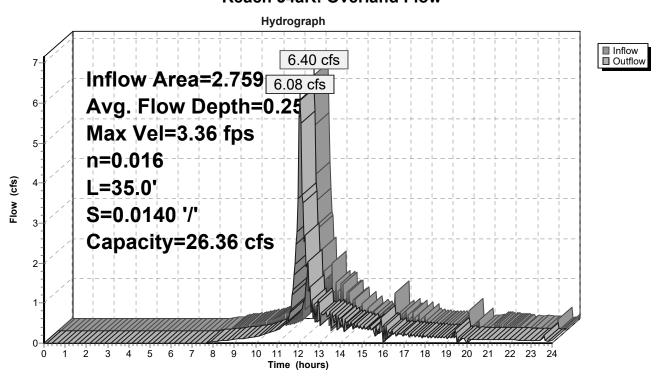
[80] Warning: Exceeded Pond E04P by 0.75' @ 15.85 hrs (0.14 cfs 0.003 af)

Inflow Area = 2.759 ac, 35.58% Impervious, Inflow Depth > 2.23" for 25YR-24HR event

Inflow = 6.40 cfs @ 12.10 hrs, Volume= 0.513 af

Outflow = 6.08 cfs @ 12.10 hrs, Volume= 0.513 af, Atten= 5%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs


Max. Velocity= 3.36 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.23 fps, Avg. Travel Time= 0.5 min

Peak Storage= 63 cf @ 12.10 hrs Average Depth at Peak Storage= 0.25' Bank-Full Depth= 0.50' Flow Area= 5.0 sf, Capacity= 26.36 cfs

15.00' x 0.50' deep Parabolic Channel, n= 0.016 Asphalt, rough Length= 35.0' Slope= 0.0140 '/' Inlet Invert= 183.99', Outlet Invert= 183.50'



#### Reach 34aR: Overland Flow



Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 24

### Summary for Reach 34bR: Overland Flow

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

[62] Hint: Exceeded Reach 33aR OUTLET depth by 0.27' @ 12.10 hrs [62] Hint: Exceeded Reach 34aR OUTLET depth by 0.05' @ 19.50 hrs

Inflow Area = 2.759 ac, 35.58% Impervious, Inflow Depth > 2.23" for 25YR-24HR event

Inflow = 6.08 cfs @ 12.10 hrs, Volume= 0.513 af

Outflow = 6.18 cfs @ 12.11 hrs, Volume= 0.512 af, Atten= 0%, Lag= 0.8 min

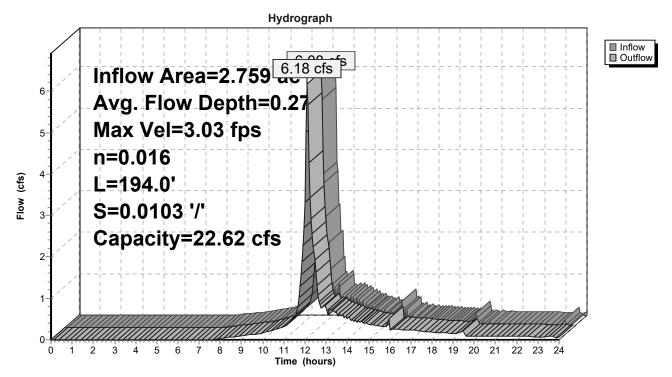
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.03 fps, Min. Travel Time= 1.1 min Avg. Velocity = 1.10 fps, Avg. Travel Time= 2.9 min

Peak Storage= 395 cf @ 12.11 hrs Average Depth at Peak Storage= 0.27'

Bank-Full Depth= 0.50' Flow Area= 5.0 sf, Capacity= 22.62 cfs

15.00' x 0.50' deep Parabolic Channel, n= 0.016 Asphalt, rough


Length= 194.0' Slope= 0.0103 '/'

Inlet Invert= 183.50', Outlet Invert= 181.50'



Page 25

### Reach 34bR: Overland Flow



Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 26

### Summary for Reach 34cR: Overland Flow

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=2)

[61] Hint: Exceeded Reach 34bR outlet invert by 0.19' @ 12.10 hrs

Inflow Area = 2.759 ac, 35.58% Impervious, Inflow Depth > 2.23" for 25YR-24HR event

Inflow = 6.18 cfs @ 12.11 hrs, Volume= 0.512 af

Outflow = 6.19 cfs @ 12.11 hrs, Volume= 0.512 af, Atten= 0%, Lag= 0.1 min

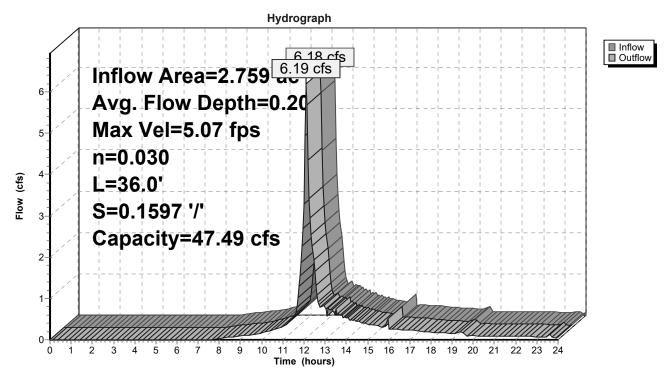
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.07 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.85 fps, Avg. Travel Time= 0.3 min

Peak Storage= 44 cf @ 12.11 hrs Average Depth at Peak Storage= 0.20'

Bank-Full Depth= 0.50' Flow Area= 5.0 sf, Capacity= 47.49 cfs

15.00' x 0.50' deep Parabolic Channel, n= 0.030 Earth, grassed & winding


Length= 36.0' Slope= 0.1597 '/'

Inlet Invert= 181.50', Outlet Invert= 175.75'



Page 27

### Reach 34cR: Overland Flow



Page 28

### Summary for Reach 34dR: Overland Flow

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

[62] Hint: Exceeded Reach 34cR OUTLET depth by 0.13' @ 12.10 hrs

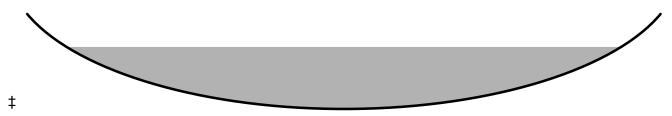
2.759 ac, 35.58% Impervious, Inflow Depth > 2.23" for 25YR-24HR event Inflow Area =

Inflow 6.19 cfs @ 12.11 hrs, Volume= 0.512 af

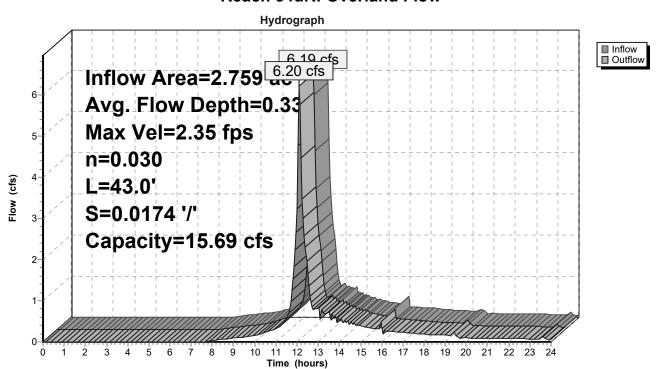
Outflow 6.20 cfs @ 12.11 hrs, Volume= 0.512 af, Atten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.35 fps, Min. Travel Time= 0.3 min Avg. Velocity = 0.86 fps, Avg. Travel Time= 0.8 min


Peak Storage= 113 cf @ 12.11 hrs Average Depth at Peak Storage= 0.33'

Bank-Full Depth= 0.50' Flow Area= 5.0 sf, Capacity= 15.69 cfs


15.00' x 0.50' deep Parabolic Channel, n= 0.030 Earth, grassed & winding

Length= 43.0' Slope= 0.0174 '/'

Inlet Invert= 175.75', Outlet Invert= 175.00'



#### Reach 34dR: Overland Flow



Prepared by Berry Surveying & Engineering

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 29

### Summary for Reach 71aR: Wooded Swale

Inflow Area = 3.896 ac, 34.84% Impervious, Inflow Depth > 1.52" for 25YR-24HR event

Inflow = 3.40 cfs @ 12.58 hrs, Volume= 0.492 af

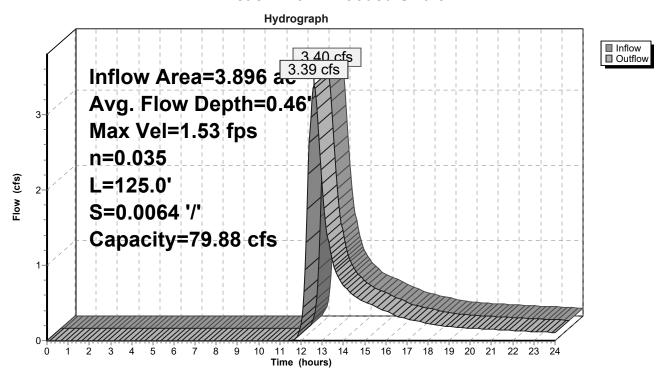
Outflow = 3.39 cfs @ 12.60 hrs, Volume= 0.492 af, Atten= 0%, Lag= 1.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.53 fps, Min. Travel Time= 1.4 min Avg. Velocity = 0.75 fps, Avg. Travel Time= 2.8 min

Peak Storage= 276 cf @ 12.60 hrs Average Depth at Peak Storage= 0.46'

Bank-Full Depth= 2.00' Flow Area= 20.0 sf, Capacity= 79.88 cfs


15.00' x 2.00' deep Parabolic Channel, n= 0.035 Earth, dense weeds

Length= 125.0' Slope= 0.0064 '/'

Inlet Invert= 187.80', Outlet Invert= 187.00'



#### Reach 71aR: Wooded Swale



Page 30

### Summary for Reach 71bR: Riprap Swale

[61] Hint: Exceeded Reach 71aR outlet invert by 0.35' @ 12.60 hrs

Inflow Area = 3.896 ac, 34.84% Impervious, Inflow Depth > 1.51" for 25YR-24HR event

Inflow = 3.39 cfs @ 12.60 hrs, Volume= 0.492 af

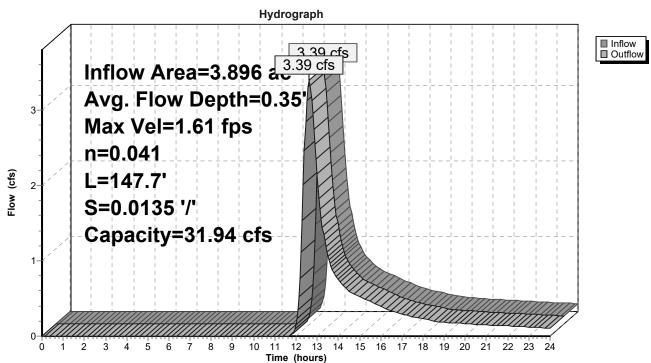
Outflow = 3.39 cfs @ 12.62 hrs, Volume= 0.491 af, Atten= 0%, Lag= 1.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.61 fps, Min. Travel Time= 1.5 min Avg. Velocity = 0.78 fps, Avg. Travel Time= 3.2 min

Peak Storage= 311 cf @ 12.62 hrs Average Depth at Peak Storage= 0.35'

Bank-Full Depth= 1.00' Flow Area= 10.0 sf, Capacity= 31.94 cfs


15.00' x 1.00' deep Parabolic Channel, n= 0.041 Riprap, 2-inch

Length= 147.7' Slope= 0.0135 '/'

Inlet Invert= 187.00', Outlet Invert= 185.00'



### Reach 71bR: Riprap Swale



Page 31

### Summary for Reach 72R: Roadside Swale

[80] Warning: Exceeded Pond 72P by 0.02' @ 12.25 hrs (1.74 cfs 0.063 af)

Inflow Area = 1.582 ac, 42.73% Impervious, Inflow Depth > 1.87" for 25YR-24HR event

Inflow = 2.00 cfs @ 12.49 hrs, Volume= 0.247 af

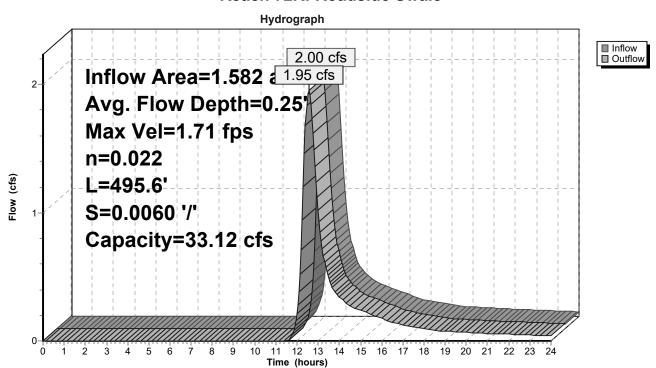
Outflow = 1.95 cfs @ 12.55 hrs, Volume= 0.246 af, Atten= 2%, Lag= 3.7 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.71 fps, Min. Travel Time= 4.8 min Avg. Velocity = 0.74 fps, Avg. Travel Time= 11.2 min

Peak Storage= 566 cf @ 12.55 hrs Average Depth at Peak Storage= 0.25' Bank-Full Depth= 1.00' Flow Area= 9.0 sf, Capacity= 33.12 cfs

3.00' x 1.00' deep channel, n= 0.022 Earth, clean & straight


Side Slope Z-value= 6.0 '/' Top Width= 15.00'

Length= 495.6' Slope= 0.0060 '/'

Inlet Invert= 195.95', Outlet Invert= 193.00'



### Reach 72R: Roadside Swale

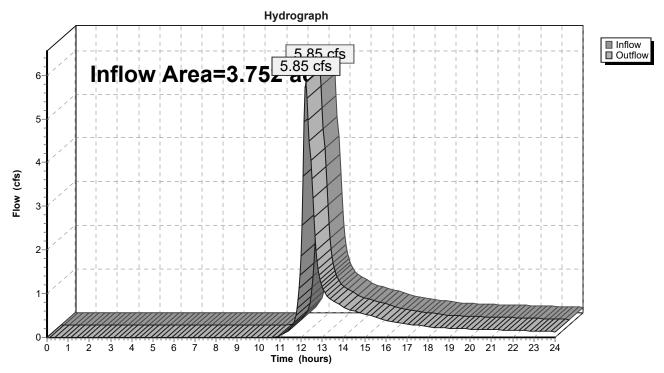


Printed 4/17/2024

Page 32

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.752 ac, 2.33% Impervious, Inflow Depth > 1.91" for 25YR-24HR event


Inflow = 5.85 cfs @ 12.24 hrs, Volume= 0.598 af

Outflow = 5.85 cfs @ 12.24 hrs, Volume= 0.598 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

### Reach 200R: Final Reach #200

Summary for Reach 200R: Final Reach #200

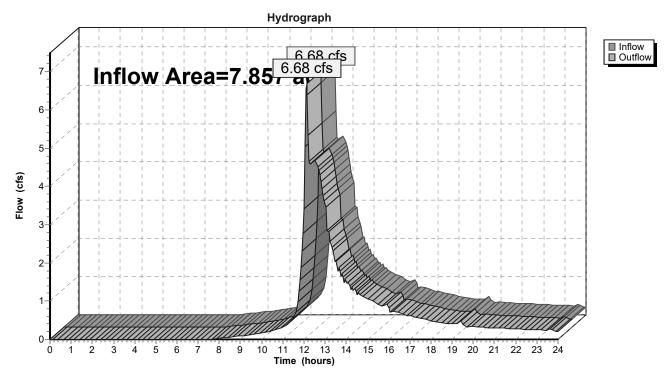


Printed 4/17/2024

<u>Page 33</u>

# Summary for Reach 300R: Final Reach #300

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 7.857 ac, 13.25% Impervious, Inflow Depth > 1.71" for 25YR-24HR event

Inflow = 6.68 cfs @ 12.12 hrs, Volume= 1.117 af

Outflow = 6.68 cfs @ 12.12 hrs, Volume= 1.117 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

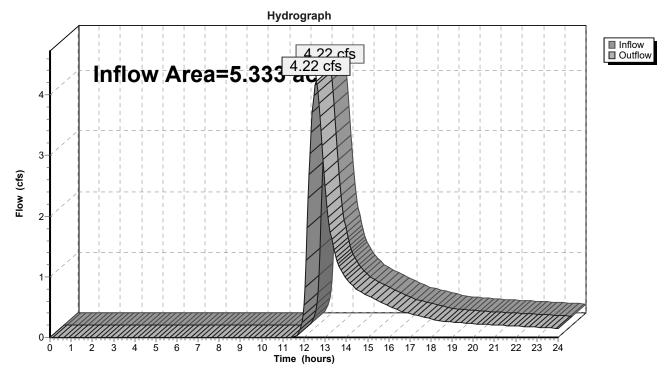
#### Reach 300R: Final Reach #300



Page 34

# Summary for Reach 400R: Final Reach #400

[40] Hint: Not Described (Outflow=Inflow)


5.333 ac, 33.23% Impervious, Inflow Depth > 1.49" for 25YR-24HR event Inflow Area =

Inflow 4.22 cfs @ 12.55 hrs, Volume= 0.663 af

Outflow 4.22 cfs @ 12.55 hrs, Volume= 0.663 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

### Reach 400R: Final Reach #400



Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 35

# Summary for Pond 30P: Existing Infiltration/Trench

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=43)

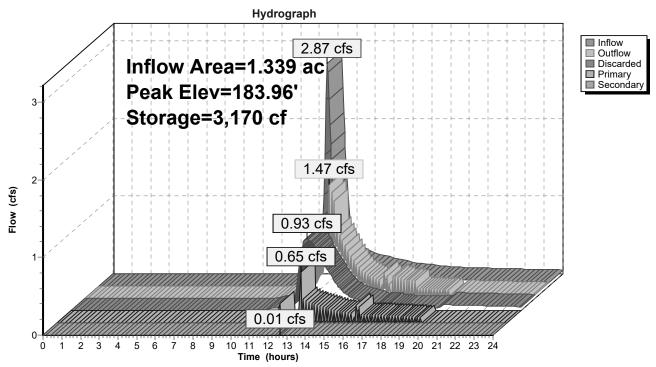
| Inflow Area = | 1.339 ac, 10.64% Impervious, Inflow | Depth > 2.25" for 25YR-24HR event   |
|---------------|-------------------------------------|-------------------------------------|
| Inflow =      | 2.87 cfs @ 12.17 hrs, Volume=       | 0.251 af                            |
| Outflow =     | 1.47 cfs @ 13.00 hrs, Volume=       | 0.242 af, Atten= 49%, Lag= 49.9 min |
| Discarded =   | 0.93 cfs @ 12.59 hrs, Volume=       | 0.189 af                            |
| Primary =     | 0.65 cfs @ 13.00 hrs, Volume=       | 0.053 af                            |
| Secondary =   | 0.01 cfs @ 12.65 hrs, Volume=       | 0.000 af                            |

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 183.96' @ 12.59 hrs Surf.Area= 13,324 sf Storage= 3,170 cf Flood Elev= 184.10' Surf.Area= 14,890 sf Storage= 5,159 cf

Plug-Flow detention time= 47.6 min calculated for 0.242 af (96% of inflow) Center-of-Mass det. time= 28.2 min (883.1 - 854.9)

| Volume              | Invert Av           | ail.Storage | Storage Descriptio                                                                   | n                         |                     |  |
|---------------------|---------------------|-------------|--------------------------------------------------------------------------------------|---------------------------|---------------------|--|
| #1                  | 183.50'             | 6,797 cf    | Ponding Area (Irr                                                                    | egular)Listed belo        | w (Recalc)          |  |
| #2                  | 182.75'             | 468 cf      | Stone Trench (Irre                                                                   |                           |                     |  |
| #3                  | 183.15'             | 48 cf       | 533 cf Overall - 65 cf Embedded = 468 cf 6.0" Round Pipe Storage Inside #2 L= 244.0' |                           |                     |  |
|                     |                     |             | 65 cf Overall - 0.5"                                                                 | Wall Thickness =          | 48 cf               |  |
|                     |                     | 7,313 cf    | Total Available Sto                                                                  | rage                      |                     |  |
| Elevation<br>(feet) | Surf.Area<br>(sq-ft |             | Inc.Store<br>(cubic-feet)                                                            | Cum.Store<br>(cubic-feet) | Wet.Area<br>(sq-ft) |  |
| 183.50              | 538                 | 3 154.3     | 0                                                                                    | 0                         | 538                 |  |
| 183.75              | 6,179               | 527.1       | 712                                                                                  | 712                       | 20,753              |  |
| 184.00              | 14,357              | 677.3       | 2,496                                                                                | 3,208                     | 35,149              |  |

| 184.25    | 14,357    | 677.3  | 3,589        | 6,797        | 35,319   |
|-----------|-----------|--------|--------------|--------------|----------|
| Elevation | Surf.Area | Perim. | Inc.Store    | Cum.Store    | Wet.Area |
| (feet)    | (sq-ft)   | (feet) | (cubic-feet) | (cubic-feet) | (sq-ft)  |
| 182.75    | 533       | 495.9  | 0            | 0            | 533      |
| 183.75    | 533       | 495.9  | 533          | 533          | 1,029    |


| Device | Routing   | Invert  | Outlet Devices                                                   |
|--------|-----------|---------|------------------------------------------------------------------|
| #1     | Discarded | 182.75' | 3.000 in/hr Infiltration over Surface area                       |
| #2     | Primary   | 183.15' | 6.0" Round 6" HDPE N-12                                          |
|        | -         |         | L= 1.0' CPP, square edge headwall, Ke= 0.500                     |
|        |           |         | Inlet / Outlet Invert= 183.15' / 183.15' S= 0.0000 '/' Cc= 0.900 |
|        |           |         | n= 0.012, Flow Area= 0.20 sf                                     |
| #3     | Secondary | 183.95' | 10.0' long x 10.0' breadth Overflow to Wetland                   |
|        |           |         | Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60              |
|        |           |         | Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64          |

**Discarded OutFlow** Max=0.92 cfs @ 12.59 hrs HW=183.96' (Free Discharge) **1=Infiltration** (Exfiltration Controls 0.92 cfs)

Primary OutFlow Max=0.00 cfs @ 13.00 hrs HW=183.92' TW=184.30' (Dynamic Tailwater) 2=6" HDPE N-12 ( Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 12.65 hrs HW=183.96' TW=183.96' (Dynamic Tailwater) 3=Overflow to Wetland (Controls 0.00 cfs)

Pond 30P: Existing Infiltration/Trench



Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 37

### **Summary for Pond 70P: Existing Catch Basin**

Inflow Area = 5.333 ac, 33.23% Impervious, Inflow Depth > 1.49" for 25YR-24HR event

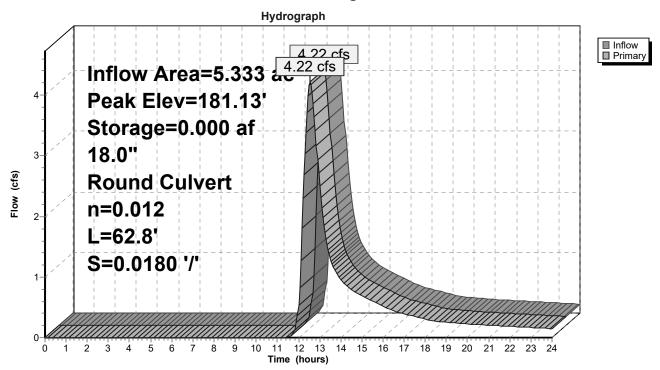
Inflow = 4.22 cfs @ 12.55 hrs, Volume= 0.663 af

Outflow = 4.22 cfs @ 12.55 hrs, Volume= 0.663 af, Atten= 0%, Lag= 0.0 min

Primary = 4.22 cfs @ 12.55 hrs, Volume= 0.663 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 181.13' @ 12.55 hrs Surf.Area= 0.000 ac Storage= 0.000 af

Flood Elev= 185.00' Surf.Area= 0.000 ac Storage= 0.001 af


Plug-Flow detention time= 0.1 min calculated for 0.663 af (100% of inflow)

Center-of-Mass det. time= 0.1 min (889.9 - 889.8)

| Volume | Invert  | Avail.Storag | e Storage Description                                                                                                                                           |
|--------|---------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | 180.14' | 0.001 a      | af 4.00'D x 3.60'H Structure                                                                                                                                    |
| Device | Routing | Invert (     | Outlet Devices                                                                                                                                                  |
| #1     | Primary | <br>         | 18.0" Round 18" RCP L= 62.8' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 180.14' / 179.01' S= 0.0180 '/' Cc= 0.900 n= 0.012, Flow Area= 1.77 sf |

Primary OutFlow Max=4.22 cfs @ 12.55 hrs HW=181.13' TW=0.00' (Dynamic Tailwater) 1=18" RCP (Inlet Controls 4.22 cfs @ 3.39 fps)

### Pond 70P: Existing Catch Basin



Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 38

### **Summary for Pond 71P: Existing Catch Basin**

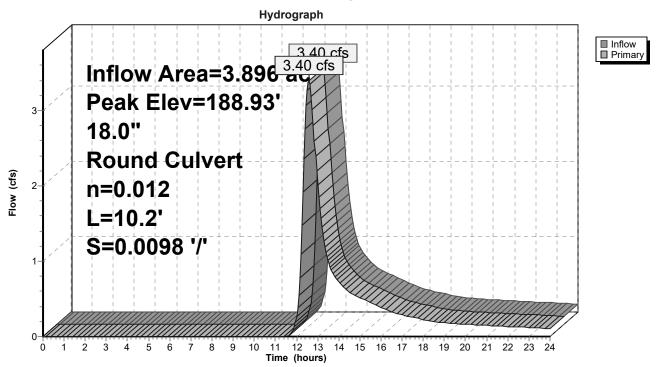
Inflow Area = 3.896 ac, 34.84% Impervious, Inflow Depth > 1.52" for 25YR-24HR event

Inflow = 3.40 cfs @ 12.58 hrs, Volume= 0.492 af

Outflow = 3.40 cfs @ 12.58 hrs, Volume= 0.492 af, Atten= 0%, Lag= 0.0 min

Primary = 3.40 cfs @ 12.58 hrs, Volume= 0.492 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs


Peak Elev= 188.93' @ 12.58 hrs

Flood Elev= 192.50'

| Device | Routing | Invert  | Outlet Devices                                                   |
|--------|---------|---------|------------------------------------------------------------------|
| #1     | Primary | 187.90' | 18.0" Round 18" RCP                                              |
|        | -       |         | L= 10.2' RCP, square edge headwall, Ke= 0.500                    |
|        |         |         | Inlet / Outlet Invert= 187.90' / 187.80' S= 0.0098 '/' Cc= 0.900 |
|        |         |         | n= 0.012, Flow Area= 1.77 sf                                     |

Primary OutFlow Max=3.39 cfs @ 12.58 hrs HW=188.92' TW=188.26' (Dynamic Tailwater) 1=18" RCP (Barrel Controls 3.39 cfs @ 3.72 fps)

### Pond 71P: Existing Catch Basin



Type III 24-hr 25YR-24HR Rainfall=5.87"

Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 39

### **Summary for Pond 72P: Existing Depression**

[58] Hint: Peaked 0.21' above defined flood level

Inflow Area = 1.582 ac, 42.73% Impervious, Inflow Depth > 2.07" for 25YR-24HR event

Inflow = 2.04 cfs @ 12.48 hrs, Volume= 0.273 af

Outflow = 2.02 cfs @ 12.49 hrs, Volume= 0.271 af, Atten= 1%, Lag= 0.5 min

Discarded = 0.02 cfs @ 11.95 hrs, Volume= 0.024 af Primary = 2.00 cfs @ 12.49 hrs, Volume= 0.247 af

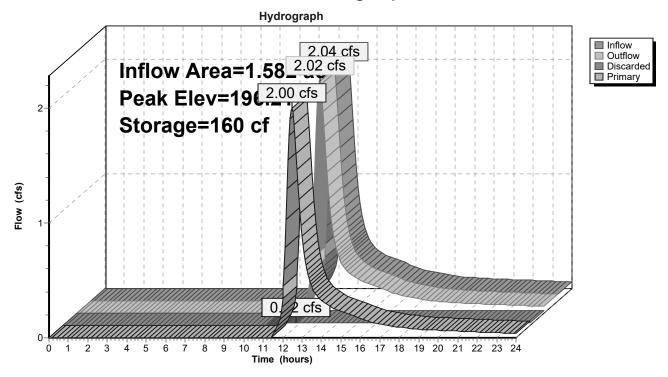
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 196.21' @ 12.59 hrs Surf.Area= 333 sf Storage= 160 cf

Flood Elev= 196.00' Surf.Area= 333 sf Storage= 91 cf

Plug-Flow detention time= 6.1 min calculated for 0.270 af (99% of inflow)

Center-of-Mass det. time= 2.2 min ( 878.0 - 875.8 )


| Volume                           | Invert               | Avail.S                 | Storage                      | Storage Description                                                                                                                                            | 1                         |                         |  |
|----------------------------------|----------------------|-------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------|--|
| #1                               | 195.50'              |                         | 257 cf                       | Ponding Area (Irre                                                                                                                                             | gular)Listed below        | v (Recalc)              |  |
| Elevatio                         |                      | urf.Area<br>(sq-ft)     | Perim.<br>(feet)             | Inc.Store<br>(cubic-feet)                                                                                                                                      | Cum.Store<br>(cubic-feet) | Wet.Area<br>(sq-ft)     |  |
| 195.5<br>195.7<br>196.0<br>196.5 | 75<br>00             | 55<br>179<br>333<br>333 | 32.6<br>63.6<br>92.1<br>92.1 | 0<br>28<br>63<br>167                                                                                                                                           | 0<br>28<br>91<br>257      | 55<br>293<br>646<br>692 |  |
| Device<br>#1                     | Routing<br>Discarded | Inve<br>195.50          |                              | t Devices<br>in/hr Infiltration o                                                                                                                              | ver Surface area          |                         |  |
| #2                               | Primary              | 195.9                   | 5' <b>20.0'</b><br>Head      | <b>20.0' long x 50.0' breadth Overflow over DW</b> Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63 |                           |                         |  |

**Discarded OutFlow** Max=0.02 cfs @ 11.95 hrs HW=196.00' (Free Discharge) **1=Infiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 12.49 hrs HW=196.20' TW=196.20' (Dynamic Tailwater) 2=Overflow over DW ( Controls 0.00 cfs)

Page 40

# Pond 72P: Existing Depression



Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 41

### **Summary for Pond E01P: Existing Catch Basin**

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=126)

Inflow Area = 0.452 ac, 56.06% Impervious, Inflow Depth > 3.86" for 25YR-24HR event

Inflow = 1.99 cfs @ 12.09 hrs, Volume= 0.145 af

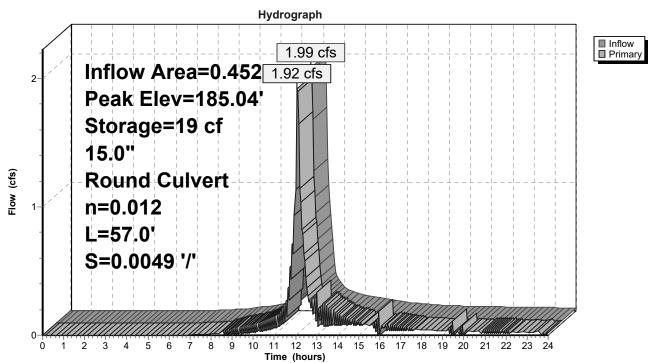
Outflow = 1.92 cfs @ 12.08 hrs, Volume= 0.145 af, Atten= 3%, Lag= 0.0 min

Primary = 1.92 cfs @ 12.08 hrs, Volume= 0.145 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 185.04' @ 12.16 hrs Surf.Area= 13 sf Storage= 19 cf

Flood Elev= 190.33' Surf.Area= 13 sf Storage= 86 cf


Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 0.6 min (809.8 - 809.3)

| Volume | Invert  | Avail.Storage | Storage Description                                                                                                                                               |
|--------|---------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | 183.50' | 86 cf         | 4.00'D x 6.83'H 4' Structure                                                                                                                                      |
| Device | Routing | Invert Outl   | et Devices                                                                                                                                                        |
| #1     | Primary | L= 5<br>Inlet | 7" Round 15" HDPE N-12<br>67.0' CPP, square edge headwall, Ke= 0.500<br>6 / Outlet Invert= 183.50' / 183.22' S= 0.0049 '/' Cc= 0.900<br>0.012, Flow Area= 1.23 sf |

Primary OutFlow Max=0.00 cfs @ 12.08 hrs HW=184.82' TW=184.88' (Dynamic Tailwater) 1=15" HDPE N-12 (Controls 0.00 cfs)

## Pond E01P: Existing Catch Basin



Type III 24-hr 25YR-24HR Rainfall=5.87"

Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 42

### **Summary for Pond E02P: Existing Catch Basin**

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=73)

[80] Warning: Exceeded Pond E01P by 0.57' @ 16.00 hrs (1.08 cfs 0.160 af)

Inflow Area = 1.376 ac, 60.99% Impervious, Inflow Depth > 4.00" for 25YR-24HR event

Inflow = 6.18 cfs @ 12.09 hrs, Volume= 0.459 af

Outflow = 6.73 cfs @ 12.10 hrs, Volume= 0.459 af, Atten= 0%, Lag= 0.6 min

Discarded = 0.01 cfs @ 12.12 hrs, Volume= 0.006 af Primary = 6.73 cfs @ 12.10 hrs, Volume= 0.453 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 184.97' @ 12.11 hrs Surf.Area= 116 sf Storage= 135 cf

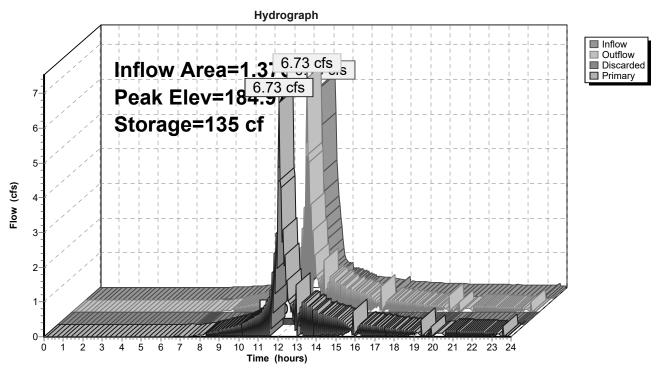
Flood Elev= 189.42' Surf.Area= 0 sf Storage= 464 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 1.2 min ( 806.9 - 805.7 )

| Volume | Invert  | Avail.Storage | Storage Description                     |
|--------|---------|---------------|-----------------------------------------|
| #1     | 183.02' | 80 cf         | 4.00'D x 6.40'H 4' Structure-Impervious |
| #2     | 183.02' | 384 cf        | 24.0" Round 24" HDPE N-12 Perf          |
|        |         |               | L= 122.2' S= 0.0270 '/'                 |

464 cf Total Available Storage


| Device | Routing   | Invert  | Outlet Devices                                                   |
|--------|-----------|---------|------------------------------------------------------------------|
| #1     | Primary   | 183.02' | 24.0" Round 24" HDPE N-12                                        |
|        | ,         |         | L= 122.2' CPP, square edge headwall, Ke= 0.500                   |
|        |           |         | Inlet / Outlet Invert= 183.02' / 179.71' S= 0.0271 '/' Cc= 0.900 |
|        |           |         | n= 0.012, Flow Area= 3.14 sf                                     |
| #2     | Discarded | 183.02' | 3.000 in/hr Infiltration over Surface area                       |

**Discarded OutFlow** Max=0.01 cfs @ 12.12 hrs HW=184.94' (Free Discharge) **2=Infiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=5.53 cfs @ 12.10 hrs HW=184.95' TW=184.75' (Dynamic Tailwater) 1=24" HDPE N-12 (Outlet Controls 5.53 cfs @ 2.27 fps)

Page 43

# Pond E02P: Existing Catch Basin



Type III 24-hr 25YR-24HR Rainfall=5.87"

Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

<u>Page 44</u>

### **Summary for Pond E03P: Existing Catch Basin**

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=2) [80] Warning: Exceeded Pond 30P by 0.76' @ 11.90 hrs (0.83 cfs 0.353 af)

Inflow Area = 1.339 ac, 10.64% Impervious, Inflow Depth = 0.47" for 25YR-24HR event

Inflow = 0.65 cfs @ 13.00 hrs, Volume= 0.053 af

Outflow = 0.42 cfs @ 13.01 hrs, Volume= 0.052 af, Atten= 35%, Lag= 0.5 min

Primary = 0.42 cfs @ 13.01 hrs, Volume= 0.052 af Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

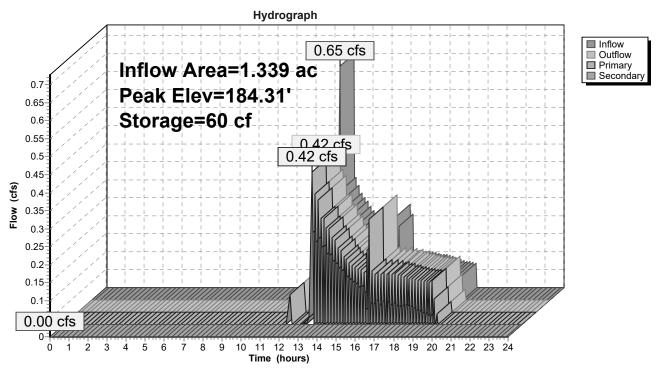
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 184.31' @ 11.90 hrs Surf.Area= 13 sf Storage= 60 cf

Flood Elev= 184.49' Surf.Area= 17 sf Storage= 62 cf

Plug-Flow detention time= 10.7 min calculated for 0.052 af (98% of inflow)

Center-of-Mass det. time= 5.2 min ( 917.4 - 912.2 )


| Volume   | Invert    | Avail.Sto             | orage            | Storage Descriptio                                               | n                         |                     |           |
|----------|-----------|-----------------------|------------------|------------------------------------------------------------------|---------------------------|---------------------|-----------|
| #1       | 179.56'   |                       | 62 cf            | 4.00'D x 4.93'H 4'                                               | Structure                 |                     |           |
| #2       | 184.49'   |                       | 21 cf            | Ponding Area (Irre                                               | egular)Listed bel         | ow (Recalc)         |           |
|          |           |                       | 83 cf            | Total Available Sto                                              | orage                     |                     |           |
| Elevatio |           | ırf.Area F<br>(sq-ft) | Perim.<br>(feet) | Inc.Store<br>(cubic-feet)                                        | Cum.Store<br>(cubic-feet) | Wet.Area<br>(sq-ft) |           |
| 184.4    | 19        | 4                     | 4.0              | 0                                                                | 0                         | 4                   |           |
| 185.0    | 00        | 100                   | 20.0             | 21                                                               | 21                        | 35                  |           |
| Device   | Routing   | Invert                | Outle            | et Devices                                                       |                           |                     |           |
| #1       | Primary   | 179.56'               |                  | " Round 15" HDPE                                                 |                           |                     |           |
|          |           |                       | Inlet            | 6.8' CPP, square e<br>/ Outlet Invert= 179<br>.012, Flow Area= 1 | .56' / 179.56' S=         |                     | 0.900     |
| #2       | Secondary | 184.49'               |                  | long x 2.0' breadth                                              |                           |                     |           |
|          |           |                       |                  | d (feet) 0.20 0.40 (                                             | 0.60 0.80 1.00            | 1.20 1.40 1.60      | 1.80 2.00 |
|          |           |                       | 2.50 3.00 3.50   |                                                                  |                           |                     |           |
|          |           |                       |                  | f. (English) 2.54 2.6<br>3.07 3.20 3.32                          | 61 2.61 2.60 2.0          | 66 2.70 2.77 2.     | 89 2.88   |

Primary OutFlow Max=2.10 cfs @ 13.01 hrs HW=184.28' TW=184.15' (Dynamic Tailwater) 1=15" HDPE N-12 (Inlet Controls 2.10 cfs @ 1.71 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=179.56' TW=184.49' (Dynamic Tailwater) 2=Overflow (Controls 0.00 cfs)

Page 45

# Pond E03P: Existing Catch Basin



Type III 24-hr 25YR-24HR Rainfall=5.87"

Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 46

### **Summary for Pond E04P: Existing Catch Basin**

[58] Hint: Peaked 0.76' above defined flood level

[80] Warning: Exceeded Pond E02P by 1.12' @ 13.00 hrs (6.11 cfs 0.885 af)

[80] Warning: Exceeded Pond E03P by 4.72' @ 11.70 hrs (11.97 cfs 7.920 af)

Inflow Area = 2.759 ac, 35.58% Impervious, Inflow Depth > 2.23" for 25YR-24HR event

Inflow = 6.85 cfs @ 12.10 hrs, Volume= 0.514 af

Outflow = 6.40 cfs (a) 12.10 hrs, Volume= 0.513 af, Atten= 7%, Lag= 0.0 min

Primary = 6.40 cfs @ 12.10 hrs, Volume= 0.513 af

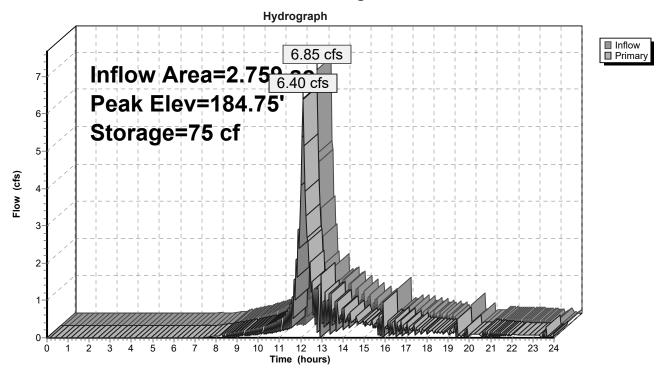
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 184.75' @ 12.10 hrs Surf.Area= 76 sf Storage= 75 cf

Flood Elev= 183.99' Surf.Area= 17 sf Storage= 54 cf

Plug-Flow detention time= 2.5 min calculated for 0.513 af (100% of inflow)

Center-of-Mass det. time= 1.1 min (818.3 - 817.3)


| Volume              | Inv     | ert Avail.           | Storage          | Storage Descript          | tion             |          |                     |      |
|---------------------|---------|----------------------|------------------|---------------------------|------------------|----------|---------------------|------|
| #1                  | 179.7   |                      | 54 cf            | 4.00'D x 4.28'H           |                  |          |                     |      |
| <u>#2</u>           | 183.9   | 99'                  | 41 cf            | Flood Storage (           | Irregular)List   | ed belov | พ (Recalc)          |      |
|                     |         |                      | 95 cf            | Total Available S         | Storage          |          |                     |      |
| Elevation<br>(feet) | -       | Surf.Area<br>(sq-ft) | Perim.<br>(feet) | Inc.Store<br>(cubic-feet) | Cum.S<br>(cubic- |          | Wet.Area<br>(sq-ft) |      |
| 183.99              | )       | 4                    | 8.0              | 0                         |                  | 0        | 4                   |      |
| 185.00              | )       | 98                   | 45.2             | 41                        |                  | 41       | 164                 |      |
| Device I            | Routing | Inve                 | ert Outle        | et Devices                |                  |          |                     |      |
| #1 I                | Primary | 183.9                | 9' <b>4.0'</b>   | long x 2.0' bread         | th Overflow      |          |                     |      |
|                     | •       |                      |                  |                           |                  | 1.00 1.2 | 20 1.40 1.60 1.80   | 2.00 |
|                     |         |                      | 2.50             | 3.00 3.50                 |                  |          |                     |      |
|                     |         |                      | Coef             | f. (English) 2.54         | 2.61 2.61 2.     | 30 2.66  | 2.70 2.77 2.89 2    | 2.88 |
|                     |         |                      |                  | 3.07 3.20 3.32            |                  |          |                     |      |

Primary OutFlow Max=6.31 cfs @ 12.10 hrs HW=184.75' TW=184.24' (Dynamic Tailwater) 1=Overflow (Weir Controls 6.31 cfs @ 2.08 fps)

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 47

# Pond E04P: Existing Catch Basin



Type III 24-hr 2YR-24HR Rainfall=3.08" Printed 4/17/2024

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 1

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

| Reach fouling by Dyn-Stor                 | -ind method - Folid fodding by Dyn-Stof-ind method                                                                                 |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Subcatchment 2S: Subcat #2                | Runoff Area=163,452 sf 2.33% Impervious Runoff Depth>0.39" Flow Length=301' Tc=15.8 min CN=61 Runoff=0.78 cfs 0.123 af             |
| Subcatchment3S: Subcat#3                  | Runoff Area=222,064 sf 1.16% Impervious Runoff Depth>0.21" Flow Length=682' Tc=43.7 min CN=55 Runoff=0.26 cfs 0.090 af             |
| Subcatchment 30S: Subcat #30 Flow Length= | Runoff Area=58,317 sf 10.64% Impervious Runoff Depth>0.54"<br>87' Slope=0.0110 '/' Tc=11.3 min CN=65 Runoff=0.53 cfs 0.060 af      |
| Subcatchment31S: Subcat #31               | Runoff Area=19,678 sf 56.06% Impervious Runoff Depth>1.44"<br>Tc=6.0 min CN=82 Runoff=0.75 cfs 0.054 af                            |
| Subcatchment 32S: Subcat #32              | Runoff Area=40,270 sf 63.40% Impervious Runoff Depth>1.58"<br>Tc=6.0 min CN=84 Runoff=1.68 cfs 0.122 af                            |
| Subcatchment 34S: Subcat #34              | Runoff Area=1,936 sf 0.00% Impervious Runoff Depth>0.67"<br>Tc=6.0 min CN=68 Runoff=0.03 cfs 0.002 af                              |
| Subcatchment 70S: Subcat #70              | Runoff Area=62,561 sf 28.86% Impervious Runoff Depth>0.21" Flow Length=380' Tc=15.2 min CN=55 Runoff=0.11 cfs 0.026 af             |
| Subcatchment 71S: Subcat #71              | Runoff Area=100,796 sf 29.45% Impervious Runoff Depth>0.16" Flow Length=563' Tc=39.5 min CN=53 Runoff=0.07 cfs 0.032 af            |
| Subcatchment 72S: Subcat #72              | Runoff Area=68,928 sf 42.73% Impervious Runoff Depth>0.46" Flow Length=478' Tc=32.0 min CN=63 Runoff=0.34 cfs 0.061 af             |
| Reach 30aR: Overland Flow n=0.022         | Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=43.0' S=0.0105 '/' Capacity=16.58 cfs Outflow=0.00 cfs 0.000 af  |
| Reach 30bR: Overland Flow n=0.030         | Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=63.5' S=0.1339 '/' Capacity=43.48 cfs Outflow=0.00 cfs 0.000 af  |
| Reach 30cR: Overland Flow n=0.030         | Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=230.5' S=0.0130 '/' Capacity=13.56 cfs Outflow=0.00 cfs 0.000 af |
| Reach 30dR: Overland Flow n=0.030         | Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=11.0' S=0.1364 '/' Capacity=43.88 cfs Outflow=0.00 cfs 0.000 af  |
| Reach 33aR: Overland Flow n=0.016         | Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=50.0' S=0.0198 '/' Capacity=31.35 cfs Outflow=0.00 cfs 0.000 af  |
| Reach 34aR: Overland Flow n=0.016         | Avg. Flow Depth=0.16' Max Vel=2.51 fps Inflow=2.56 cfs 0.186 af L=35.0' S=0.0140 '/' Capacity=26.36 cfs Outflow=2.37 cfs 0.187 af  |
| Reach 34bR: Overland Flow n=0.016         | Avg. Flow Depth=0.18' Max Vel=2.25 fps Inflow=2.37 cfs 0.187 af L=194.0' S=0.0103 '/' Capacity=22.62 cfs Outflow=2.36 cfs 0.186 af |

Type III 24-hr 2YR-24HR Rainfall=3.08"

Prepared by Berry Surveying & Engineering Printed 4/17/2024 HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Avg. Flow Depth=0.13' Max Vel=3.75 fps Inflow=2.36 cfs 0.186 af Reach 34cR: Overland Flow n=0.030 L=36.0' S=0.1597 '/' Capacity=47.49 cfs Outflow=2.36 cfs 0.186 af

Reach 34dR: Overland Flow Avg. Flow Depth=0.21' Max Vel=1.73 fps Inflow=2.36 cfs 0.186 af n=0.030 L=43.0' S=0.0174 '/' Capacity=15.69 cfs Outflow=2.33 cfs 0.186 af

Avg. Flow Depth=0.16' Max Vel=0.76 fps Inflow=0.34 cfs 0.070 af Reach 71aR: Wooded Swale

n=0.035 L=125.0' S=0.0064 '/' Capacity=79.88 cfs Outflow=0.34 cfs 0.069 af

Avg. Flow Depth=0.12' Max Vel=0.79 fps Inflow=0.34 cfs 0.069 af Reach 71bR: Riprap Swale

n=0.041 L=147.7' S=0.0135 '/' Capacity=31.94 cfs Outflow=0.33 cfs 0.069 af

Avg. Flow Depth=0.09' Max Vel=0.92 fps Inflow=0.31 cfs 0.038 af Reach 72R: Roadside Swale

n=0.022 L=495.6' S=0.0060 '/' Capacity=33.12 cfs Outflow=0.28 cfs 0.038 af

Reach 200R: Final Reach #200 Inflow=0.78 cfs 0.123 af

Outflow=0.78 cfs 0.123 af

Page 2

Reach 300R: Final Reach #300 Inflow=2.33 cfs 0.276 af

Outflow=2.33 cfs 0.276 af

Reach 400R: Final Reach #400 Inflow=0.40 cfs 0.095 af

Outflow=0.40 cfs 0.095 af

Pond 30P: Existing Infiltration/Trench Peak Elev=183.58' Storage=516 cf Inflow=0.53 cfs 0.060 af Discarded=0.15 cfs 0.043 af Primary=0.28 cfs 0.015 af Secondary=0.00 cfs 0.000 af Outflow=0.42 cfs 0.059 af

Pond 70P: Existing Catch Basin Peak Elev=180.42' Storage=0.000 af Inflow=0.40 cfs 0.095 af

18.0" Round Culvert n=0.012 L=62.8' S=0.0180 '/' Outflow=0.40 cfs 0.095 af

Peak Elev=188.18' Inflow=0.34 cfs 0.070 af **Pond 71P: Existing Catch Basin** 

18.0" Round Culvert n=0.012 L=10.2' S=0.0098 '/' Outflow=0.34 cfs 0.070 af

Pond 72P: Existing Depression Peak Elev=196.04' Storage=103 cf Inflow=0.34 cfs 0.061 af

Discarded=0.02 cfs 0.021 af Primary=0.31 cfs 0.038 af Outflow=0.33 cfs 0.059 af

Peak Elev=184.47' Storage=12 cf Inflow=0.75 cfs 0.054 af Pond E01P: Existing Catch Basin

15.0" Round Culvert n=0.012 L=57.0' S=0.0049 '/' Outflow=0.82 cfs 0.054 af

Pond E02P: Existing Catch Basin Peak Elev=184.45' Storage=75 cf Inflow=2.50 cfs 0.176 af

Discarded=0.01 cfs 0.005 af Primary=2.67 cfs 0.171 af Outflow=2.68 cfs 0.176 af

Peak Elev=184.28' Storage=59 cf Inflow=0.28 cfs 0.015 af Pond E03P: Existing Catch Basin

Primary=0.23 cfs 0.014 af Secondary=0.00 cfs 0.000 af Outflow=0.23 cfs 0.014 af

Peak Elev=184.40' Storage=59 cf Inflow=2.69 cfs 0.187 af Pond E04P: Existing Catch Basin

Outflow=2.56 cfs 0.186 af

Total Runoff Area = 16.942 ac Runoff Volume = 0.570 af Average Runoff Depth = 0.40" 82.88% Pervious = 14.041 ac 17.12% Impervious = 2.901 ac

Type III 24-hr 10YR-24HR Rainfall=4.65" Printed 4/17/2024

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 3

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

| Reach routing by Dyn-Stor-                 | ind method - Fond fodding by Dyn-Stor-ind method                                                                                  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Subcatchment2S: Subcat#2                   | Runoff Area=163,452 sf 2.33% Impervious Runoff Depth>1.16" Flow Length=301' Tc=15.8 min CN=61 Runoff=3.31 cfs 0.362 af            |
| Subcatchment3S: Subcat#3                   | Runoff Area=222,064 sf 1.16% Impervious Runoff Depth>0.80" Flow Length=682' Tc=43.7 min CN=55 Runoff=1.76 cfs 0.339 af            |
| Subcatchment 30S: Subcat #30 Flow Length=8 | Runoff Area=58,317 sf 10.64% Impervious Runoff Depth>1.42"<br>87' Slope=0.0110 '/' Tc=11.3 min CN=65 Runoff=1.73 cfs 0.159 af     |
| Subcatchment31S: Subcat#31                 | Runoff Area=19,678 sf 56.06% Impervious Runoff Depth>2.77"<br>Tc=6.0 min CN=82 Runoff=1.43 cfs 0.104 af                           |
| Subcatchment32S: Subcat#32                 | Runoff Area=40,270 sf 63.40% Impervious Runoff Depth>2.95"<br>Tc=6.0 min CN=84 Runoff=3.12 cfs 0.227 af                           |
| Subcatchment34S: Subcat#34                 | Runoff Area=1,936 sf 0.00% Impervious Runoff Depth>1.63"<br>Tc=6.0 min CN=68 Runoff=0.08 cfs 0.006 af                             |
| Subcatchment 70S: Subcat #70               | Runoff Area=62,561 sf 28.86% Impervious Runoff Depth>0.81" Flow Length=380' Tc=15.2 min CN=55 Runoff=0.76 cfs 0.097 af            |
| Subcatchment71S: Subcat#71                 | Runoff Area=100,796 sf 29.45% Impervious Runoff Depth>0.69" Flow Length=563' Tc=39.5 min CN=53 Runoff=0.68 cfs 0.134 af           |
| Subcatchment 72S: Subcat #72               | Runoff Area=68,928 sf 42.73% Impervious Runoff Depth>1.28" Flow Length=478' Tc=32.0 min CN=63 Runoff=1.20 cfs 0.169 af            |
| Reach 30aR: Overland Flow n=0.022          | Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=43.0' S=0.0105 '/' Capacity=16.58 cfs Outflow=0.00 cfs 0.000 af |
| Reach 30bR: Overland Flow n=0.030          | Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=63.5' S=0.1339 '/' Capacity=43.48 cfs Outflow=0.00 cfs 0.000 af |
| Reach 30cR: Overland Flow n=0.030 L        | Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af =230.5' S=0.0130 '/' Capacity=13.56 cfs Outflow=0.00 cfs 0.000 af |
| Reach 30dR: Overland Flow n=0.030          | Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=11.0' S=0.1364 '/' Capacity=43.88 cfs Outflow=0.00 cfs 0.000 af |
| Reach 33aR: Overland Flow n=0.016          | Avg. Flow Depth=0.03' Max Vel=1.01 fps Inflow=0.08 cfs 0.001 af L=50.0' S=0.0198 '/' Capacity=31.35 cfs Outflow=0.08 cfs 0.001 af |
| Reach 34aR: Overland Flow n=0.016          | Avg. Flow Depth=0.22' Max Vel=3.09 fps Inflow=4.93 cfs 0.356 af L=35.0' S=0.0140 '/' Capacity=26.36 cfs Outflow=4.62 cfs 0.357 af |
| Reach 34bR: Overland Flow n=0.016 L        | Avg. Flow Depth=0.24' Max Vel=2.76 fps Inflow=4.66 cfs 0.358 af =194.0' S=0.0103 '/' Capacity=22.62 cfs Outflow=4.60 cfs 0.357 af |

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 4

Reach 34cR: Overland Flow

Avg. Flow Depth=0.17' Max Vel=4.62 fps Inflow=4.60 cfs 0.357 af

n=0.030 L=36.0' S=0.1597'/' Capacity=47.49 cfs Outflow=4.61 cfs 0.357 af

Reach 34dR: Overland Flow Avg. Flow Depth=0.28' Max Vel=2.14 fps Inflow=4.61 cfs 0.357 af

n=0.030 L=43.0' S=0.0174'/' Capacity=15.69 cfs Outflow=4.60 cfs 0.357 af

Reach 71aR: Wooded Swale Avg. Flow Depth=0.34' Max Vel=1.26 fps Inflow=1.78 cfs 0.277 af

n=0.035 L=125.0' S=0.0064 '/' Capacity=79.88 cfs Outflow=1.78 cfs 0.277 af

Reach 71bR: Riprap Swale Avg. Flow Depth=0.26' Max Vel=1.32 fps Inflow=1.78 cfs 0.277 af

n=0.041 L=147.7' S=0.0135 '/' Capacity=31.94 cfs Outflow=1.77 cfs 0.277 af

Reach 72R: Roadside Swale Avg. Flow Depth=0.19' Max Vel=1.45 fps Inflow=1.16 cfs 0.144 af

n=0.022 L=495.6' S=0.0060 '/' Capacity=33.12 cfs Outflow=1.12 cfs 0.144 af

Reach 200R: Final Reach #200 Inflow=3.31 cfs 0.362 af

Outflow=3.31 cfs 0.362 af

Reach 300R: Final Reach #300 Inflow=4.69 cfs 0.696 af

Outflow=4.69 cfs 0.696 af

Reach 400R: Final Reach #400 Inflow=2.18 cfs 0.373 af

Outflow=2.18 cfs 0.373 af

**Pond 30P: Existing Infiltration/Trench**Peak Elev=183.82' Storage=1,764 cf Inflow=1.73 cfs 0.159 af Discarded=0.61 cfs 0.122 af Primary=0.47 cfs 0.028 af Secondary=0.00 cfs 0.000 af Outflow=0.94 cfs 0.150 af

Pond 70P: Existing Catch Basin Peak Elev=180.82' Storage=0.000 af Inflow=2.18 cfs 0.373 af

18.0" Round Culvert n=0.012 L=62.8' S=0.0180 '/' Outflow=2.18 cfs 0.373 af

Pond 71P: Existing Catch Basin Peak Elev=188.60' Inflow=1.78 cfs 0.277 af

18.0" Round Culvert n=0.012 L=10.2' S=0.0098 '/' Outflow=1.78 cfs 0.277 af

Pond 72P: Existing Depression Peak Elev=196.14' Storage=138 cf Inflow=1.20 cfs 0.169 af

Discarded=0.02 cfs 0.023 af Primary=1.16 cfs 0.144 af Outflow=1.18 cfs 0.167 af

Pond E01P: Existing Catch Basin Peak Elev=184.80' Storage=16 cf Inflow=1.43 cfs 0.104 af

15.0" Round Culvert n=0.012 L=57.0' S=0.0049 '/' Outflow=1.43 cfs 0.104 af

Pond E02P: Existing Catch Basin Peak Elev=184.75' Storage=108 cf Inflow=4.48 cfs 0.331 af

Discarded=0.01 cfs 0.005 af Primary=5.01 cfs 0.325 af Outflow=5.02 cfs 0.330 af

Pond E03P: Existing Catch Basin Peak Elev=184.60' Storage=63 cf Inflow=0.47 cfs 0.028 af

Primary=0.27 cfs 0.026 af Secondary=0.08 cfs 0.001 af Outflow=0.27 cfs 0.027 af

Pond E04P: Existing Catch Basin Peak Elev=184.63' Storage=68 cf Inflow=5.26 cfs 0.358 af

Outflow=4.93 cfs 0.356 af

Total Runoff Area = 16.942 ac Runoff Volume = 1.597 af Average Runoff Depth = 1.13" 82.88% Pervious = 14.041 ac 17.12% Impervious = 2.901 ac

Type III 24-hr 25YR-24HR Rainfall=5.87" Printed 4/17/2024

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 5

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

| Reach fouling by Dyn-Stor-                | Ind method - Fond routing by Dyn-Stor-Ind method                                                                                   |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Subcatchment 2S: Subcat #2                | Runoff Area=163,452 sf 2.33% Impervious Runoff Depth>1.91" Flow Length=301' Tc=15.8 min CN=61 Runoff=5.85 cfs 0.598 af             |
| Subcatchment3S: Subcat#3                  | Runoff Area=222,064 sf 1.16% Impervious Runoff Depth>1.42" Flow Length=682' Tc=43.7 min CN=55 Runoff=3.57 cfs 0.605 af             |
| Subcatchment 30S: Subcat #30 Flow Length= | Runoff Area=58,317 sf 10.64% Impervious Runoff Depth>2.25" 87' Slope=0.0110 '/' Tc=11.3 min CN=65 Runoff=2.87 cfs 0.251 af         |
| Subcatchment 31S: Subcat #31              | Runoff Area=19,678 sf 56.06% Impervious Runoff Depth>3.86"<br>Tc=6.0 min CN=82 Runoff=1.99 cfs 0.145 af                            |
| Subcatchment 32S: Subcat #32              | Runoff Area=40,270 sf 63.40% Impervious Runoff Depth>4.07"<br>Tc=6.0 min CN=84 Runoff=4.26 cfs 0.314 af                            |
| Subcatchment 34S: Subcat #34              | Runoff Area=1,936 sf 0.00% Impervious Runoff Depth>2.52"<br>Tc=6.0 min CN=68 Runoff=0.13 cfs 0.009 af                              |
| Subcatchment 70S: Subcat #70              | Runoff Area=62,561 sf 28.86% Impervious Runoff Depth>1.44" Flow Length=380' Tc=15.2 min CN=55 Runoff=1.58 cfs 0.172 af             |
| Subcatchment 71S: Subcat #71              | Runoff Area=100,796 sf 29.45% Impervious Runoff Depth>1.28" Flow Length=563' Tc=39.5 min CN=53 Runoff=1.48 cfs 0.246 af            |
| Subcatchment 72S: Subcat #72              | Runoff Area=68,928 sf 42.73% Impervious Runoff Depth>2.07" Flow Length=478' Tc=32.0 min CN=63 Runoff=2.04 cfs 0.273 af             |
| Reach 30aR: Overland Flow n=0.022         | Avg. Flow Depth=0.01' Max Vel=0.28 fps Inflow=0.01 cfs 0.000 af L=43.0' S=0.0105 '/' Capacity=16.58 cfs Outflow=0.01 cfs 0.000 af  |
| Reach 30bR: Overland Flow n=0.030         | Avg. Flow Depth=0.01' Max Vel=0.56 fps Inflow=0.01 cfs 0.000 af L=63.5' S=0.1339 '/' Capacity=43.48 cfs Outflow=0.00 cfs 0.000 af  |
| Reach 30cR: Overland Flow n=0.030         | Avg. Flow Depth=0.01' Max Vel=0.18 fps Inflow=0.00 cfs 0.000 af L=230.5' S=0.0130 '/' Capacity=13.56 cfs Outflow=0.00 cfs 0.000 af |
| Reach 30dR: Overland Flow n=0.030         | Avg. Flow Depth=0.00' Max Vel=0.41 fps Inflow=0.00 cfs 0.000 af L=11.0' S=0.1364 '/' Capacity=43.88 cfs Outflow=0.00 cfs 0.000 af  |
| Reach 33aR: Overland Flow n=0.016         | Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=50.0' S=0.0198 '/' Capacity=31.35 cfs Outflow=0.00 cfs 0.000 af  |
| Reach 34aR: Overland Flow n=0.016         | Avg. Flow Depth=0.25' Max Vel=3.36 fps Inflow=6.40 cfs 0.513 af L=35.0' S=0.0140 '/' Capacity=26.36 cfs Outflow=6.08 cfs 0.513 af  |
| Reach 34bR: Overland Flow n=0.016         | Avg. Flow Depth=0.27' Max Vel=3.03 fps Inflow=6.08 cfs 0.513 af L=194.0' S=0.0103 '/' Capacity=22.62 cfs Outflow=6.18 cfs 0.512 af |

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 6

Reach 34cR: Overland Flow Avg. Flow Depth=0.20' Max Vel=5.07 fps Inflow=6.18 cfs 0.512 af

n=0.030 L=36.0' S=0.1597 '/' Capacity=47.49 cfs Outflow=6.19 cfs 0.512 af

Reach 34dR: Overland Flow Avg. Flow Depth=0.33' Max Vel=2.35 fps Inflow=6.19 cfs 0.512 af

n=0.030 L=43.0' S=0.0174'/' Capacity=15.69 cfs Outflow=6.20 cfs 0.512 af

Reach 71aR: Wooded Swale Avg. Flow Depth=0.46' Max Vel=1.53 fps Inflow=3.40 cfs 0.492 af

n=0.035 L=125.0' S=0.0064 '/' Capacity=79.88 cfs Outflow=3.39 cfs 0.492 af

Reach 71bR: Riprap Swale Avg. Flow Depth=0.35' Max Vel=1.61 fps Inflow=3.39 cfs 0.492 af

n=0.041 L=147.7' S=0.0135 '/' Capacity=31.94 cfs Outflow=3.39 cfs 0.491 af

Reach 72R: Roadside Swale Avg. Flow Depth=0.25' Max Vel=1.71 fps Inflow=2.00 cfs 0.247 af

n=0.022 L=495.6' S=0.0060 '/' Capacity=33.12 cfs Outflow=1.95 cfs 0.246 af

Reach 200R: Final Reach #200 Inflow=5.85 cfs 0.598 af

Outflow=5.85 cfs 0.598 af

Reach 300R: Final Reach #300 Inflow=6.68 cfs 1.117 af

Outflow=6.68 cfs 1.117 af

Reach 400R: Final Reach #400 Inflow=4.22 cfs 0.663 af

Outflow=4.22 cfs 0.663 af

**Pond 30P: Existing Infiltration/Trench**Peak Elev=183.96' Storage=3,170 cf Inflow=2.87 cfs 0.251 af Discarded=0.93 cfs 0.189 af Primary=0.65 cfs 0.053 af Secondary=0.01 cfs 0.000 af Outflow=1.47 cfs 0.242 af

Pond 70P: Existing Catch Basin Peak Elev=181.13' Storage=0.000 af Inflow=4.22 cfs 0.663 af

18.0" Round Culvert n=0.012 L=62.8' S=0.0180 '/' Outflow=4.22 cfs 0.663 af

Pond 71P: Existing Catch Basin Peak Elev=188.93' Inflow=3.40 cfs 0.492 af

18.0" Round Culvert n=0.012 L=10.2' S=0.0098 '/' Outflow=3.40 cfs 0.492 af

Pond 72P: Existing Depression Peak Elev=196.21' Storage=160 cf Inflow=2.04 cfs 0.273 af

 $Discarded = 0.02 \ cfs \ 0.024 \ af \ Primary = 2.00 \ cfs \ 0.247 \ af \ Outflow = 2.02 \ cfs \ 0.271 \ af$ 

Pond E01P: Existing Catch Basin Peak Elev=185.04' Storage=19 cf Inflow=1.99 cfs 0.145 af

15.0" Round Culvert n=0.012 L=57.0' S=0.0049 '/' Outflow=1.92 cfs 0.145 af

Pond E02P: Existing Catch Basin Peak Elev=184.97' Storage=135 cf Inflow=6.18 cfs 0.459 af

Discarded=0.01 cfs 0.006 af Primary=6.73 cfs 0.453 af Outflow=6.73 cfs 0.459 af

Pond E03P: Existing Catch Basin Peak Elev=184.31' Storage=60 cf Inflow=0.65 cfs 0.053 af

 $Primary = 0.42 \; cfs \; \; 0.052 \; af \; \; \; Secondary = 0.00 \; cfs \; \; 0.000 \; af \; \; \; Outflow = 0.42 \; cfs \; \; 0.052 \; af \; \; \\$ 

Pond E04P: Existing Catch Basin Peak Elev=184.75' Storage=75 cf Inflow=6.85 cfs 0.514 af

Outflow=6.40 cfs 0.513 af

Total Runoff Area = 16.942 ac Runoff Volume = 2.614 af Average Runoff Depth = 1.85" 82.88% Pervious = 14.041 ac 17.12% Impervious = 2.901 ac

Type III 24-hr 50YR-24HR Rainfall=7.02" Printed 4/17/2024

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 7

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method

| Reach routing by Dyn-Stor-                | ina metnoa - Pona routing by Dyn-Stor-ina metnoa                                                                                   |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Subcatchment2S: Subcat#2                  | Runoff Area=163,452 sf 2.33% Impervious Runoff Depth>2.71" Flow Length=301' Tc=15.8 min CN=61 Runoff=8.53 cfs 0.846 af             |
| Subcatchment3S: Subcat#3                  | Runoff Area=222,064 sf 1.16% Impervious Runoff Depth>2.11" Flow Length=682' Tc=43.7 min CN=55 Runoff=5.59 cfs 0.897 af             |
| Subcatchment 30S: Subcat #30 Flow Length= | Runoff Area=58,317 sf 10.64% Impervious Runoff Depth>3.11"<br>87' Slope=0.0110 '/' Tc=11.3 min CN=65 Runoff=4.03 cfs 0.347 af      |
| Subcatchment 31S: Subcat #31              | Runoff Area=19,678 sf 56.06% Impervious Runoff Depth>4.93"<br>Tc=6.0 min CN=82 Runoff=2.52 cfs 0.186 af                            |
| Subcatchment32S: Subcat#32                | Runoff Area=40,270 sf 63.40% Impervious Runoff Depth>5.16"<br>Tc=6.0 min CN=84 Runoff=5.34 cfs 0.397 af                            |
| Subcatchment34S: Subcat#34                | Runoff Area=1,936 sf 0.00% Impervious Runoff Depth>3.42"<br>Tc=6.0 min CN=68 Runoff=0.17 cfs 0.013 af                              |
| Subcatchment 70S: Subcat #70              | Runoff Area=62,561 sf 28.86% Impervious Runoff Depth>2.13" Flow Length=380' Tc=15.2 min CN=55 Runoff=2.49 cfs 0.255 af             |
| Subcatchment71S: Subcat#71                | Runoff Area=100,796 sf 29.45% Impervious Runoff Depth>1.93" Flow Length=563' Tc=39.5 min CN=53 Runoff=2.39 cfs 0.372 af            |
| Subcatchment 72S: Subcat #72              | Runoff Area=68,928 sf 42.73% Impervious Runoff Depth>2.89" Flow Length=478' Tc=32.0 min CN=63 Runoff=2.91 cfs 0.382 af             |
| Reach 30aR: Overland Flow n=0.022         | Avg. Flow Depth=0.09' Max Vel=1.01 fps Inflow=0.37 cfs 0.010 af L=43.0' S=0.0105 '/' Capacity=16.58 cfs Outflow=0.35 cfs 0.010 af  |
| Reach 30bR: Overland Flow n=0.030         | Avg. Flow Depth=0.05' Max Vel=1.92 fps Inflow=0.35 cfs 0.010 af L=63.5' S=0.1339 '/' Capacity=43.48 cfs Outflow=0.32 cfs 0.010 af  |
| Reach 30cR: Overland Flow n=0.030         | Avg. Flow Depth=0.08' Max Vel=0.80 fps Inflow=0.32 cfs 0.010 af L=230.5' S=0.0130 '/' Capacity=13.56 cfs Outflow=0.26 cfs 0.010 af |
| Reach 30dR: Overland Flow n=0.030         | Avg. Flow Depth=0.05' Max Vel=1.80 fps Inflow=0.26 cfs 0.010 af L=11.0' S=0.1364 '/' Capacity=43.88 cfs Outflow=0.26 cfs 0.010 af  |
| Reach 33aR: Overland Flow n=0.016         | Avg. Flow Depth=0.06' Max Vel=1.37 fps Inflow=0.32 cfs 0.004 af L=50.0' S=0.0198 '/' Capacity=31.35 cfs Outflow=0.25 cfs 0.004 af  |
| Reach 34aR: Overland Flow n=0.016         | Avg. Flow Depth=0.29' Max Vel=3.68 fps Inflow=7.96 cfs 0.661 af L=35.0' S=0.0140 '/' Capacity=26.36 cfs Outflow=8.20 cfs 0.661 af  |
| Reach 34bR: Overland Flow n=0.016         | Avg. Flow Depth=0.31' Max Vel=3.28 fps Inflow=8.23 cfs 0.665 af L=194.0' S=0.0103 '/' Capacity=22.62 cfs Outflow=7.96 cfs 0.664 af |

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 8

Reach 34cR: Overland Flow Avg. Flow Depth=0.22' Max Vel=5.47 fps Inflow=7.96 cfs 0.664 af

n=0.030 L=36.0' S=0.1597'/' Capacity=47.49 cfs Outflow=7.94 cfs 0.664 af

Reach 34dR: Overland Flow Avg. Flow Depth=0.36' Max Vel=2.54 fps Inflow=7.94 cfs 0.664 af

n=0.030 L=43.0' S=0.0174 '/' Capacity=15.69 cfs Outflow=7.91 cfs 0.664 af

Reach 71aR: Wooded Swale Avg. Flow Depth=0.56' Max Vel=1.74 fps Inflow=5.16 cfs 0.725 af

n=0.035 L=125.0' S=0.0064 '/' Capacity=79.88 cfs Outflow=5.16 cfs 0.724 af

Reach 71bR: Riprap Swale Avg. Flow Depth=0.43' Max Vel=1.83 fps Inflow=5.16 cfs 0.724 af

n=0.041 L=147.7' S=0.0135  $^{\prime\prime}$  Capacity=31.94 cfs Outflow=5.15 cfs 0.723 af

Reach 72R: Roadside Swale Avg. Flow Depth=0.31' Max Vel=1.90 fps Inflow=2.86 cfs 0.354 af

n=0.022 L=495.6' S=0.0060 '/' Capacity=33.12 cfs Outflow=2.82 cfs 0.353 af

Reach 200R: Final Reach #200 Inflow=8.53 cfs 0.857 af

Outflow=8.53 cfs 0.857 af

Reach 300R: Final Reach #300 Inflow=9.01 cfs 1.561 af

Outflow=9.01 cfs 1.561 af

Reach 400R: Final Reach #400 Inflow=6.45 cfs 0.978 af

Outflow=6.45 cfs 0.978 af

**Pond 30P: Existing Infiltration/Trench**Peak Elev=184.03' Storage=4,209 cf Inflow=4.03 cfs 0.347 af Discarded=1.03 cfs 0.249 af Primary=0.70 cfs 0.079 af Secondary=0.37 cfs 0.010 af Outflow=1.87 cfs 0.338 af

Pond 70P: Existing Catch Basin Peak Elev=181.46' Storage=0.000 af Inflow=6.45 cfs 0.978 af

**Pond 70P: Existing Catch Basin** Peak Elev=181.46' Storage=0.000 af Inflow=6.45 cfs 0.978 af 18.0" Round Culvert n=0.012 L=62.8' S=0.0180 '/' Outflow=6.45 cfs 0.978 af

Pond 71P: Existing Catch Basin Peak Elev=189.23' Inflow=5.16 cfs 0.725 af

18.0" Round Culvert n=0.012 L=10.2' S=0.0098 '/' Outflow=5.16 cfs 0.725 af

Pond 72P: Existing Depression Peak Elev=196.26' Storage=179 cf Inflow=2.91 cfs 0.382 af

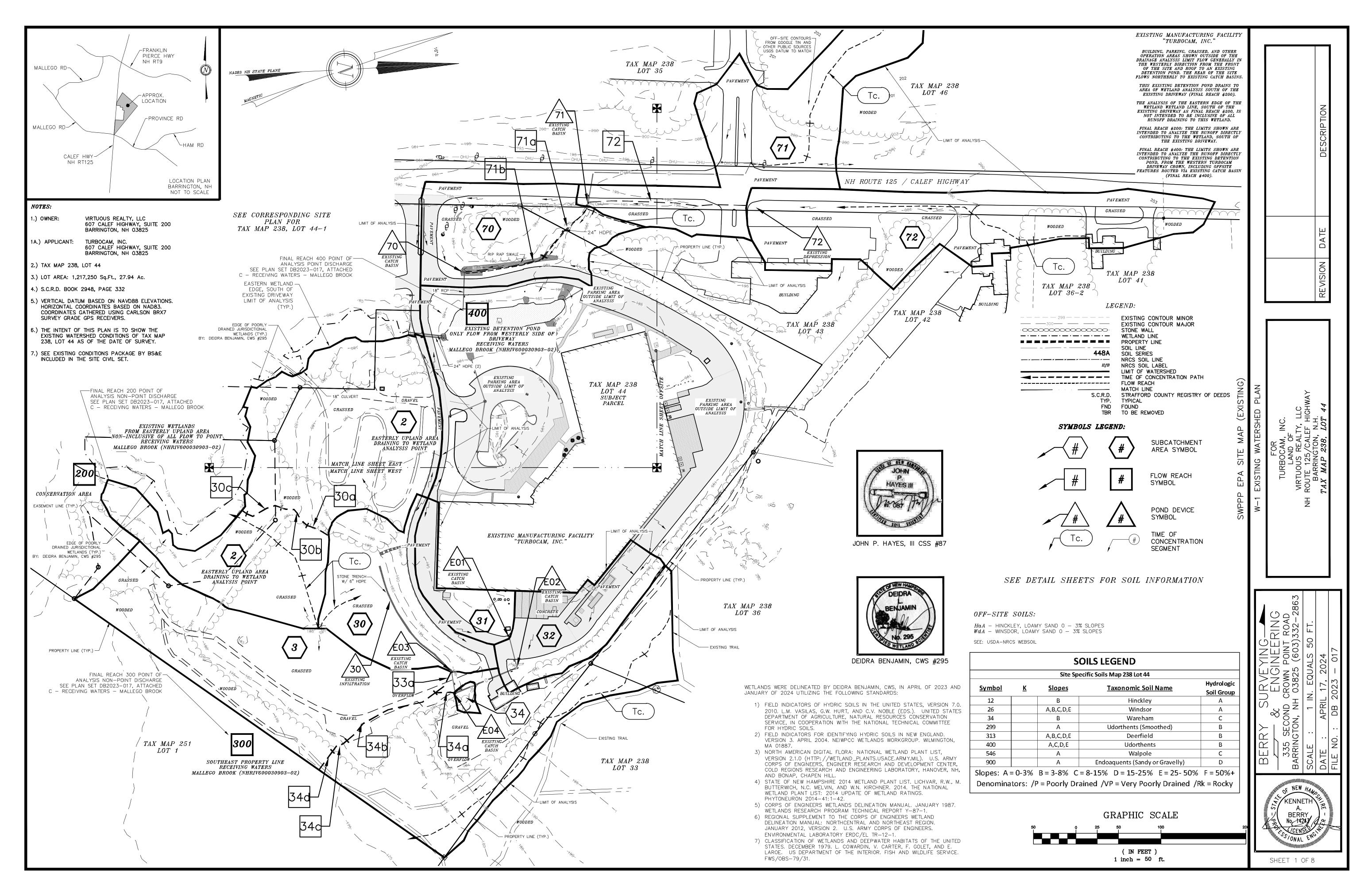
Discarded=0.02 cfs 0.026 af Primary=2.86 cfs 0.354 af Outflow=2.89 cfs 0.380 af

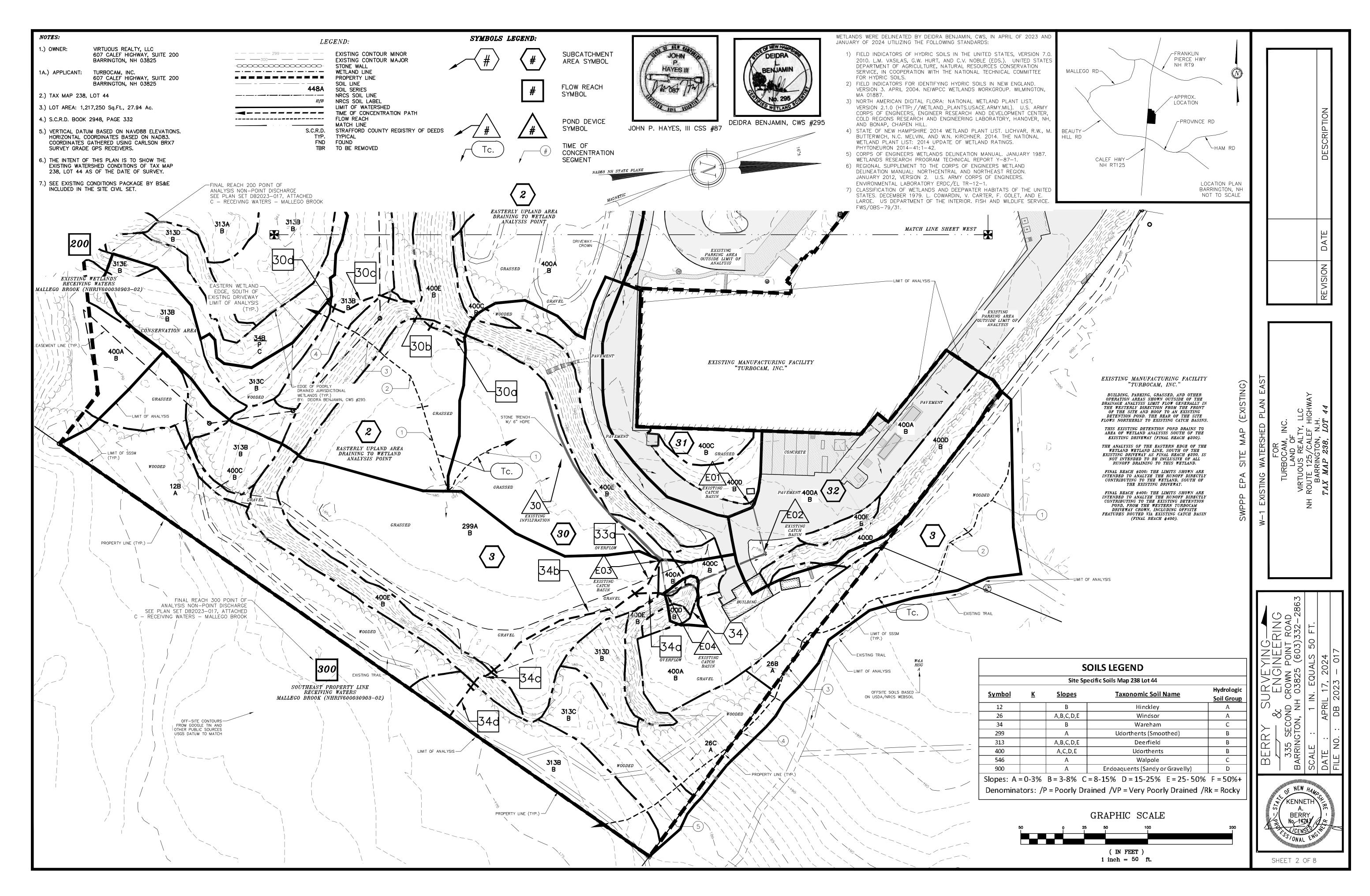
Pond E01P: Existing Catch Basin Peak Elev=185.20' Storage=21 cf Inflow=2.52 cfs 0.186 af

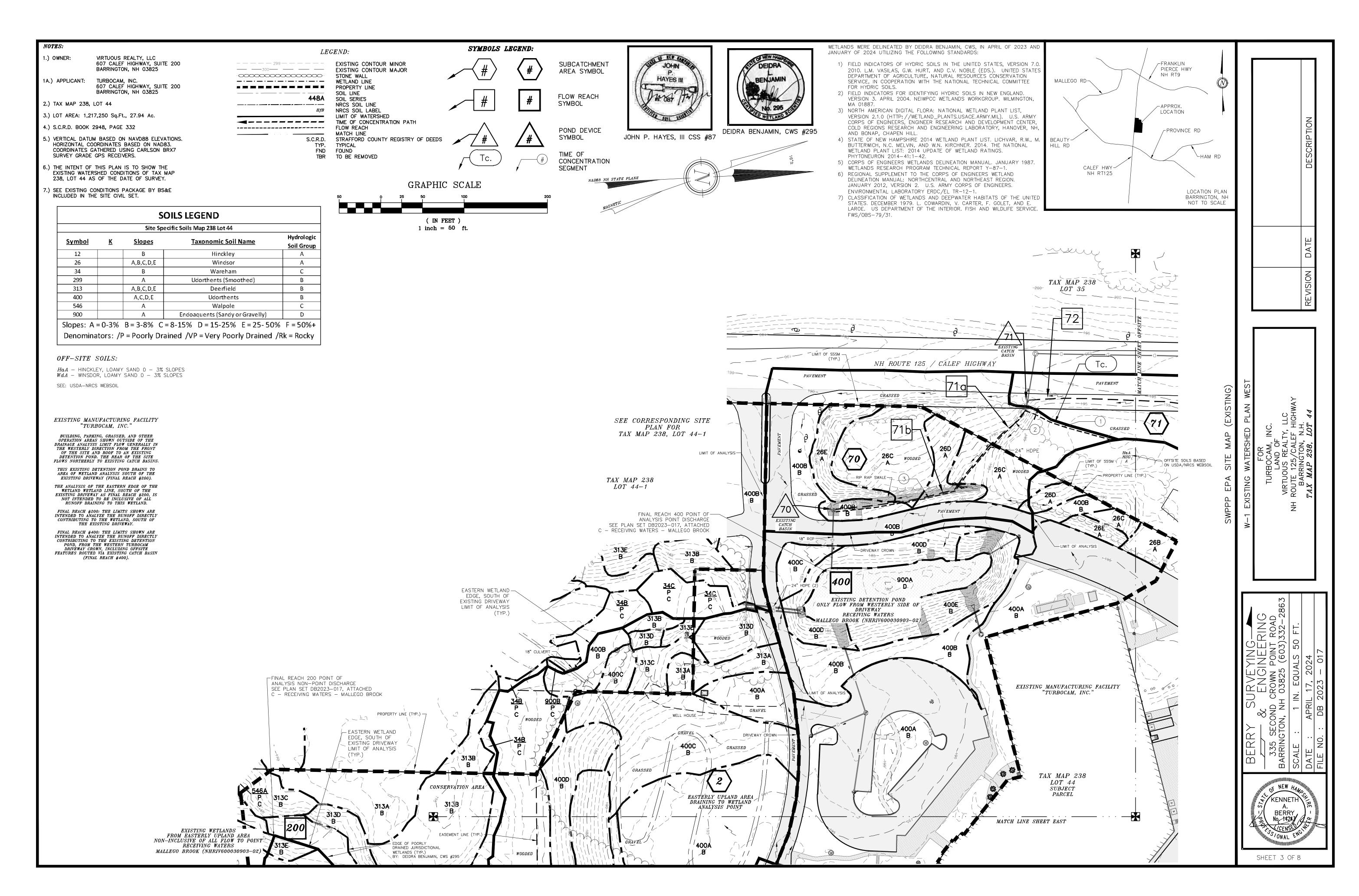
15.0" Round Culvert n=0.012 L=57.0' S=0.0049 '/' Outflow=2.54 cfs 0.185 af

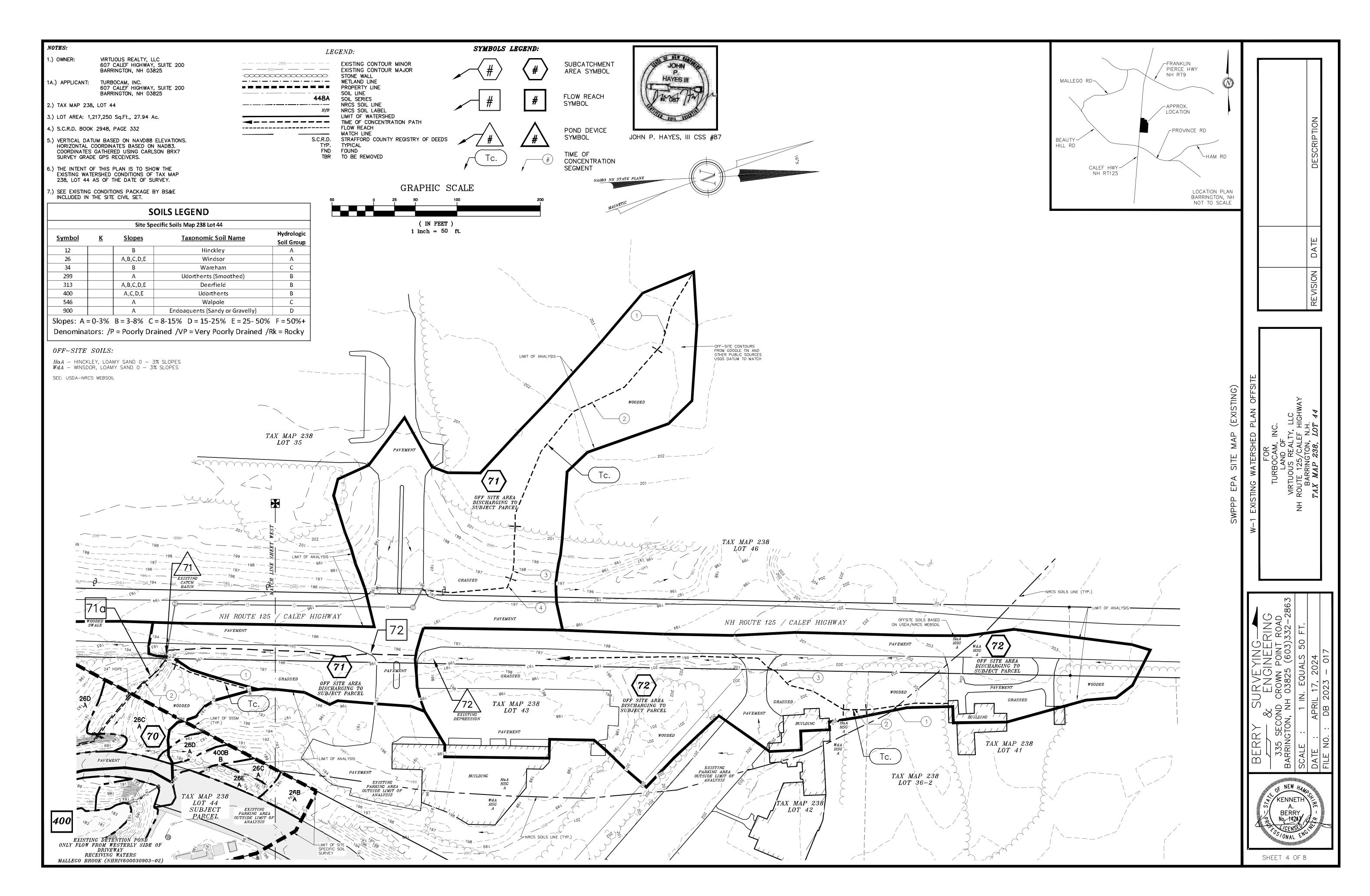
Pond E02P: Existing Catch Basin Peak Elev=185.13' Storage=156 cf Inflow=7.88 cfs 0.583 af

Discarded=0.01 cfs 0.006 af Primary=7.86 cfs 0.576 af Outflow=7.86 cfs 0.582 af


Pond E03P: Existing Catch Basin Peak Elev=184.59' Storage=63 cf Inflow=0.70 cfs 0.079 af


Primary=0.59 cfs 0.074 af Secondary=0.32 cfs 0.004 af Outflow=0.59 cfs 0.078 af


Pond E04P: Existing Catch Basin Peak Elev=184.86' Storage=83 cf Inflow=8.01 cfs 0.662 af


Outflow=7.96 cfs 0.661 af

Total Runoff Area = 16.942 ac Runoff Volume = 3.694 af Average Runoff Depth = 2.62" 82.88% Pervious = 14.041 ac 17.12% Impervious = 2.901 ac



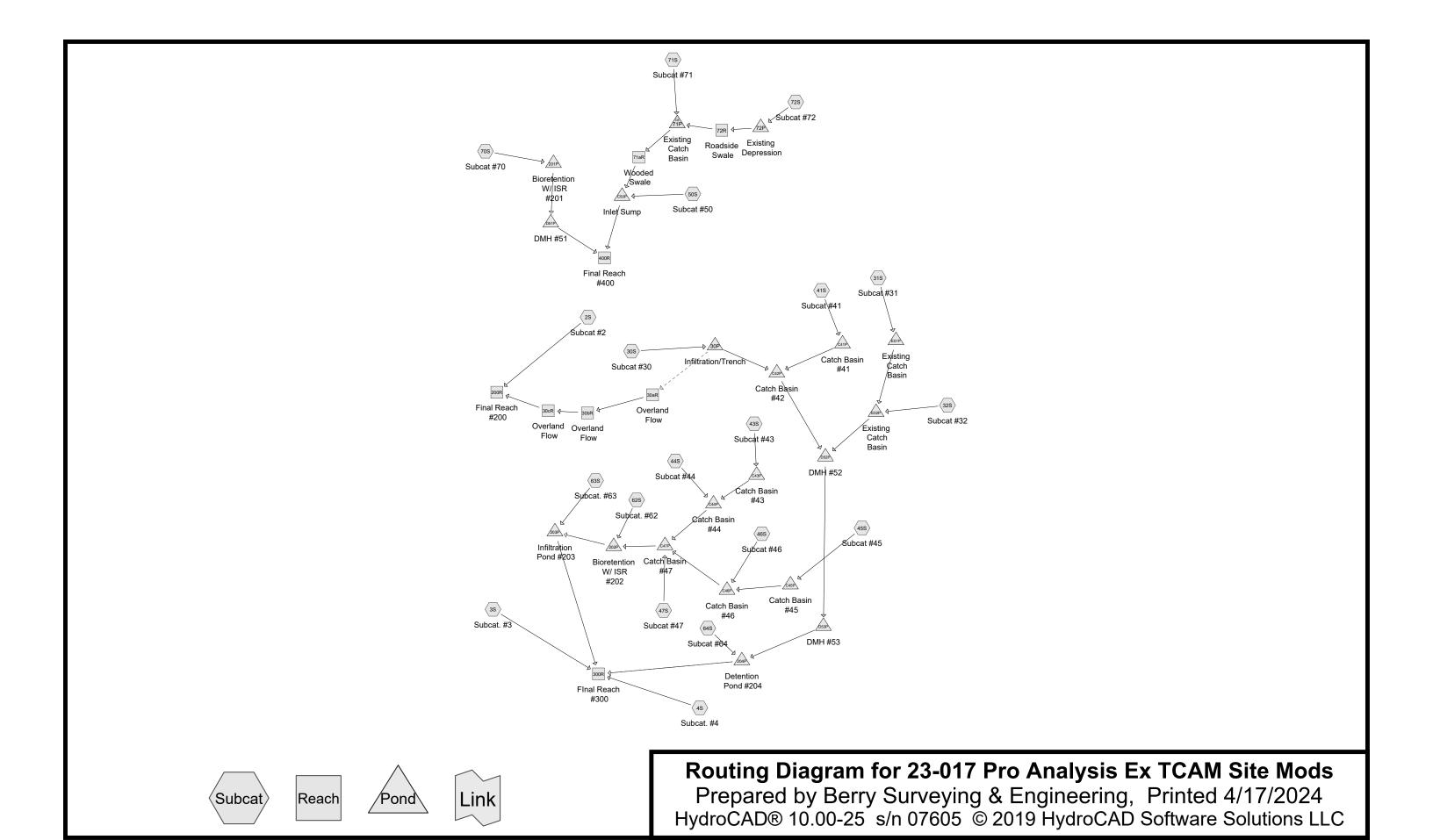






# **Appendix II -** Proposed Conditions Analysis

25 Yr - 24 Hr. Full Summary


2 Yr - 24 Hr. Node Listing

10 Yr -24 Hr. Node Listing

25 Yr -24 Hr. Node Listing

50 Yr - 24 Hr. Node Listing

50 YR-24-Hr. Swale Capacity Analysis



Printed 4/17/2024 Page 1

# **Area Listing (all nodes)**

| Area    | CN | Description                                                                    |
|---------|----|--------------------------------------------------------------------------------|
| (acres) |    | (subcatchment-numbers)                                                         |
| 2.514   | 39 | >75% Grass cover, Good, HSG A (3S, 4S, 45S, 50S, 62S, 63S, 64S, 70S, 71S, 72S) |
| 5.641   | 61 | >75% Grass cover, Good, HSG B (2S, 3S, 4S, 30S, 31S, 32S, 41S, 43S, 44S, 45S,  |
|         |    | 62S, 63S, 64S, 70S)                                                            |
| 0.005   | 96 | Gravel surface, HSG A (4S)                                                     |
| 0.453   | 96 | Gravel surface, HSG B (2S, 3S, 4S, 30S, 41S, 43S, 44S, 45S, 62S, 63S, 64S)     |
| 1.746   | 98 | Paved parking, HSG A (45S, 46S, 70S, 71S, 72S)                                 |
| 2.042   | 98 | Paved parking, HSG B (31S, 32S, 41S, 43S, 44S, 45S, 46S, 62S, 70S)             |
| 0.073   | 98 | Paved roads w/curbs & sewers, HSG B (47S)                                      |
| 0.007   | 98 | Roofs, HSG A (45S)                                                             |
| 0.094   | 98 | Roofs, HSG B (30S, 31S, 32S, 43S, 45S)                                         |
| 0.086   | 98 | Unconnected pavement, HSG B (2S)                                               |
| 0.018   | 98 | Unconnected roofs, HSG B (2S)                                                  |
| 2.421   | 30 | Woods, Good, HSG A (3S, 4S, 50S, 64S, 70S, 71S, 72S)                           |
| 1.847   | 55 | Woods, Good, HSG B (2S, 3S, 4S, 32S)                                           |
| 16.948  | 62 | TOTAL AREA                                                                     |

Printed 4/17/2024 Page 2

# Soil Listing (all nodes)

| Are   | ea Soil  | Subcatchment                                                                |
|-------|----------|-----------------------------------------------------------------------------|
| (acre | s) Group | Numbers                                                                     |
| 6.69  | 4 HSG A  | 3S, 4S, 45S, 46S, 50S, 62S, 63S, 64S, 70S, 71S, 72S                         |
| 10.25 | 4 HSG B  | 2S, 3S, 4S, 30S, 31S, 32S, 41S, 43S, 44S, 45S, 46S, 47S, 62S, 63S, 64S, 70S |
| 0.00  | 00 HSG C |                                                                             |
| 0.00  | 00 HSG D |                                                                             |
| 0.00  | 0 Other  |                                                                             |
| 16.94 | 18       | TOTAL AREA                                                                  |

Printed 4/17/2024 Page 3

# **Ground Covers (all nodes)**

|                  |                  |                  | Oloulla (        | 7010 (u.i.    | nouss,           |                        |                           |
|------------------|------------------|------------------|------------------|---------------|------------------|------------------------|---------------------------|
| HSG-A<br>(acres) | HSG-B<br>(acres) | HSG-C<br>(acres) | HSG-D<br>(acres) | Other (acres) | Total<br>(acres) | Ground<br>Cover        | Subcatchment<br>Numbers   |
| 2.514            | 5.641            | 0.000            | 0.000            | 0.000         | 8.155            | >75% Grass cover, Good | 2S,<br>3S,<br>4S,<br>30S, |
|                  |                  |                  |                  |               |                  |                        | 31S,                      |
|                  |                  |                  |                  |               |                  |                        | 32S,                      |
|                  |                  |                  |                  |               |                  |                        | 41S,                      |
|                  |                  |                  |                  |               |                  |                        | 43S,                      |
|                  |                  |                  |                  |               |                  |                        | 44S,                      |
|                  |                  |                  |                  |               |                  |                        | 45S,                      |
|                  |                  |                  |                  |               |                  |                        | 50S,                      |
|                  |                  |                  |                  |               |                  |                        | 62S,                      |
|                  |                  |                  |                  |               |                  |                        | 63S,                      |
|                  |                  |                  |                  |               |                  |                        | 64S,                      |
|                  |                  |                  |                  |               |                  |                        | 70S,                      |
|                  |                  |                  |                  |               |                  |                        | 71S,                      |
|                  |                  |                  |                  |               |                  |                        | 72S                       |
| 0.005            | 0.453            | 0.000            | 0.000            | 0.000         | 0.459            | Gravel surface         | 2S,                       |
|                  |                  |                  |                  |               |                  |                        | 3S,                       |
|                  |                  |                  |                  |               |                  |                        | 4S,                       |
|                  |                  |                  |                  |               |                  |                        | 30S,                      |
|                  |                  |                  |                  |               |                  |                        | 41S,                      |
|                  |                  |                  |                  |               |                  |                        | ,                         |
|                  |                  |                  |                  |               |                  |                        | 43S,                      |
|                  |                  |                  |                  |               |                  |                        | 44S,                      |
|                  |                  |                  |                  |               |                  |                        | 45S,                      |
|                  |                  |                  |                  |               |                  |                        | 62S,                      |
|                  |                  |                  |                  |               |                  |                        | 63S,                      |
|                  |                  |                  |                  |               |                  |                        | 64S                       |

### **Ground Covers (all nodes) (continued)**

| HSG-A<br>(acres) | HSG-B<br>(acres) | HSG-C<br>(acres) | HSG-D<br>(acres) | Other (acres) | Total<br>(acres) | Ground<br>Cover              | Subcatchment<br>Numbers |
|------------------|------------------|------------------|------------------|---------------|------------------|------------------------------|-------------------------|
| 1.746            | 2.042            | 0.000            | 0.000            | 0.000         | 3.788            | Paved parking                | 31S,                    |
|                  |                  |                  |                  |               |                  |                              | 32S,                    |
|                  |                  |                  |                  |               |                  |                              | 41S,                    |
|                  |                  |                  |                  |               |                  |                              | 43S,                    |
|                  |                  |                  |                  |               |                  |                              | 44S,                    |
|                  |                  |                  |                  |               |                  |                              | 45S,                    |
|                  |                  |                  |                  |               |                  |                              | 46S,                    |
|                  |                  |                  |                  |               |                  |                              | 62S,                    |
|                  |                  |                  |                  |               |                  |                              | 70S,                    |
|                  |                  |                  |                  |               |                  |                              | 71S,                    |
|                  |                  |                  |                  |               |                  |                              | 72S                     |
| 0.000            | 0.073            | 0.000            | 0.000            | 0.000         | 0.073            | Paved roads w/curbs & sewers |                         |
| 0.007            | 0.073            | 0.000            | 0.000            | 0.000         | 0.100            | Roofs                        | 30S,                    |
| 0.007            | 0.034            | 0.000            | 0.000            | 0.000         | 0.100            | 1,0015                       | 303,                    |
|                  |                  |                  |                  |               |                  |                              | 31S,                    |
|                  |                  |                  |                  |               |                  |                              | 32S,                    |
|                  |                  |                  |                  |               |                  |                              | 43S,                    |
|                  |                  |                  |                  |               |                  |                              | 45S                     |
| 0.000            | 0.086            | 0.000            | 0.000            | 0.000         | 0.086            | Unconnected pavement         | 2S                      |
|                  | 0.030            |                  |                  |               | 0.080            |                              |                         |
| 0.000            |                  | 0.000            | 0.000            | 0.000         |                  | Unconnected roofs            | 2S                      |
| 2.421            | 1.847            | 0.000            | 0.000            | 0.000         | 4.269            | Woods, Good                  | 2S,                     |
|                  |                  |                  |                  |               |                  |                              | 3S,                     |
|                  |                  |                  |                  |               |                  |                              | 4S,                     |
|                  |                  |                  |                  |               |                  |                              | 32S,                    |
|                  |                  |                  |                  |               |                  |                              | 50S,                    |
|                  |                  |                  |                  |               |                  |                              | 64S,                    |
|                  |                  |                  |                  |               |                  |                              | 70S,                    |
|                  |                  |                  |                  |               |                  |                              | 71S,                    |
|                  |                  |                  |                  |               |                  |                              | 72S                     |
|                  |                  |                  |                  |               |                  |                              |                         |

# **Ground Covers (all nodes) (continued)**

| 6.694   | 10.254  | 0.000   | 0.000   | 0.000   | 16.948  | TOTAL AREA |              |
|---------|---------|---------|---------|---------|---------|------------|--------------|
| (acres) | (acres) | (acres) | (acres) | (acres) | (acres) | Cover      | Numbers      |
| HSG-A   | HSG-B   | HSG-C   | HSG-D   | Other   | Total   | Ground     | Subcatchment |

Printed 4/17/2024 Page 6

# Pipe Listing (all nodes)

| Line# | Node<br>Number | In-Invert<br>(feet) | Out-Invert<br>(feet) | Length<br>(feet) | Slope<br>(ft/ft) | n     | Diam/Width (inches) | Height (inches) | Inside-Fill<br>(inches) |
|-------|----------------|---------------------|----------------------|------------------|------------------|-------|---------------------|-----------------|-------------------------|
| 1     | 30P            | 183.15              | 183.15               | 1.0              | 0.0000           | 0.012 | 6.0                 | 0.0             | 0.0                     |
| 2     | 71P            | 187.90              | 187.80               | 10.2             | 0.0098           | 0.012 | 18.0                | 0.0             | 0.0                     |
| 3     | 201P           | 182.00              | 181.70               | 33.0             | 0.0091           | 0.012 | 6.0                 | 0.0             | 0.0                     |
| 4     | 201P           | 182.00              | 181.70               | 26.0             | 0.0115           | 0.012 | 15.0                | 0.0             | 0.0                     |
| 5     | 202P           | 173.75              | 173.50               | 30.0             | 0.0083           | 0.012 | 6.0                 | 0.0             | 0.0                     |
| 6     | 202P           | 173.75              | 173.50               | 30.0             | 0.0083           | 0.012 | 15.0                | 0.0             | 0.0                     |
| 7     | 204P           | 176.25              | 176.00               | 29.0             | 0.0086           | 0.012 | 18.0                | 0.0             | 0.0                     |
| 8     | C41P           | 184.00              | 180.25               | 54.7             | 0.0686           | 0.012 | 15.0                | 0.0             | 0.0                     |
| 9     | C42P           | 180.15              | 179.81               | 63.0             | 0.0054           | 0.012 | 15.0                | 0.0             | 0.0                     |
| 10    | C43P           | 180.50              | 179.10               | 60.0             | 0.0233           | 0.012 | 15.0                | 0.0             | 0.0                     |
| 11    | C44P           | 179.00              | 178.60               | 48.0             | 0.0083           | 0.012 | 15.0                | 0.0             | 0.0                     |
| 12    | C45P           | 181.40              | 180.10               | 87.2             | 0.0149           | 0.012 | 15.0                | 0.0             | 0.0                     |
| 13    | C46P           | 180.00              | 178.60               | 68.0             | 0.0206           | 0.012 | 15.0                | 0.0             | 0.0                     |
| 14    | C47P           | 178.50              | 178.25               | 40.0             | 0.0063           | 0.012 | 18.0                | 0.0             | 0.0                     |
| 15    | C50P           | 183.50              | 182.95               | 107.5            | 0.0051           | 0.012 | 18.0                | 0.0             | 0.0                     |
| 16    | D51P           | 181.60              | 181.25               | 68.0             | 0.0051           | 0.012 | 18.0                | 0.0             | 0.0                     |
| 17    | D52P           | 179.71              | 179.10               | 110.0            | 0.0055           | 0.012 | 24.0                | 0.0             | 0.0                     |
| 18    | D53P           | 179.00              | 178.00               | 120.0            | 0.0083           | 0.012 | 24.0                | 0.0             | 0.0                     |
| 19    | E01P           | 183.50              | 183.22               | 57.0             | 0.0049           | 0.012 | 15.0                | 0.0             | 0.0                     |
| 20    | E02P           | 183.02              | 179.71               | 122.2            | 0.0271           | 0.012 | 24.0                | 0.0             | 0.0                     |

# 23-017 Pro Analysis Ex TCAM Site Mods Prepared by Berry Surveying & Engineering

Type III 24-hr 25YR-24HR Rainfall=5.87" Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 7

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 2S: Subcat #2 Runoff Area=164,530 sf 2.77% Impervious Runoff Depth>1.91" Flow Length=298' Tc=16.6 min UI Adjusted CN=61 Runoff=5.80 cfs 0.602 af

Subcatchment 3S: Subcat. #3 Runoff Area=46,611 sf 0.00% Impervious Runoff Depth>0.94" Flow Length=158' Slope=0.0200 '/' Tc=11.3 min CN=48 Runoff=0.69 cfs 0.084 af

Subcatchment 4S: Subcat. #4 Runoff Area=55,483 sf 0.00% Impervious Runoff Depth>0.45" Flow Length=674' Tc=43.2 min CN=40 Runoff=0.15 cfs 0.048 af

Subcatchment 30S: Subcat #30 Runoff Area=47,823 sf 4.45% Impervious Runoff Depth>2.08" Flow Length=87' Slope=0.0110 '/' Tc=11.3 min CN=63 Runoff=2.15 cfs 0.190 af

Subcatchment 31S: Subcat #31 Runoff Area=19,678 sf 56.06% Impervious Runoff Depth>3.86" Tc=6.0 min CN=82 Runoff=1.99 cfs 0.145 af

Subcatchment 32S: Subcat #32 Runoff Area=37,918 sf 67.33% Impervious Runoff Depth>4.18" Tc=6.0 min CN=85 Runoff=4.10 cfs 0.303 af

Subcatchment 41S: Subcat #41 Runoff Area=7,421 sf 61.70% Impervious Runoff Depth>4.49" Flow Length=342' Tc=14.7 min CN=88 Runoff=0.66 cfs 0.064 af

Subcatchment 43S: Subcat #43

Runoff Area=15,256 sf 64.41% Impervious Runoff Depth>4.39"
Flow Length=100' Tc=7.0 min CN=87 Runoff=1.67 cfs 0.128 af

Subcatchment 44S: Subcat #44

Runoff Area=14,458 sf 76.68% Impervious Runoff Depth>4.83"
Flow Length=98' Tc=7.7 min CN=91 Runoff=1.66 cfs 0.133 af

Subcatchment 45S: Subcat #45

Runoff Area=16,893 sf 94.23% Impervious Runoff Depth>5.39"
Flow Length=330' Tc=6.0 min CN=96 Runoff=2.15 cfs 0.174 af

Subcatchment 46S: Subcat #46 Runoff Area=7,602 sf 100.00% Impervious Runoff Depth>5.63" Tc=6.0 min CN=98 Runoff=0.98 cfs 0.082 af

Subcatchment 47S: Subcat #47 Runoff Area=3,200 sf 100.00% Impervious Runoff Depth>5.63" Tc=6.0 min CN=98 Runoff=0.41 cfs 0.034 af

Subcatchment 50S: Subcat #50

Runoff Area=11,704 sf 0.00% Impervious Runoff Depth>0.15"
Flow Length=182' Tc=11.7 min CN=33 Runoff=0.01 cfs 0.003 af

Subcatchment 62S: Subcat. #62

Runoff Area=45,124 sf 0.15% Impervious Runoff Depth>2.16"
Flow Length=165' Tc=14.3 min CN=64 Runoff=1.95 cfs 0.187 af

Subcatchment 63S: Subcat. #63

Runoff Area=16,040 sf 0.00% Impervious Runoff Depth>1.67"

Flow Length=150' Tc=10.8 min CN=58 Runoff=0.56 cfs 0.051 af

Subcatchment 64S: Subcat #64 Runoff Area=7,675 sf 0.00% Impervious Runoff Depth>1.67"
Tc=6.0 min CN=58 Runoff=0.31 cfs 0.025 af

#### 23-017 Pro Analysis Ex TCAM Site Mods

Type III 24-hr 25YR-24HR Rainfall=5.87"

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC
Page 8

Subcatchment 70S: Subcat #70 Runoff Area=51,128 sf 43.96% Impervious Runoff Depth>2.43"

Flow Length=345' Tc=14.1 min CN=67 Runoff=2.53 cfs 0.237 af

Subcatchment 71S: Subcat #71 Runoff Area=100,796 sf 29.45% Impervious Runoff Depth>1.28" Flow Length=563' Tc=39.5 min CN=53 Runoff=1.48 cfs 0.246 af

Subcatchment 72S: Subcat #72 Runoff Area=68,928 sf 42.73% Impervious Runoff Depth>2.07"

Flow Length=478' Tc=32.0 min CN=63 Runoff=2.04 cfs 0.273 af

Reach 30aR: Overland Flow Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af

n=0.022 L=151.0' S=0.0063 '/' Capacity=12.85 cfs Outflow=0.00 cfs 0.000 af

Reach 30bR: Overland Flow Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af

n=0.022 L=35.0' S=0.2286 '/' Capacity=77.47 cfs Outflow=0.00 cfs 0.000 af

Reach 30cR: Overland Flow Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af

n=0.035 L=58.0' S=0.0948 '/' Capacity=31.37 cfs Outflow=0.00 cfs 0.000 af

Reach 71aR: Wooded Swale Avg. Flow Depth=0.52' Max Vel=1.28 fps Inflow=3.40 cfs 0.492 af

n=0.035 L=78.5' S=0.0038 '/' Capacity=61.73 cfs Outflow=3.39 cfs 0.492 af

Reach 72R: Roadside Swale Avg. Flow Depth=0.25' Max Vel=1.71 fps Inflow=2.00 cfs 0.247 af

n=0.022 L=495.6' S=0.0060 '/' Capacity=33.12 cfs Outflow=1.95 cfs 0.246 af

Reach 200R: Final Reach #200 Inflow=5.80 cfs 0.602 af

Outflow=5.80 cfs 0.602 af

Reach 300R: Final Reach #300 Inflow=4.82 cfs 1.034 af

Outflow=4.82 cfs 1.034 af

Reach 400R: Final Reach #400 Inflow=4.05 cfs 0.668 af

Outflow=4.05 cfs 0.668 af

Pond 30P: Infiltration/Trench

Peak Elev=183.82' Storage=1,384 cf Inflow=2.15 cfs 0.190 af

Discarded=0.59 cfs 0.081 af Primary=0.51 cfs 0.107 af Secondary=0.00 cfs 0.000 af Outflow=1.10 cfs 0.188 af

Pond 71P: Existing Catch Basin Peak Elev=188.93' Inflow=3.40 cfs 0.492 af

18.0" Round Culvert n=0.012 L=10.2' S=0.0098 '/' Outflow=3.40 cfs 0.492 af

Pond 72P: Existing Depression Peak Elev=196.21' Storage=160 cf Inflow=2.04 cfs 0.273 af

Discarded=0.02 cfs 0.024 af Primary=2.00 cfs 0.247 af Outflow=2.02 cfs 0.271 af

**Pond 201P: Bioretention W/ ISR #201** Peak Elev=185.45' Storage=4,286 cf Inflow=2.53 cfs 0.237 af

Primary=0.02 cfs 0.023 af Secondary=0.66 cfs 0.150 af Outflow=0.68 cfs 0.173 af

Pond 202P: Bioretention W/ ISR #202 Peak Elev=179.19' Storage=18,074 cf Inflow=8.23 cfs 0.739 af

Primary=0.09 cfs 0.103 af Secondary=0.60 cfs 0.463 af Tertiary=0.00 cfs 0.000 af Outflow=0.68 cfs 0.566 af

Pond 203P: Infiltration Pond #203 Peak Elev=174.58' Storage=4,820 cf Inflow=1.08 cfs 0.617 af

Discarded=0.21 cfs 0.233 af Primary=0.52 cfs 0.277 af Outflow=0.73 cfs 0.510 af

Pond 204P: Detention Pond #204 Peak Elev=178.85' Storage=4,793 cf Inflow=7.28 cfs 0.630 af

Primary=4.16 cfs 0.625 af Secondary=0.00 cfs 0.000 af Outflow=4.16 cfs 0.625 af

Type III 24-hr 25YR-24HR Rainfall=5.87"

Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 9

| Pond C41P: Catch Basin #41 | Peak Elev=184.38' Storage=5 cf Inflow=0.66 cfs | 0.064 af |
|----------------------------|------------------------------------------------|----------|
|----------------------------|------------------------------------------------|----------|

15.0" Round Culvert n=0.012 L=54.7' S=0.0686 '/' Outflow=0.66 cfs 0.064 af

Pond C42P: Catch Basin #42 Peak Elev=181.09' Storage=12 cf Inflow=1.14 cfs 0.171 af

15.0" Round Culvert n=0.012 L=63.0' S=0.0054 '/' Outflow=1.14 cfs 0.171 af

Pond C43P: Catch Basin #43 Peak Elev=181.13' Storage=8 cf Inflow=1.67 cfs 0.128 af

15.0" Round Culvert n=0.012 L=60.0' S=0.0233 '/' Outflow=1.67 cfs 0.128 af

Pond C44P: Catch Basin #44 Peak Elev=180.36' Storage=17 cf Inflow=3.33 cfs 0.262 af

15.0" Round Culvert n=0.012 L=48.0' S=0.0083 '/' Outflow=3.32 cfs 0.262 af

Pond C45P: Catch Basin #45 Peak Elev=182.13' Storage=9 cf Inflow=2.15 cfs 0.174 af

15.0" Round Culvert n=0.012 L=87.2' S=0.0149 '/' Outflow=2.15 cfs 0.174 af

Pond C46P: Catch Basin #46 Peak Elev=180.91' Storage=11 cf Inflow=3.13 cfs 0.256 af

15.0" Round Culvert n=0.012 L=68.0' S=0.0206 '/' Outflow=3.14 cfs 0.256 af

Pond C47P: Catch Basin #47 Peak Elev=180.08' Storage=20 cf Inflow=6.84 cfs 0.552 af

18.0" Round Culvert n=0.012 L=40.0' S=0.0063 '/' Outflow=6.84 cfs 0.552 af

Pond C50P: Inlet Sump Peak Elev=184.47' Storage=12 cf Inflow=3.39 cfs 0.495 af

18.0" Round Culvert n=0.012 L=107.5' S=0.0051 '/' Outflow=3.39 cfs 0.495 af

Pond D51P: DMH #51 Peak Elev=182.01' Storage=0.000 af Inflow=0.68 cfs 0.173 af

18.0" Round Culvert n=0.012 L=68.0' S=0.0051 '/' Outflow=0.68 cfs 0.173 af

Pond D52P: DMH #52 Peak Elev=180.99' Storage=16 cf Inflow=6.97 cfs 0.606 af

24.0" Round Culvert n=0.012 L=110.0' S=0.0055 '/' Outflow=6.97 cfs 0.606 af

Pond D53P: DMH #53 Peak Elev=180.16' Storage=15 cf Inflow=6.97 cfs 0.606 af

24.0" Round Culvert n=0.012 L=120.0' S=0.0083 '/' Outflow=6.97 cfs 0.606 af

Pond E01P: Existing Catch Basin Peak Elev=184.38' Storage=11 cf Inflow=1.99 cfs 0.145 af

15.0" Round Culvert n=0.012 L=57.0' S=0.0049 '/' Outflow=1.98 cfs 0.145 af

Pond E02P: Existing Catch Basin Peak Elev=184.10' Storage=224 cf Inflow=6.08 cfs 0.448 af

Discarded=0.02 cfs 0.013 af Primary=6.08 cfs 0.435 af Outflow=6.09 cfs 0.448 af

Total Runoff Area = 16.948 ac Runoff Volume = 3.011 af Average Runoff Depth = 2.13" 76.01% Pervious = 12.882 ac 23.99% Impervious = 4.066 ac

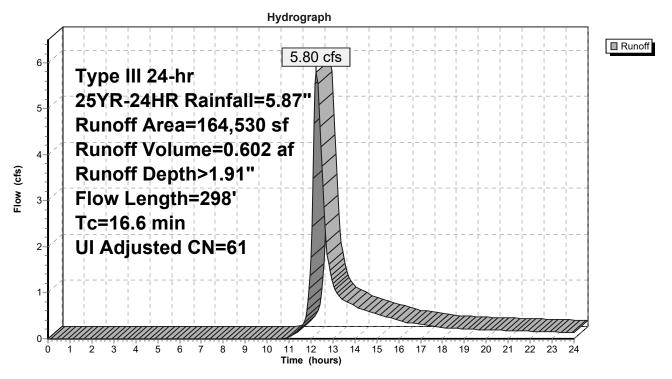
Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 10

# Summary for Subcatchment 2S: Subcat #2

Runoff = 5.80 cfs @ 12.25 hrs, Volume= 0.602 af, Depth> 1.91"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| A            | rea (sf) | CN /                 | Adj Desc | ription                       |                                       |  |  |  |  |
|--------------|----------|----------------------|----------|-------------------------------|---------------------------------------|--|--|--|--|
|              | 93,834   | 61                   | >75%     | >75% Grass cover, Good, HSG B |                                       |  |  |  |  |
|              | 3,750    | 98                   | Unco     | Jnconnected pavement, HSG B   |                                       |  |  |  |  |
|              | 800      | 98                   | Unco     | Jnconnected roofs, HSG B      |                                       |  |  |  |  |
|              | 7,747    | 96                   | Grav     | Gravel surface, HSG B         |                                       |  |  |  |  |
|              | 58,399   | 55                   | Woo      | ds, Good, I                   | HSG B                                 |  |  |  |  |
| 1            | 64,530   | 62                   | 61 Weig  | Weighted Average, UI Adjusted |                                       |  |  |  |  |
| 1            | 59,980   | 97.23% Pervious Area |          |                               |                                       |  |  |  |  |
|              | 4,550    |                      | 2.77     | % Impervio                    | us Area                               |  |  |  |  |
|              | 4,550    |                      | 100.0    | 00% Uncor                     | nected                                |  |  |  |  |
|              |          |                      |          |                               |                                       |  |  |  |  |
| Tc           | Length   | Slope                | Velocity | Capacity                      | Description                           |  |  |  |  |
| <u>(min)</u> | (feet)   | (ft/ft)              | (ft/sec) | (cfs)                         |                                       |  |  |  |  |
| 13.2         | 100      | 0.0100               | 0.13     |                               | Sheet Flow, Segment #1                |  |  |  |  |
|              |          |                      |          |                               | Grass: Short n= 0.150 P2= 3.08"       |  |  |  |  |
| 2.6          | 105      | 0.0095               | 0.68     |                               | Shallow Concentrated Flow, Segment #2 |  |  |  |  |
|              |          |                      |          |                               | Short Grass Pasture Kv= 7.0 fps       |  |  |  |  |
| 0.2          | 35       | 0.2290               | 3.35     |                               | Shallow Concentrated Flow, Segment #3 |  |  |  |  |
|              |          |                      |          |                               | Short Grass Pasture Kv= 7.0 fps       |  |  |  |  |
| 0.6          | 58       | 0.0950               | 1.54     |                               | Shallow Concentrated Flow, Segment #4 |  |  |  |  |
|              |          |                      |          |                               | Woodland Kv= 5.0 fps                  |  |  |  |  |
| 16.6         | 298      | Total                |          |                               |                                       |  |  |  |  |

Prepared by Berry Surveying & Engineering
<a href="https://example.com/HydroCAD8">HydroCAD8</a> 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 11

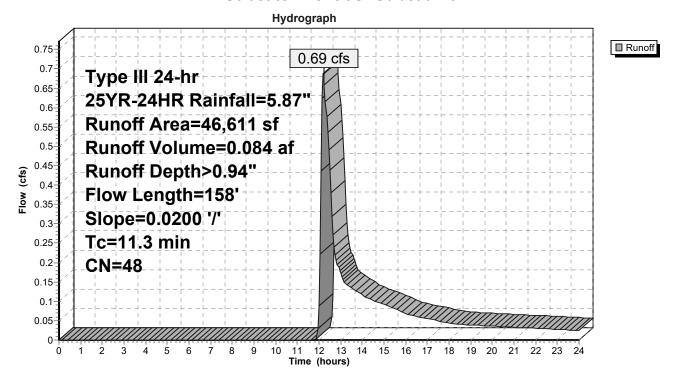
#### Subcatchment 2S: Subcat #2



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 12


### **Summary for Subcatchment 3S: Subcat. #3**

Runoff = 0.69 cfs @ 12.21 hrs, Volume= 0.084 af, Depth> 0.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| Area (sf)    | CN [    | Description  |             |                                       |
|--------------|---------|--------------|-------------|---------------------------------------|
| 6,149        | 39 >    | -75% Gras    | s cover, Go | ood, HSG A                            |
| 16,252       | 30 \    | Noods, Go    | od, HSG A   |                                       |
| 14,263       | 61 >    | >75% Gras    | s cover, Go | ood, HSG B                            |
| 8,052        | 55 \    | Noods, Go    | od, HSG B   |                                       |
| 1,895        | 96 (    | Gravel surfa | ace, HSG E  | 3                                     |
| 46,611       | 48 \    | Weighted A   | verage      |                                       |
| 46,611       | 1       | 100.00% Pe   | ervious Are | ea                                    |
|              |         |              |             |                                       |
| Tc Length    | Slope   | Velocity     | Capacity    | Description                           |
| (min) (feet) | (ft/ft) | (ft/sec)     | (cfs)       |                                       |
| 10.0 100     | 0.0200  | 0.17         |             | Sheet Flow, Segment #1                |
|              |         |              |             | Grass: Short n= 0.150 P2= 3.08"       |
| 0.2 12       | 0.0200  | 0.99         |             | Shallow Concentrated Flow, Segment #2 |
|              |         |              |             | Short Grass Pasture Kv= 7.0 fps       |
| 1.1 46       | 0.0200  | 0.71         |             | Shallow Concentrated Flow, Segment #3 |
|              |         |              |             | Woodland Kv= 5.0 fps                  |
| 11.3 158     | Total   |              |             |                                       |

#### Subcatchment 3S: Subcat. #3



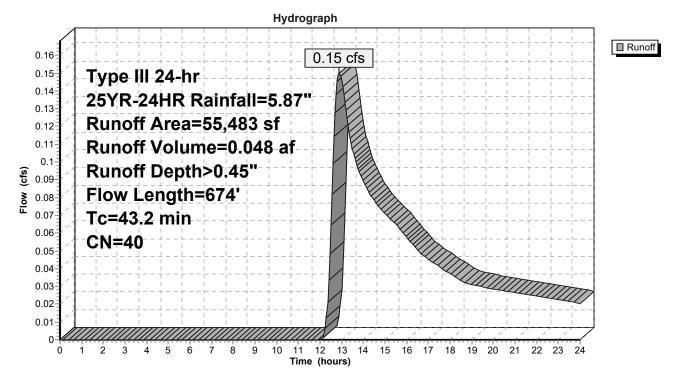
Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 13

# Summary for Subcatchment 4S: Subcat. #4

Runoff = 0.15 cfs @ 12.90 hrs, Volume= 0.048 af, Depth> 0.45"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| A            | rea (sf) | CN E                             | Description  |             |                                            |  |  |  |
|--------------|----------|----------------------------------|--------------|-------------|--------------------------------------------|--|--|--|
|              | 3,884    | 39 >75% Grass cover, Good, HSG A |              |             |                                            |  |  |  |
|              | 34,310   | 30 V                             | Voods, Go    | od, HSG A   |                                            |  |  |  |
|              | 238      | 96 C                             | Gravel surfa | ace, HSG A  | <b>L</b>                                   |  |  |  |
|              | 8,394    | 61 >                             | 75% Gras     | s cover, Go | od, HSG B                                  |  |  |  |
|              | 8,339    | 55 V                             | Voods, Go    | od, HSG B   |                                            |  |  |  |
|              | 318      | 96 (                             | Gravel surfa | ace, HSG B  |                                            |  |  |  |
|              | 55,483   | 40 V                             | Veighted A   | verage      |                                            |  |  |  |
|              | 55,483   | 1                                | 00.00% Pe    | ervious Are | a                                          |  |  |  |
|              |          |                                  |              |             |                                            |  |  |  |
| Tc           | Length   | Slope                            | Velocity     | Capacity    | Description                                |  |  |  |
| <u>(min)</u> | (feet)   | (ft/ft)                          | (ft/sec)     | (cfs)       |                                            |  |  |  |
| 28.9         | 100      | 0.0100                           | 0.06         |             | Sheet Flow, Segment #1                     |  |  |  |
|              |          |                                  |              |             | Woods: Light underbrush n= 0.400 P2= 3.08" |  |  |  |
| 10.0         | 252      | 0.0070                           | 0.42         |             | Shallow Concentrated Flow, Segment #2      |  |  |  |
|              |          |                                  |              |             | Woodland Kv= 5.0 fps                       |  |  |  |
| 1.5          | 74       | 0.0270                           | 0.82         |             | Shallow Concentrated Flow, Segment #3      |  |  |  |
|              |          |                                  |              |             | Woodland Kv= 5.0 fps                       |  |  |  |
| 1.8          | 157      | 0.0828                           | 1.44         |             | Shallow Concentrated Flow, Segment #4      |  |  |  |
| 4.0          | 0.4      | 0 0 4 4 0                        | 4 4-         |             | Woodland Kv= 5.0 fps                       |  |  |  |
| 1.0          | 91       | 0.0440                           | 1.47         |             | Shallow Concentrated Flow, Segment #5      |  |  |  |
|              |          |                                  |              |             | Short Grass Pasture Kv= 7.0 fps            |  |  |  |
| 43.2         | 674      | Total                            |              |             |                                            |  |  |  |

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 14

#### Subcatchment 4S: Subcat. #4

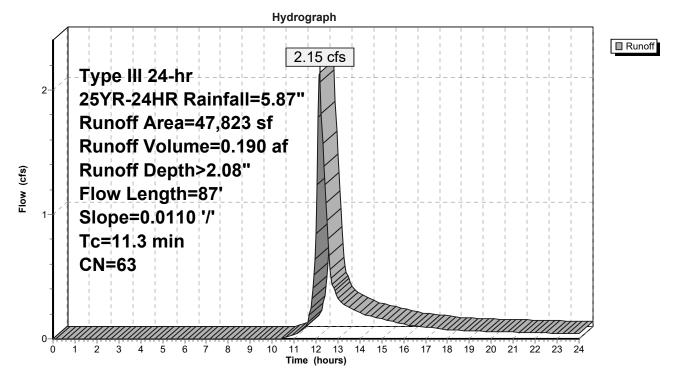


Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 15

### **Summary for Subcatchment 30S: Subcat #30**


Runoff = 2.15 cfs @ 12.17 hrs, Volume= 0.190 af, Depth> 2.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| _ | Α     | rea (sf) | CN      | Description                  |              |                        |  |  |  |  |  |
|---|-------|----------|---------|------------------------------|--------------|------------------------|--|--|--|--|--|
|   |       | 45,515   | 61      | 75% Grass cover, Good, HSG B |              |                        |  |  |  |  |  |
|   |       | 2,126    | 98      | Roofs, HSG                   | Roofs, HSG B |                        |  |  |  |  |  |
| _ |       | 182      | 96      | Gravel surface, HSG B        |              |                        |  |  |  |  |  |
|   |       | 47,823   | 63      | Weighted Average             |              |                        |  |  |  |  |  |
|   |       | 45,697   | !       | 95.55% Per                   | vious Area   |                        |  |  |  |  |  |
|   |       | 2,126    |         | 4.45% Impe                   | ervious Area | a                      |  |  |  |  |  |
|   |       |          |         |                              |              |                        |  |  |  |  |  |
|   | Тс    | Length   | Slope   | ,                            | Capacity     | Description            |  |  |  |  |  |
| _ | (min) | (feet)   | (ft/ft) | (ft/sec)                     | (cfs)        |                        |  |  |  |  |  |
|   | 11.3  | 87       | 0.0110  | 0.13                         |              | Sheet Flow, Segment #1 |  |  |  |  |  |
|   |       |          |         |                              |              |                        |  |  |  |  |  |

Grass: Short n= 0.150 P2= 3.08"

#### Subcatchment 30S: Subcat #30

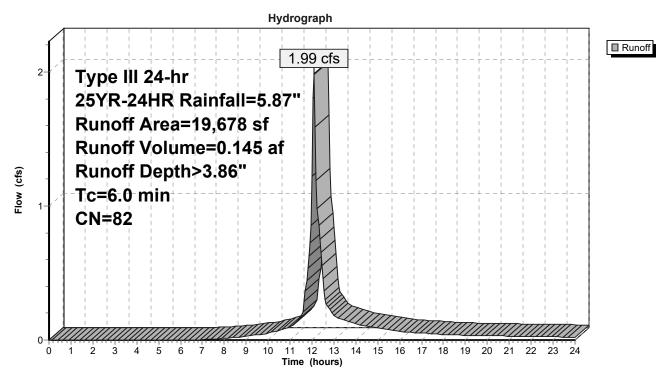


Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 16

### **Summary for Subcatchment 31S: Subcat #31**


Runoff 1.99 cfs @ 12.09 hrs, Volume= 0.145 af, Depth> 3.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| A     | rea (sf) | CN     | Description                   |             |               |              |  |  |  |
|-------|----------|--------|-------------------------------|-------------|---------------|--------------|--|--|--|
|       | 57       | 98     | Roofs, HSG B                  |             |               |              |  |  |  |
|       | 8,646    | 61     | >75% Grass cover, Good, HSG B |             |               |              |  |  |  |
|       | 10,975   | 98     | Paved park                    | ing, HSG B  |               |              |  |  |  |
|       | 19,678   | 82     | Weighted Average              |             |               |              |  |  |  |
|       | 8,646    |        | 43.94% Pervious Area          |             |               |              |  |  |  |
|       | 11,032   |        | 56.06% Imp                    | ervious Are | ea            |              |  |  |  |
|       |          |        |                               |             |               |              |  |  |  |
|       | Length   | Slope  | ,                             | Capacity    | Description   |              |  |  |  |
| (min) | (feet)   | (ft/ft | (ft/sec)                      | (cfs)       |               |              |  |  |  |
| 6.0   |          |        |                               |             | Direct Entry, | Direct Entry |  |  |  |

**Direct Entry, Direct Entry** 

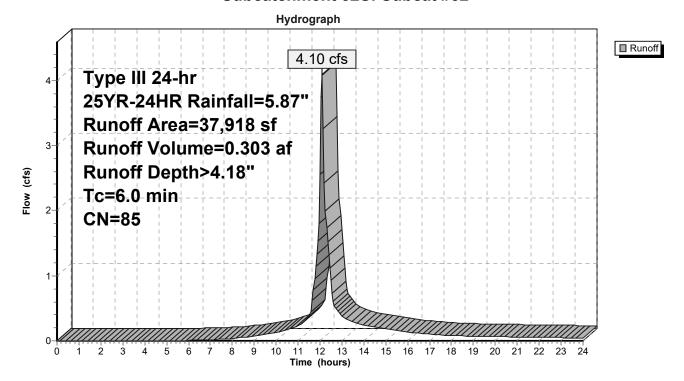
#### Subcatchment 31S: Subcat #31



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 17


### **Summary for Subcatchment 32S: Subcat #32**

Runoff = 4.10 cfs @ 12.09 hrs, Volume= 0.303 af, Depth> 4.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| A     | rea (sf) | CN     | Description            |             |                            |  |  |  |  |  |
|-------|----------|--------|------------------------|-------------|----------------------------|--|--|--|--|--|
|       | 341      | 98     | Roofs, HSG B           |             |                            |  |  |  |  |  |
|       | 6,716    | 61     | >75% Grass             | s cover, Go | lood, HSG B                |  |  |  |  |  |
|       | 25,189   | 98     | Paved parki            | ng, HSG B   | В                          |  |  |  |  |  |
|       | 5,672    | 55     | Woods, God             | od, HSG B   | 3                          |  |  |  |  |  |
|       | 37,918   | 85     | Weighted Average       |             |                            |  |  |  |  |  |
|       | 12,388   |        | 32.67% Pervious Area   |             |                            |  |  |  |  |  |
|       | 25,530   |        | 67.33% Impervious Area |             |                            |  |  |  |  |  |
|       |          |        |                        |             |                            |  |  |  |  |  |
| Tc    | Length   | Slop   | ,                      | Capacity    | ·                          |  |  |  |  |  |
| (min) | (feet)   | (ft/ft | (ft/sec)               | (cfs)       |                            |  |  |  |  |  |
| 6.0   |          |        |                        |             | Direct Entry, Direct Entry |  |  |  |  |  |

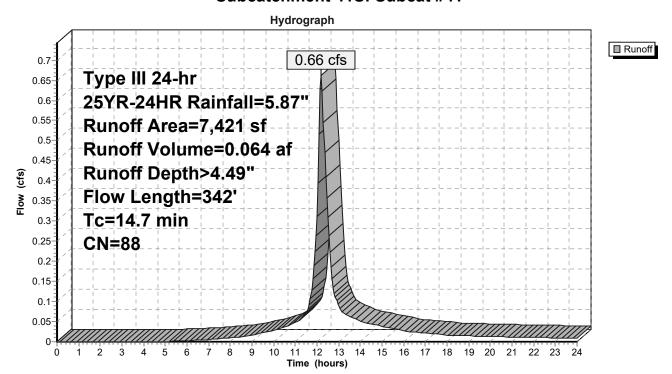
#### Subcatchment 32S: Subcat #32



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 18


# Summary for Subcatchment 41S: Subcat #41

Runoff = 0.66 cfs @ 12.20 hrs, Volume= 0.064 af, Depth> 4.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| _ | Α           | rea (sf)         | CN              | CN Description                   |                   |                                                                                            |  |  |  |  |  |  |
|---|-------------|------------------|-----------------|----------------------------------|-------------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Ī |             | 1,989            | 61              | 61 >75% Grass cover, Good, HSG B |                   |                                                                                            |  |  |  |  |  |  |
|   |             | 4,579            | 98              | Paved parking, HSG B             |                   |                                                                                            |  |  |  |  |  |  |
|   |             | 853              | 96              | Gravel surface, HSG B            |                   |                                                                                            |  |  |  |  |  |  |
| Ī |             | 7,421            | 88              | Weighted A                       | verage            |                                                                                            |  |  |  |  |  |  |
|   |             | 2,842            |                 | 38.30% Per                       | rvious Area       |                                                                                            |  |  |  |  |  |  |
|   |             | 4,579            |                 | 61.70% Imp                       | pervious Ar       | ea                                                                                         |  |  |  |  |  |  |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft | ,                                | Capacity<br>(cfs) | Description                                                                                |  |  |  |  |  |  |
|   | 13.2        | 100              | 0.0100          | 0.13                             |                   | Sheet Flow, Segment #1                                                                     |  |  |  |  |  |  |
|   | 1.5         | 242              | 0.0186          | 3 2.77                           |                   | Grass: Short n= 0.150 P2= 3.08"  Shallow Concentrated Flow, Segment #2  Paved Kv= 20.3 fps |  |  |  |  |  |  |
| _ | 14.7        | 342              | Total           |                                  |                   |                                                                                            |  |  |  |  |  |  |

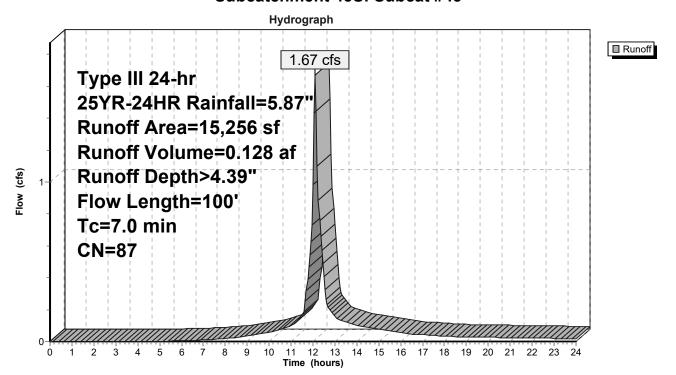
#### Subcatchment 41S: Subcat #41



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 19


#### **Summary for Subcatchment 43S: Subcat #43**

Runoff = 1.67 cfs @ 12.10 hrs, Volume= 0.128 af, Depth> 4.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

|   | Α     | rea (sf) | CN      | CN Description       |            |                                 |  |  |  |  |  |
|---|-------|----------|---------|----------------------|------------|---------------------------------|--|--|--|--|--|
|   |       | 417      | 98      | 98 Roofs, HSG B      |            |                                 |  |  |  |  |  |
|   |       | 4,449    | 61      | , ·                  |            |                                 |  |  |  |  |  |
|   |       | 9,410    | 98      | Paved parking, HSG B |            |                                 |  |  |  |  |  |
|   |       | 980      | 96      | 1 0                  |            |                                 |  |  |  |  |  |
|   |       | 15,256   | 87      | Weighted A           | verage     |                                 |  |  |  |  |  |
|   |       | 5,429    |         | 35.59% Per           | vious Area |                                 |  |  |  |  |  |
|   |       | 9,827    |         | 64.41% lmp           | ervious Ar | ea                              |  |  |  |  |  |
|   |       |          |         |                      |            |                                 |  |  |  |  |  |
|   | Тс    | Length   | Slope   |                      | Capacity   | Description                     |  |  |  |  |  |
| _ | (min) | (feet)   | (ft/ft) | (ft/sec)             | (cfs)      |                                 |  |  |  |  |  |
|   | 2.9   | 40       | 0.0693  | 0.23                 |            | Sheet Flow, Segment #1          |  |  |  |  |  |
|   |       |          |         |                      |            | Grass: Short n= 0.150 P2= 3.08" |  |  |  |  |  |
|   | 4.1   | 60       | 0.0663  | 0.24                 |            | Sheet Flow, Segment #2          |  |  |  |  |  |
| _ |       |          |         |                      |            | Grass: Short n= 0.150 P2= 3.08" |  |  |  |  |  |
|   | 7.0   | 100      | Total   |                      |            |                                 |  |  |  |  |  |

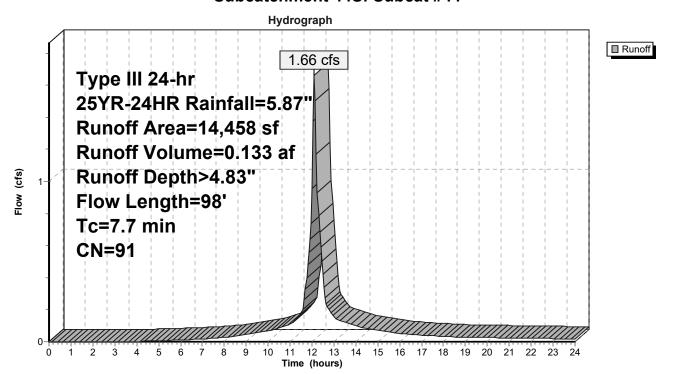
#### Subcatchment 43S: Subcat #43



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 20


# Summary for Subcatchment 44S: Subcat #44

Runoff = 1.66 cfs @ 12.11 hrs, Volume= 0.133 af, Depth> 4.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| _ | Α     | rea (sf) | CN      | CN Description                   |             |                                 |  |  |  |  |  |
|---|-------|----------|---------|----------------------------------|-------------|---------------------------------|--|--|--|--|--|
|   |       | 2,611    | 61      | 61 >75% Grass cover, Good, HSG B |             |                                 |  |  |  |  |  |
|   |       | 11,087   | 98      |                                  |             |                                 |  |  |  |  |  |
| _ |       | 760      | 96      | Gravel surfa                     | ace, HSG E  | 3                               |  |  |  |  |  |
|   |       | 14,458   | 91      | Weighted A                       | verage      |                                 |  |  |  |  |  |
|   |       | 3,371    |         | 23.32% Pei                       | rvious Area |                                 |  |  |  |  |  |
|   |       | 11,087   |         | 76.68% lmp                       | pervious Ar | ea                              |  |  |  |  |  |
|   |       |          |         |                                  |             |                                 |  |  |  |  |  |
|   | Тс    | Length   | Slope   | •                                | Capacity    | Description                     |  |  |  |  |  |
| _ | (min) | (feet)   | (ft/ft) | (ft/sec)                         | (cfs)       |                                 |  |  |  |  |  |
|   | 2.4   | 37       | 0.1002  | 0.26                             |             | Sheet Flow, Segment #1          |  |  |  |  |  |
|   |       |          |         |                                  |             | Grass: Short n= 0.150 P2= 3.08" |  |  |  |  |  |
|   | 5.3   | 61       | 0.0370  | 0.19                             |             | Sheet Flow, Segment #2          |  |  |  |  |  |
| _ |       |          |         |                                  |             | Grass: Short n= 0.150 P2= 3.08" |  |  |  |  |  |
|   | 77    | 98       | Total   |                                  |             |                                 |  |  |  |  |  |

#### Subcatchment 44S: Subcat #44



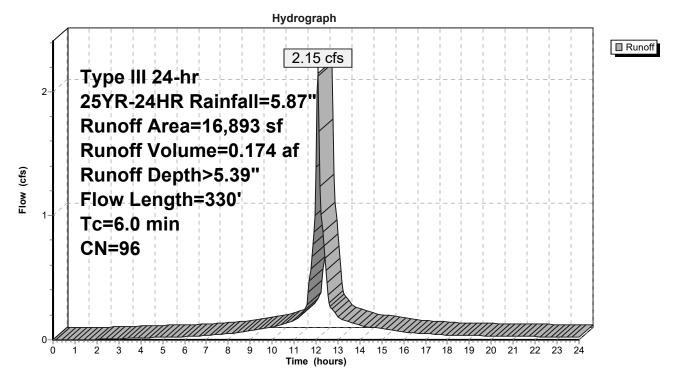
Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 21

# Summary for Subcatchment 45S: Subcat #45

Runoff = 2.15 cfs @ 12.09 hrs, Volume= 0.174 af, Depth> 5.39"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| A            | rea (sf) | CN [    | Description                   |             |                                       |  |  |  |  |
|--------------|----------|---------|-------------------------------|-------------|---------------------------------------|--|--|--|--|
|              | 290      | 98 F    | Roofs, HSG A                  |             |                                       |  |  |  |  |
|              | 12       | 39 >    | >75% Grass cover, Good, HSG A |             |                                       |  |  |  |  |
|              | 5,939    | 98 F    | aved parking, HSG A           |             |                                       |  |  |  |  |
|              | 1,139    | 98 F    | Roofs, HSG B                  |             |                                       |  |  |  |  |
|              | 784      | 61 >    | 75% Gras                      | s cover, Go | ood, HSG B                            |  |  |  |  |
|              | 8,550    |         |                               | ing, HSG B  |                                       |  |  |  |  |
|              | 179      | 96 (    | Gravel surfa                  | ace, HSG E  | 3                                     |  |  |  |  |
|              | 16,893   | 96 \    | Veighted A                    | verage      |                                       |  |  |  |  |
|              | 975      | 5       | 5.77% Perv                    | ious Area   |                                       |  |  |  |  |
|              | 15,918   | ξ       | 94.23% Imp                    | ervious Ar  | ea                                    |  |  |  |  |
| _            |          |         |                               |             |                                       |  |  |  |  |
| Tc           | Length   | Slope   | Velocity                      | Capacity    | Description                           |  |  |  |  |
| <u>(min)</u> | (feet)   | (ft/ft) | (ft/sec)                      | (cfs)       |                                       |  |  |  |  |
| 0.9          | 18       | 0.3010  | 0.35                          |             | Sheet Flow, Segment #1                |  |  |  |  |
|              |          |         |                               |             | Grass: Short n= 0.150 P2= 3.08"       |  |  |  |  |
| 2.9          | 18       | 0.0140  | 0.10                          |             | Sheet Flow, Segment #2                |  |  |  |  |
|              |          |         |                               |             | Grass: Short n= 0.150 P2= 3.08"       |  |  |  |  |
| 1.3          | 294      | 0.0365  | 3.88                          |             | Shallow Concentrated Flow, Segment #3 |  |  |  |  |
|              |          |         |                               |             | Paved Kv= 20.3 fps                    |  |  |  |  |
| 5.1          | 330      | Total,  | ncreased t                    | o minimum   | Tc = 6.0 min                          |  |  |  |  |

Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 22

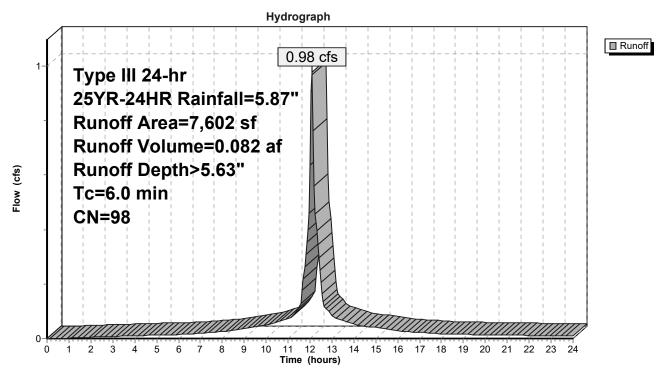
## Subcatchment 45S: Subcat #45



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 23


# **Summary for Subcatchment 46S: Subcat #46**

Runoff = 0.98 cfs @ 12.09 hrs, Volume= 0.082 af, Depth> 5.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| A     | rea (sf) | CN     | Description             |            |                            |  |
|-------|----------|--------|-------------------------|------------|----------------------------|--|
|       | 74       | 98     | Paved park              | ing, HSG A |                            |  |
|       | 7,528    | 98     | Paved park              | ing, HSG B |                            |  |
| •     | 7,602    | 98     | Weighted A              | verage     |                            |  |
|       | 7,602    |        | 100.00% Impervious Area |            |                            |  |
|       |          |        |                         |            |                            |  |
| Tc    | Length   | Slope  | ,                       | Capacity   | Description                |  |
| (min) | (feet)   | (ft/ft | ) (ft/sec)              | (cfs)      |                            |  |
| 6.0   |          |        |                         |            | Direct Entry, Direct Entry |  |

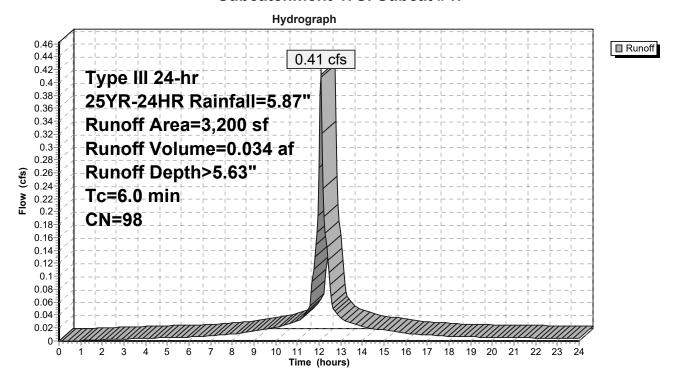
## Subcatchment 46S: Subcat #46



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 24


## **Summary for Subcatchment 47S: Subcat #47**

Runoff = 0.41 cfs @ 12.09 hrs, Volume= 0.034 af, Depth> 5.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| <br>Α     | rea (sf) | CN I    | Description                         |          |                            |  |  |  |
|-----------|----------|---------|-------------------------------------|----------|----------------------------|--|--|--|
|           | 3,200    | 98 I    | Paved roads w/curbs & sewers, HSG B |          |                            |  |  |  |
|           | 3,200    | •       | 100.00% Impervious Area             |          |                            |  |  |  |
| Тс        | Length   | Slope   | Velocity                            | Capacity | Description                |  |  |  |
| <br>(min) | (feet)   | (ft/ft) | (ft/sec)                            | (cfs)    |                            |  |  |  |
| 6.0       |          |         |                                     |          | Direct Entry, Direct Entry |  |  |  |

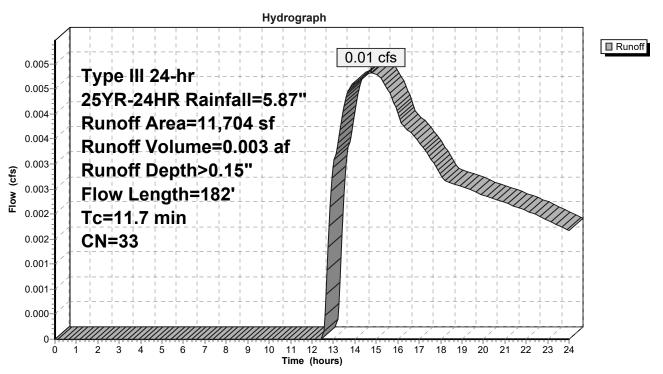
### Subcatchment 47S: Subcat #47



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 25


# Summary for Subcatchment 50S: Subcat #50

Runoff = 0.01 cfs @ 14.77 hrs, Volume= 0.003 af, Depth> 0.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

|                            | A     | rea (sf) | CN      | <u>Description</u> |                              |                                       |  |  |  |  |  |  |
|----------------------------|-------|----------|---------|--------------------|------------------------------|---------------------------------------|--|--|--|--|--|--|
|                            |       | 3,587    | 39      | >75% Gras          | 75% Grass cover, Good, HSG A |                                       |  |  |  |  |  |  |
|                            |       | 8,117    | 30      | Woods, Go          | Woods, Good, HSG A           |                                       |  |  |  |  |  |  |
| 11,704 33 Weighted Average |       |          |         |                    |                              |                                       |  |  |  |  |  |  |
|                            |       | 11,704   |         | 100.00% Pe         | ervious Are                  | a                                     |  |  |  |  |  |  |
|                            |       |          |         |                    |                              |                                       |  |  |  |  |  |  |
|                            | Tc    | Length   | Slope   | Velocity           | Capacity                     | Description                           |  |  |  |  |  |  |
|                            | (min) | (feet)   | (ft/ft) | (ft/sec)           | (cfs)                        |                                       |  |  |  |  |  |  |
|                            | 7.9   | 94       | 0.0319  | 0.20               |                              | Sheet Flow, Segment #1                |  |  |  |  |  |  |
|                            |       |          |         |                    |                              | Grass: Short n= 0.150 P2= 3.08"       |  |  |  |  |  |  |
|                            | 3.8   | 88       | 0.0060  | 0.39               |                              | Shallow Concentrated Flow, Segment #2 |  |  |  |  |  |  |
|                            |       |          |         |                    |                              | Woodland Kv= 5.0 fps                  |  |  |  |  |  |  |
|                            | 11 7  | 182      | Total   |                    |                              |                                       |  |  |  |  |  |  |

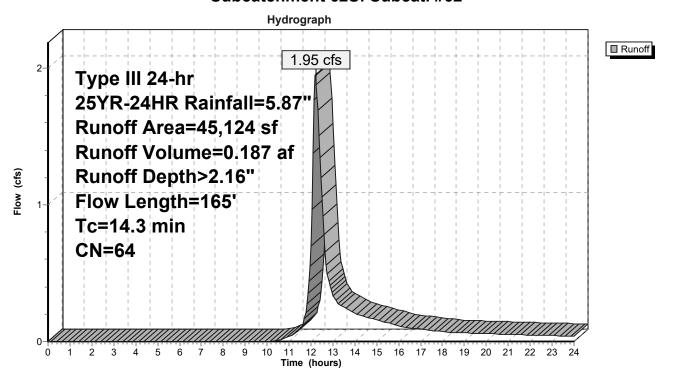
## Subcatchment 50S: Subcat #50



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 26


## Summary for Subcatchment 62S: Subcat. #62

Runoff = 1.95 cfs @ 12.21 hrs, Volume= 0.187 af, Depth> 2.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| A     | rea (sf) | CN [                 | Description           |             |                                       |  |  |  |
|-------|----------|----------------------|-----------------------|-------------|---------------------------------------|--|--|--|
|       | 3,607    | 39 >                 | 75% Gras              | s cover, Go | ood, HSG A                            |  |  |  |
|       | 66       | 98 F                 | Paved park            | ing, HSG B  | 3                                     |  |  |  |
|       | 35,835   | 61 >                 | 75% Gras              | s cover, Go | ood, HSG B                            |  |  |  |
|       | 5,616    | 96 (                 | Gravel surface, HSG B |             |                                       |  |  |  |
|       | 45,124   | 64 V                 | Weighted Average      |             |                                       |  |  |  |
|       | 45,058   | 99.85% Pervious Area |                       |             |                                       |  |  |  |
|       | 66       | C                    | 0.15% Impervious Area |             |                                       |  |  |  |
|       |          |                      |                       |             |                                       |  |  |  |
| Тс    | Length   | Slope                | Velocity              | Capacity    | Description                           |  |  |  |
| (min) | (feet)   | (ft/ft)              | (ft/sec)              | (cfs)       |                                       |  |  |  |
| 13.2  | 100      | 0.0100               | 0.13                  |             | Sheet Flow, Segment #1                |  |  |  |
|       |          |                      |                       |             | Grass: Short n= 0.150 P2= 3.08"       |  |  |  |
| 1.1   | 65       | 0.0200               | 0.99                  |             | Shallow Concentrated Flow, Segment #2 |  |  |  |
|       |          |                      |                       |             | Short Grass Pasture Kv= 7.0 fps       |  |  |  |
| 14.3  | 165      | Total                |                       |             |                                       |  |  |  |

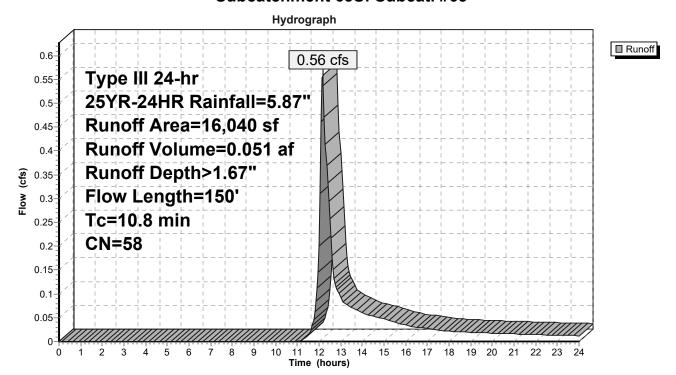
### Subcatchment 62S: Subcat. #62



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 27


# Summary for Subcatchment 63S: Subcat. #63

Runoff = 0.56 cfs @ 12.17 hrs, Volume= 0.051 af, Depth> 1.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| _                          | Α     | rea (sf) | CN [    | Description                   |             |                                       |  |  |  |  |  |
|----------------------------|-------|----------|---------|-------------------------------|-------------|---------------------------------------|--|--|--|--|--|
|                            |       | 3,476    |         | >75% Grass cover, Good, HSG A |             |                                       |  |  |  |  |  |
|                            |       | 11,805   |         |                               | ,           | ood, HSG B                            |  |  |  |  |  |
| _                          |       | 759      | 96 (    | Gravel surface, HSG B         |             |                                       |  |  |  |  |  |
| 16,040 58 Weighted Average |       |          |         |                               |             |                                       |  |  |  |  |  |
|                            |       | 16,040   | •       | 100.00% Pe                    | ervious Are | a                                     |  |  |  |  |  |
|                            |       |          |         |                               |             |                                       |  |  |  |  |  |
|                            | Тс    | Length   | Slope   |                               | Capacity    | Description                           |  |  |  |  |  |
| _                          | (min) | (feet)   | (ft/ft) | (ft/sec)                      | (cfs)       |                                       |  |  |  |  |  |
|                            | 10.5  | 100      | 0.0175  | 0.16                          |             | Sheet Flow, Segment #1                |  |  |  |  |  |
|                            |       |          |         |                               |             | Grass: Short n= 0.150 P2= 3.08"       |  |  |  |  |  |
|                            | 0.2   | 21       | 0.0595  | 1.71                          |             | Shallow Concentrated Flow, Segment #2 |  |  |  |  |  |
|                            |       |          |         |                               |             | Short Grass Pasture Kv= 7.0 fps       |  |  |  |  |  |
|                            | 0.1   | 29       | 0.2410  | 3.44                          |             | Shallow Concentrated Flow, Segment #3 |  |  |  |  |  |
| _                          |       |          |         |                               |             | Short Grass Pasture Kv= 7.0 fps       |  |  |  |  |  |
|                            | 10.8  | 150      | Total   |                               |             |                                       |  |  |  |  |  |

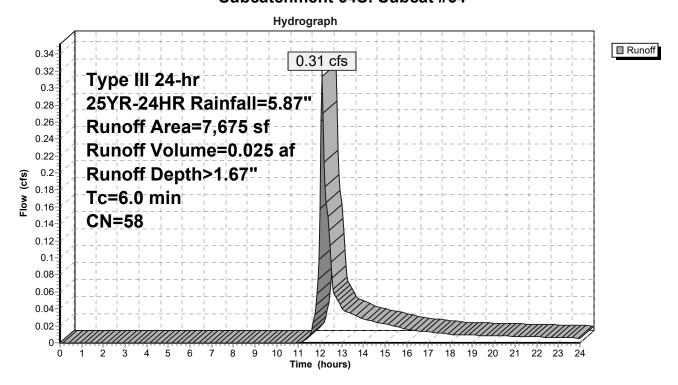
### Subcatchment 63S: Subcat. #63



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 28


# Summary for Subcatchment 64S: Subcat #64

Runoff = 0.31 cfs @ 12.10 hrs, Volume= 0.025 af, Depth> 1.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| A     | rea (sf) | CN     | Description                     |  |  |  |  |  |
|-------|----------|--------|---------------------------------|--|--|--|--|--|
|       | 1,389    | 39     | >75% Grass cover, Good, HSG A   |  |  |  |  |  |
|       | 178      | 30     | Woods, Good, HSG A              |  |  |  |  |  |
|       | 265      | 96     | Gravel surface, HSG B           |  |  |  |  |  |
|       | 5,653    | 61     | >75% Grass cover, Good, HSG B   |  |  |  |  |  |
|       | 190      | 96     | Gravel surface, HSG B           |  |  |  |  |  |
|       | 7,675    | 58     | Weighted Average                |  |  |  |  |  |
|       | 7,675    |        | 100.00% Pervious Area           |  |  |  |  |  |
|       |          |        |                                 |  |  |  |  |  |
| Тс    | Length   | Slop   | e Velocity Capacity Description |  |  |  |  |  |
| (min) | (feet)   | (ft/fi | t) (ft/sec) (cfs)               |  |  |  |  |  |
| 6.0   |          |        | Direct Entry, Direct Entry      |  |  |  |  |  |

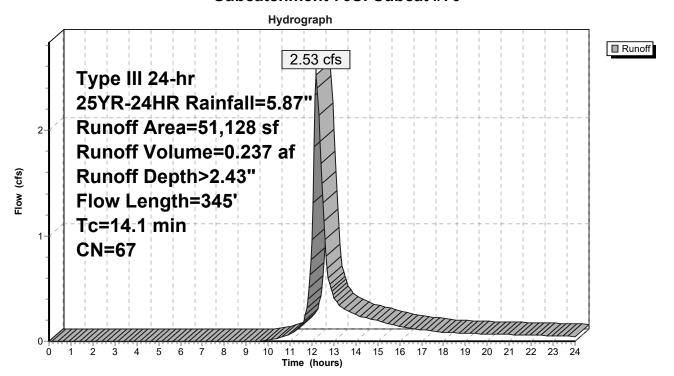
# Subcatchment 64S: Subcat #64



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 29


# **Summary for Subcatchment 70S: Subcat #70**

Runoff = 2.53 cfs @ 12.21 hrs, Volume= 0.237 af, Depth> 2.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

| A     | rea (sf)                    | CN E    | escription             |             |                                       |  |  |  |
|-------|-----------------------------|---------|------------------------|-------------|---------------------------------------|--|--|--|
|       | 19,630                      | 39 >    | 75% Gras               | s cover, Go | ood, HSG A                            |  |  |  |
|       | 10,924                      | 98 F    | Paved park             | ing, HSG A  | <b>L</b>                              |  |  |  |
|       | 3,813                       | 30 V    | Voods, Go              | od, HSG A   |                                       |  |  |  |
|       | 5,208                       | 61 >    | 75% Gras               | s cover, Go | ood, HSG B                            |  |  |  |
|       | 11,553                      | 98 F    | Paved parking, HSG B   |             |                                       |  |  |  |
|       | 51,128 67 Weighted Average  |         |                        |             |                                       |  |  |  |
|       | 28,651 56.04% Pervious Area |         |                        |             |                                       |  |  |  |
|       | 22,477                      | 4       | 43.96% Impervious Area |             |                                       |  |  |  |
|       |                             |         |                        |             |                                       |  |  |  |
| Tc    | Length                      | Slope   | Velocity               | Capacity    | Description                           |  |  |  |
| (min) | (feet)                      | (ft/ft) | (ft/sec)               | (cfs)       |                                       |  |  |  |
| 10.0  | 100                         | 0.0200  | 0.17                   |             | Sheet Flow, Segment #1                |  |  |  |
|       |                             |         |                        |             | Grass: Short n= 0.150 P2= 3.08"       |  |  |  |
| 4.1   | 245                         | 0.0204  | 1.00                   |             | Shallow Concentrated Flow, Segment #2 |  |  |  |
|       |                             |         |                        |             | Short Grass Pasture Kv= 7.0 fps       |  |  |  |
| 14.1  | 345                         | Total   |                        |             |                                       |  |  |  |

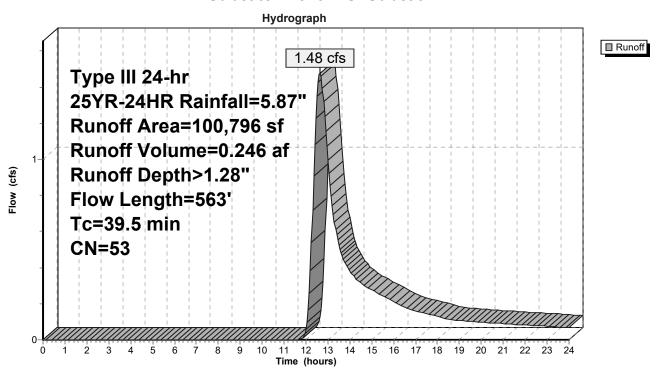
#### Subcatchment 70S: Subcat #70



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 30


# **Summary for Subcatchment 71S: Subcat #71**

Runoff = 1.48 cfs @ 12.63 hrs, Volume= 0.246 af, Depth> 1.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

|   | Α     | rea (sf) | CN E    | escription                    |             |                                            |  |  |  |  |
|---|-------|----------|---------|-------------------------------|-------------|--------------------------------------------|--|--|--|--|
|   |       | 35,048   | 39 >    | >75% Grass cover, Good, HSG A |             |                                            |  |  |  |  |
|   |       | 29,681   |         |                               | ing, HSG A  |                                            |  |  |  |  |
| _ |       | 36,067   | 30 V    | Voods, Go                     | od, HSG A   |                                            |  |  |  |  |
|   | 1     | 00,796   |         | Veighted A                    |             |                                            |  |  |  |  |
|   |       | 71,115   | 7       | 0.55% Per                     | vious Area  |                                            |  |  |  |  |
|   |       | 29,681   | 2       | 9.45% Imp                     | ervious Are | ea                                         |  |  |  |  |
|   | _     |          | 01      |                               |             | B 1.0                                      |  |  |  |  |
|   | Tc    | Length   | Slope   | Velocity                      | Capacity    | Description                                |  |  |  |  |
| _ | (min) | (feet)   | (ft/ft) | (ft/sec)                      | (cfs)       |                                            |  |  |  |  |
|   | 24.6  | 100      | 0.0150  | 0.07                          |             | Sheet Flow, Segment #1                     |  |  |  |  |
|   |       |          |         |                               |             | Woods: Light underbrush n= 0.400 P2= 3.08" |  |  |  |  |
|   | 11.4  | 285      | 0.0070  | 0.42                          |             | Shallow Concentrated Flow, Segment #2      |  |  |  |  |
|   |       |          |         |                               |             | Woodland Kv= 5.0 fps                       |  |  |  |  |
|   | 0.6   | 65       | 0.0615  | 1.74                          |             | Shallow Concentrated Flow, Segment #3      |  |  |  |  |
|   | •     |          |         |                               |             | Short Grass Pasture Kv= 7.0 fps            |  |  |  |  |
|   | 2.9   | 113      | 0.0088  | 0.66                          |             | Shallow Concentrated Flow, Segment #4      |  |  |  |  |
| _ |       |          |         |                               |             | Short Grass Pasture Kv= 7.0 fps            |  |  |  |  |
|   | 39.5  | 563      | Total   |                               |             |                                            |  |  |  |  |

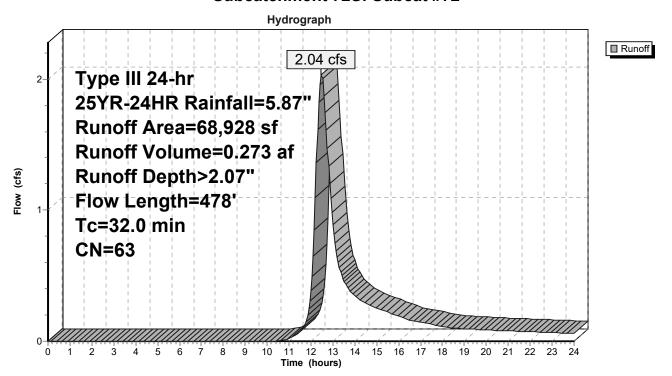
### Subcatchment 71S: Subcat #71



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 31


# **Summary for Subcatchment 72S: Subcat #72**

Runoff = 2.04 cfs @ 12.48 hrs, Volume= 0.273 af, Depth> 2.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR-24HR Rainfall=5.87"

|                            | Α    | rea (sf) | CN E    | escription                   |             |                                            |  |  |  |  |
|----------------------------|------|----------|---------|------------------------------|-------------|--------------------------------------------|--|--|--|--|
|                            |      | 32,729   | 39 >    | 75% Grass cover, Good, HSG A |             |                                            |  |  |  |  |
|                            |      | 29,456   |         |                              | ing, HSG A  | ı                                          |  |  |  |  |
|                            |      | 6,743    | 30 V    | Voods, Go                    | od, HSG A   |                                            |  |  |  |  |
| 68,928 63 Weighted Average |      |          |         |                              |             |                                            |  |  |  |  |
|                            |      | 39,472   | 5       | 7.27% Per                    | vious Area  |                                            |  |  |  |  |
|                            |      | 29,456   | 4       | 2.73% Imp                    | ervious Are | ea                                         |  |  |  |  |
|                            |      |          |         |                              |             |                                            |  |  |  |  |
|                            | Tc   | Length   | Slope   | Velocity                     | Capacity    | Description                                |  |  |  |  |
| <u>(n</u>                  | nin) | (feet)   | (ft/ft) | (ft/sec)                     | (cfs)       |                                            |  |  |  |  |
| 2                          | 4.6  | 100      | 0.0150  | 0.07                         |             | Sheet Flow, Segment #1                     |  |  |  |  |
|                            |      |          |         |                              |             | Woods: Light underbrush n= 0.400 P2= 3.08" |  |  |  |  |
|                            | 0.7  | 27       | 0.0150  | 0.61                         |             | Shallow Concentrated Flow, Segment #2      |  |  |  |  |
|                            |      |          |         |                              |             | Woodland Kv= 5.0 fps                       |  |  |  |  |
|                            | 6.7  | 351      | 0.0157  | 0.88                         |             | Shallow Concentrated Flow, Segment #3      |  |  |  |  |
|                            |      |          |         |                              |             | Short Grass Pasture Kv= 7.0 fps            |  |  |  |  |
| 3                          | 2.0  | 478      | Total   |                              |             |                                            |  |  |  |  |

#### Subcatchment 72S: Subcat #72



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 32

# Summary for Reach 30aR: Overland Flow

Inflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

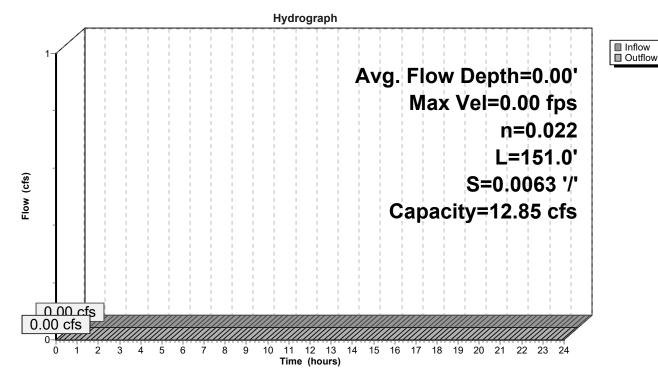
Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00'

Bank-Full Depth= 0.50' Flow Area= 5.0 sf, Capacity= 12.85 cfs


15.00' x 0.50' deep Parabolic Channel, n= 0.022 Earth, clean & straight

Length= 151.0' Slope= 0.0063 '/'

Inlet Invert= 183.95', Outlet Invert= 183.00'



### Reach 30aR: Overland Flow



Printed 4/17/2024

Page 33

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

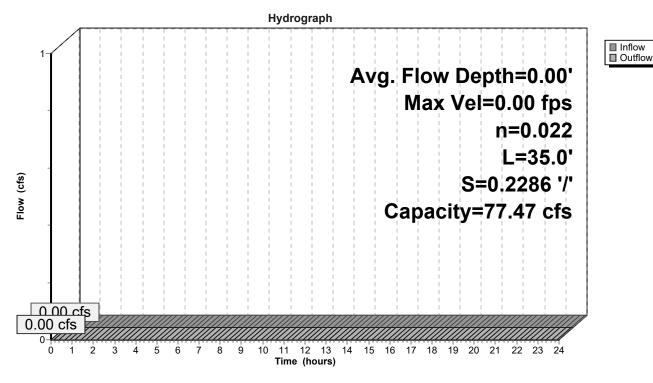
# Summary for Reach 30bR: Overland Flow

Inflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min


Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.50' Flow Area= 5.0 sf, Capacity= 77.47 cfs

15.00' x 0.50' deep Parabolic Channel, n= 0.022 Earth, clean & straight Length= 35.0' Slope= 0.2286 '/'

Inlet Invert= 183.00', Outlet Invert= 175.00'



### Reach 30bR: Overland Flow



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

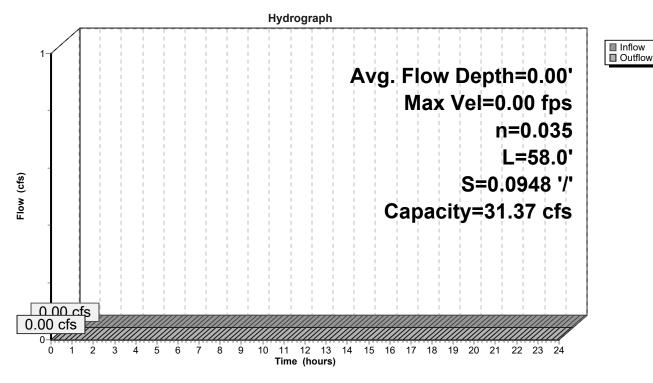
Page 34

# Summary for Reach 30cR: Overland Flow

Inflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs


Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 0.50' Flow Area= 5.0 sf, Capacity= 31.37 cfs

15.00' x 0.50' deep Parabolic Channel, n= 0.035 Earth, dense weeds Length= 58.0' Slope= 0.0948 '/' Inlet Invert= 175.00', Outlet Invert= 169.50'



### Reach 30cR: Overland Flow



Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Printed 4/17/2024

Page 35

## **Summary for Reach 71aR: Wooded Swale**

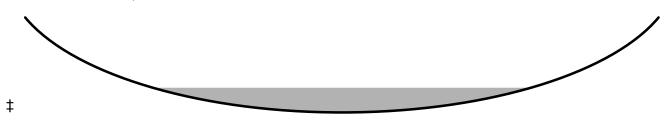
Inflow Area = 3.896 ac, 34.84% Impervious, Inflow Depth > 1.52" for 25YR-24HR event

Inflow = 3.40 cfs @ 12.58 hrs, Volume= 0.492 af

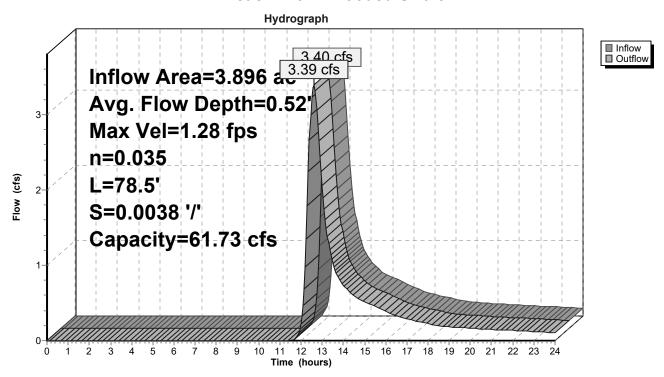
Outflow = 3.39 cfs @ 12.59 hrs, Volume= 0.492 af, Atten= 0%, Lag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Max. Velocity= 1.28 fps, Min. Travel Time= 1.0 min Avg. Velocity = 0.62 fps, Avg. Travel Time= 2.1 min


Peak Storage= 208 cf @ 12.59 hrs Average Depth at Peak Storage= 0.52'

Bank-Full Depth= 2.00' Flow Area= 20.0 sf, Capacity= 61.73 cfs


15.00' x 2.00' deep Parabolic Channel, n= 0.035

Length= 78.5' Slope= 0.0038 '/'

Inlet Invert= 187.80', Outlet Invert= 187.50'



#### Reach 71aR: Wooded Swale



Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Printed 4/17/2024

Page 36

## **Summary for Reach 72R: Roadside Swale**

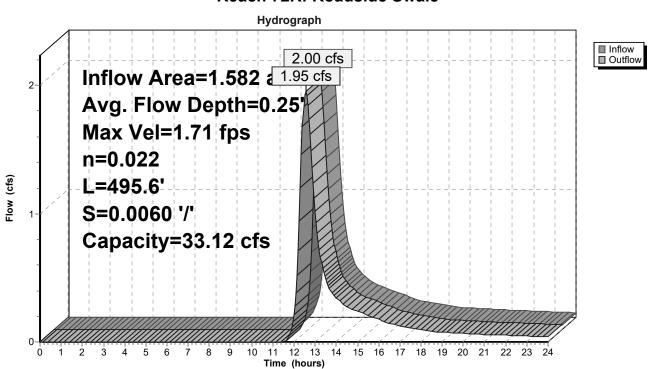
[80] Warning: Exceeded Pond 72P by 0.02' @ 12.25 hrs (1.74 cfs 0.063 af)

Inflow Area = 1.582 ac, 42.73% Impervious, Inflow Depth > 1.87" for 25YR-24HR event

Inflow = 2.00 cfs @ 12.49 hrs, Volume= 0.247 af

Outflow = 1.95 cfs @ 12.55 hrs, Volume= 0.246 af, Atten= 2%, Lag= 3.7 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs


Max. Velocity= 1.71 fps, Min. Travel Time= 4.8 min Avg. Velocity = 0.74 fps, Avg. Travel Time= 11.2 min

Peak Storage= 566 cf @ 12.55 hrs Average Depth at Peak Storage= 0.25' Bank-Full Depth= 1.00' Flow Area= 9.0 sf, Capacity= 33.12 cfs

3.00' x 1.00' deep channel, n= 0.022 Side Slope Z-value= 6.0 '/' Top Width= 15.00' Length= 495.6' Slope= 0.0060 '/' Inlet Invert= 195.95', Outlet Invert= 193.00'



#### Reach 72R: Roadside Swale



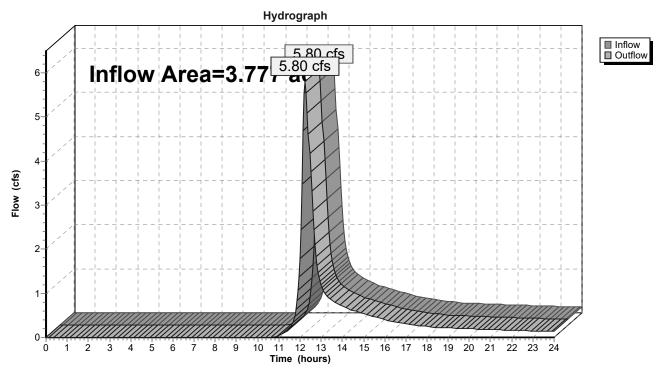
Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 37

# Summary for Reach 200R: Final Reach #200

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 3.777 ac, 2.77% Impervious, Inflow Depth > 1.91" for 25YR-24HR event

Inflow = 5.80 cfs @ 12.25 hrs, Volume= 0.602 af

Outflow = 5.80 cfs @ 12.25 hrs, Volume= 0.602 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

### Reach 200R: Final Reach #200



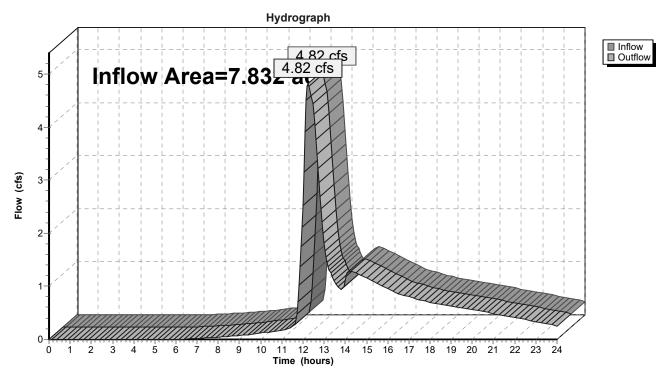
Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 38

# Summary for Reach 300R: Final Reach #300

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 7.832 ac, 26.66% Impervious, Inflow Depth > 1.58" for 25YR-24HR event

Inflow = 4.82 cfs @ 12.25 hrs, Volume= 1.034 af

Outflow = 4.82 cfs @ 12.25 hrs, Volume= 1.034 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

#### Reach 300R: Final Reach #300



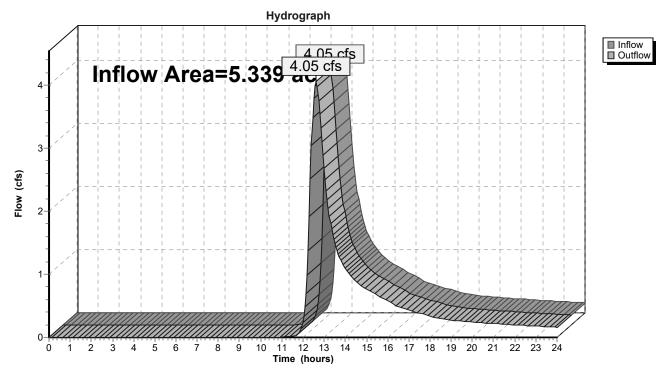
Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 39

# Summary for Reach 400R: Final Reach #400

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 5.339 ac, 35.09% Impervious, Inflow Depth > 1.50" for 25YR-24HR event

Inflow = 4.05 cfs @ 12.61 hrs, Volume= 0.668 af

Outflow = 4.05 cfs @ 12.61 hrs, Volume= 0.668 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

## Reach 400R: Final Reach #400



Type III 24-hr 25YR-24HR Rainfall=5.87"

Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 40

# **Summary for Pond 30P: Infiltration/Trench**

| 1.098 ac, 4  | I.45% Impervious, Inf                               | flow Depth > 2.08"                                                                                                                                                                                 | for 25YR-24HR event                                                                                                           |
|--------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 2.15 cfs @ 1 | 12.17 hrs, Volume=                                  | 0.190 af                                                                                                                                                                                           |                                                                                                                               |
| 1.10 cfs @   | 12.45 hrs, Volume=                                  | 0.188 af, At                                                                                                                                                                                       | ten= 49%, Lag= 16.7 min                                                                                                       |
| 0.59 cfs @ 1 | 12.45 hrs, Volume=                                  | 0.081 af                                                                                                                                                                                           |                                                                                                                               |
| ).51 cfs @ 1 | 12.45 hrs, Volume=                                  | 0.107 af                                                                                                                                                                                           |                                                                                                                               |
| 0.00 cfs @   | 0.00 hrs, Volume=                                   | 0.000 af                                                                                                                                                                                           |                                                                                                                               |
| 1            | 2.15 cfs @<br>.10 cfs @<br>0.59 cfs @<br>0.51 cfs @ | 1.098 ac, 4.45% Impervious, Int<br>2.15 cfs @ 12.17 hrs, Volume=<br>.10 cfs @ 12.45 hrs, Volume=<br>0.59 cfs @ 12.45 hrs, Volume=<br>0.51 cfs @ 12.45 hrs, Volume=<br>0.00 cfs @ 0.00 hrs, Volume= | .10 cfs @ 12.45 hrs, Volume= 0.188 af, At<br>0.59 cfs @ 12.45 hrs, Volume= 0.081 af<br>0.51 cfs @ 12.45 hrs, Volume= 0.107 af |

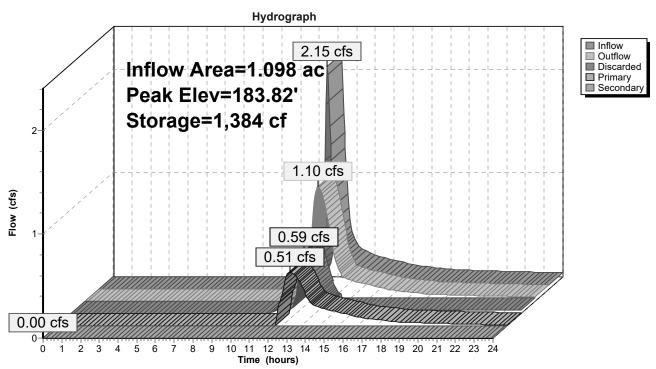
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 183.82' @ 12.45 hrs Surf.Area= 8,493 sf Storage= 1,384 cf Flood Elev= 184.10' Surf.Area= 14,837 sf Storage= 4,848 cf

Plug-Flow detention time= 17.4 min calculated for 0.188 af (99% of inflow) Center-of-Mass det. time= 11.5 min (871.3 - 859.8)

| Volume | Invert  | Avail.Storage | Storage Description                                    |
|--------|---------|---------------|--------------------------------------------------------|
| #1     | 183.50' | 6,797 cf      | Ponding Area (Irregular)Listed below (Recalc)          |
| #2     | 182.75' | 162 cf        | Stone Trench (Irregular)Listed below (Recalc)          |
|        |         |               | 480 cf Overall - 75 cf Embedded = 405 cf x 40.0% Voids |
| #3     | 183.15' | 42 cf         | <b>6.0" Round 6" HDPE N-12</b> Inside #2               |
|        |         |               | L= 215.0'                                              |
|        |         |               | 75 cf Overall - 1.0" Wall Thickness = 42 cf            |
|        |         |               |                                                        |

| 7,001 cf Total | l Available | Storage |
|----------------|-------------|---------|
|----------------|-------------|---------|

| Elevation<br>(feet) | Surf.Area<br>(sq-ft) | Perim.<br>(feet) | Inc.Store (cubic-feet) | Cum.Store (cubic-feet) | Wet.Area<br>(sq-ft) |
|---------------------|----------------------|------------------|------------------------|------------------------|---------------------|
| 183.50              | 538                  | 154.3            | 0                      | 0                      | 538                 |
| 183.75              | 6,179                | 527.1            | 712                    | 712                    | 20,753              |
| 184.00              | 14,357               | 677.3            | 2,496                  | 3,208                  | 35,149              |
| 184.25              | 14,357               | 677.3            | 3,589                  | 6,797                  | 35,319              |
| Elevation           | Surf.Area            | Perim.           | Inc.Store              | Cum.Store              | Wet.Area            |
| (feet)              | (sq-ft)              | (feet)           | (cubic-feet)           | (cubic-feet)           | (sq-ft)             |
| 182.75              | 480                  | 432.4            | 0                      | 0                      | 480                 |
| 183.75              | 480                  | 432.4            | 480                    | 480                    | 912                 |


| Device | Routing   | Invert  | Outlet Devices                                                   |
|--------|-----------|---------|------------------------------------------------------------------|
| #1     | Discarded | 182.75' | 3.000 in/hr Infiltration over Surface area                       |
| #2     | Primary   | 183.15' | 6.0" Round 6" HDPE N-12                                          |
|        |           |         | L= 1.0' CPP, square edge headwall, Ke= 0.500                     |
|        |           |         | Inlet / Outlet Invert= 183.15' / 183.15' S= 0.0000 '/' Cc= 0.900 |
|        |           |         | n= 0.012, Flow Area= 0.20 sf                                     |
| #3     | Secondary | 183.95' | 10.0' long x 10.0' breadth Overflow to Wetland                   |
|        |           |         | Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60              |
|        |           |         | Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64          |
|        |           |         |                                                                  |

**Discarded OutFlow** Max=0.59 cfs @ 12.45 hrs HW=183.82' (Free Discharge) **1=Infiltration** (Exfiltration Controls 0.59 cfs)

Primary OutFlow Max=0.51 cfs @ 12.45 hrs HW=183.82' TW=180.76' (Dynamic Tailwater) 2=6" HDPE N-12 (Barrel Controls 0.51 cfs @ 2.62 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=182.75' TW=183.95' (Dynamic Tailwater) 3=Overflow to Wetland (Controls 0.00 cfs)

## Pond 30P: Infiltration/Trench



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 42

# **Summary for Pond 71P: Existing Catch Basin**

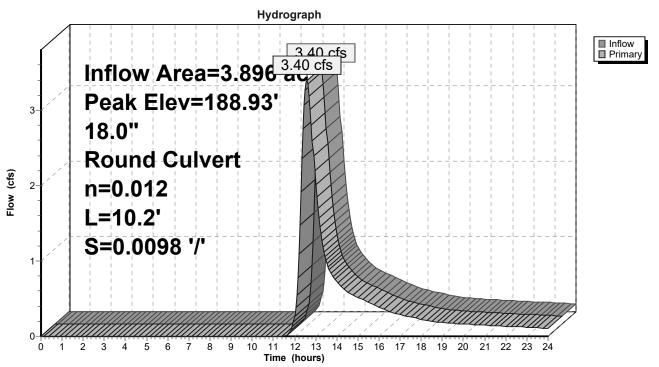
[57] Hint: Peaked at 188.93' (Flood elevation advised)

Inflow Area = 3.896 ac, 34.84% Impervious, Inflow Depth > 1.52" for 25YR-24HR event

Inflow = 3.40 cfs @ 12.58 hrs, Volume= 0.492 af

Outflow = 3.40 cfs @ 12.58 hrs, Volume= 0.492 af, Atten= 0%, Lag= 0.0 min

Primary = 3.40 cfs @ 12.58 hrs, Volume= 0.492 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 188.93' @ 12.58 hrs

| Device | Routing | Invert  | Outlet Devices                                                                                                    |
|--------|---------|---------|-------------------------------------------------------------------------------------------------------------------|
| #1     | Primary | 187.90' | 18.0" Round 18" RCP                                                                                               |
|        |         |         | L= 10.2' RCP, square edge headwall, Ke= 0.500<br>Inlet / Outlet Invert= 187.90' / 187.80' S= 0.0098 '/' Cc= 0.900 |
|        |         |         | n= 0.012 Flow Area= 1.77 sf                                                                                       |

Primary OutFlow Max=3.39 cfs @ 12.58 hrs HW=188.92' TW=188.32' (Dynamic Tailwater) 1=18" RCP (Barrel Controls 3.39 cfs @ 3.72 fps)

# Pond 71P: Existing Catch Basin



Type III 24-hr 25YR-24HR Rainfall=5.87"

Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 43

# **Summary for Pond 72P: Existing Depression**

[58] Hint: Peaked 0.21' above defined flood level

Inflow Area = 1.582 ac, 42.73% Impervious, Inflow Depth > 2.07" for 25YR-24HR event

Inflow = 2.04 cfs @ 12.48 hrs, Volume= 0.273 af

Outflow = 2.02 cfs @ 12.49 hrs, Volume= 0.271 af, Atten= 1%, Lag= 0.5 min

Discarded = 0.02 cfs @ 11.95 hrs, Volume= 0.024 af Primary = 2.00 cfs @ 12.49 hrs, Volume= 0.247 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

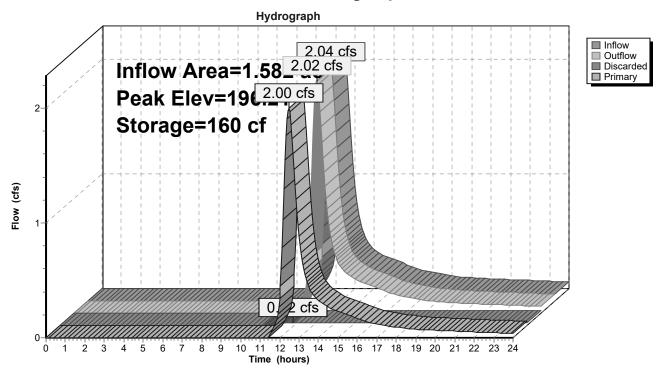
Peak Elev= 196.21' @ 12.59 hrs Surf.Area= 333 sf Storage= 160 cf

Flood Elev= 196.00' Surf.Area= 333 sf Storage= 91 cf

Plug-Flow detention time= 6.1 min calculated for 0.270 af (99% of inflow)

Center-of-Mass det. time= 2.2 min ( 878.0 - 875.8 )

| Volume                           | Invert               | Avail.                  | Storage                      | Storage Description                                                         | n                                        |                              |   |
|----------------------------------|----------------------|-------------------------|------------------------------|-----------------------------------------------------------------------------|------------------------------------------|------------------------------|---|
| #1                               | 195.50'              |                         | 257 cf                       | Ponding Area (Irre                                                          | egular)Listed belo                       | w (Recalc)                   |   |
| Elevatio<br>(fee                 |                      | urf.Area<br>(sq-ft)     | Perim.<br>(feet)             | Inc.Store<br>(cubic-feet)                                                   | Cum.Store<br>(cubic-feet)                | Wet.Area<br>(sq-ft)          |   |
| 195.5<br>195.7<br>196.0<br>196.5 | 5<br>0               | 55<br>179<br>333<br>333 | 32.6<br>63.6<br>92.1<br>92.1 | 0<br>28<br>63<br>167                                                        | 0<br>28<br>91<br>257                     | 55<br>293<br>646<br>692      |   |
| Device                           | Routing              | Inve                    | ert Outle                    | et Devices                                                                  |                                          |                              |   |
| #1<br>#2                         | Discarded<br>Primary | 195.5<br>195.9          | 95' <b>20.0'</b><br>Head     | 0 in/hr Infiltration of long x 50.0' bread (feet) 0.20 0.40 (feet) 0.68 2.7 | <b>Ith Overflow ove</b> 0.60 0.80 1.00 1 | r <b>DW</b><br>.20 1.40 1.60 | 3 |


**Discarded OutFlow** Max=0.02 cfs @ 11.95 hrs HW=196.00' (Free Discharge) **1=Infiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 12.49 hrs HW=196.20' TW=196.20' (Dynamic Tailwater) 2=Overflow over DW ( Controls 0.00 cfs)

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 44

# Pond 72P: Existing Depression



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 45

# Summary for Pond 201P: Bioretention W/ ISR #201

Inflow Area = 1.174 ac, 43.96% Impervious, Inflow Depth > 2.43" for 25YR-24HR event Inflow = 2.53 cfs @ 12.21 hrs, Volume= 0.237 af

Outflow = 0.68 cfs @ 12.71 hrs, Volume= 0.173 af, Atten= 73%, Lag= 30.1 min

Primary = 0.02 cfs @ 12.71 hrs, Volume= 0.023 af Secondary = 0.66 cfs @ 12.71 hrs, Volume= 0.150 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 185.45' @ 12.71 hrs Surf.Area= 1,118 sf Storage= 4,286 cf

Flood Elev= 186.00' Surf.Area= 1,118 sf Storage= 6,720 cf

Plug-Flow detention time= 175.9 min calculated for 0.173 af (73% of inflow)

Center-of-Mass det. time= 82.6 min ( 934.8 - 852.2 )

| Volume    | Invert Av | /ail.Storage | Storage Description     | 1                    |                              |
|-----------|-----------|--------------|-------------------------|----------------------|------------------------------|
| #1        | 182.00'   | 112 cf       | Stone (Irregular) L     | isted below (Recald  | c) -Impervious               |
|           |           |              | 280 cf Overall x 40     | .0% Voids            |                              |
| #2        | 182.25'   | 335 cf       | Bio Media (Irregul      | ,                    | ecalc)                       |
|           |           |              | 1,677 cf Overall x 2    | 20.0% Voids          |                              |
| #3        | 184.00'   | 1,032 cf     | Sediment Forebay        | (Irregular)Listed b  | pelow (Recalc) -Impervious   |
| #4        | 183.75'   | 2,979 cf     | Cell (Irregular) List   | ed below (Recalc)    | -Impervious                  |
| #5        | 185.50'   | 2,262 cf     | <b>Open Water Stora</b> | ge (Irregular)Listed | d below (Recalc) -Impervious |
|           |           | 6,720 cf     | Total Available Stor    | rage                 |                              |
| Elevation | Surf.Area | a Perim.     | Inc.Store               | Cum.Store            | Wet Area                     |
| (feet)    | (sq-ft    |              | (cubic-feet)            | (cubic-feet)         | (sq-ft)                      |
| 182.00    | 1,118     |              | 0                       | 0                    | 1,118                        |
| 102.00    | 1,11      | 100.0        | 0                       |                      | 1,110                        |

| (leet)    | (SQ-IL)   | (leet) | (cubic-leet) | (cubic-leet) | (SQ-IL)  |
|-----------|-----------|--------|--------------|--------------|----------|
| 182.00    | 1,118     | 165.5  | 0            | 0            | 1,118    |
| 182.25    | 1,118     | 165.5  | 280          | 280          | 1,159    |
|           |           |        |              |              |          |
| Elevation | Surf.Area | Perim. | Inc.Store    | Cum.Store    | Wet.Area |
| (feet)    | (sq-ft)   | (feet) | (cubic-feet) | (cubic-feet) | (sq-ft)  |
| 182.25    | 1,118     | 165.5  | 0            | 0            | 1,118    |
| 183.75    | 1,118     | 165.5  | 1,677        | 1,677        | 1,366    |
|           |           |        |              |              |          |
| Elevation | Surf.Area | Perim. | Inc.Store    | Cum.Store    | Wet.Area |
| (feet)    | (sq-ft)   | (feet) | (cubic-feet) | (cubic-feet) | (sq-ft)  |
| 184.00    | 160       | 53.5   | 0            | 0            | 160      |
| 185.00    | 822       | 223.7  | 448          | 448          | 3,917    |
| 185.50    | 1,551     | 276.6  | 584          | 1,032        | 6,027    |
|           |           |        |              |              |          |
| Elevation | Surf.Area | Perim. | Inc.Store    | Cum.Store    | Wet.Area |
| (feet)    | (sq-ft)   | (feet) | (cubic-feet) | (cubic-feet) | (sq-ft)  |
| 183.75    | 1,118     | 165.5  | 0            | 0            | 1,118    |
| 184.00    | 1,459     | 183.1  | 321          | 321          | 1,608    |
| 185.00    | 1,877     | 199.3  | 1,664        | 1,985        | 2,137    |
| 185.50    | 2,101     | 207.6  | 994          | 2,979        | 2,424    |
|           |           |        |              |              |          |

Printed 4/17/2024

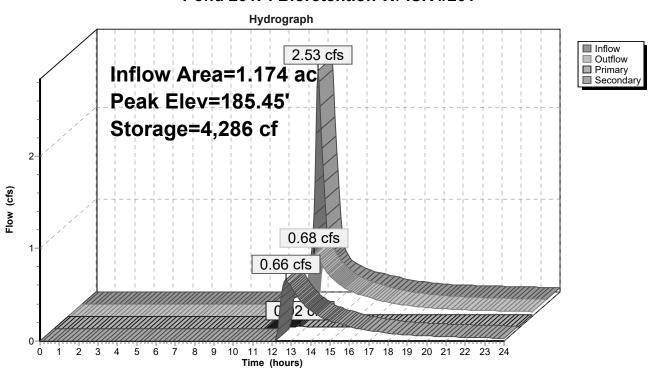
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 46

| Elevation | Surf.Area | Perim. | Inc.Store    | Cum.Store    | Wet.Area |
|-----------|-----------|--------|--------------|--------------|----------|
| (feet)    | (sq-ft)   | (feet) | (cubic-feet) | (cubic-feet) | (sq-ft)  |
| 185.50    | 3,838     | 302.2  | 0            | 0            | 3,838    |
| 186.00    | 5,247     | 335.0  | 2,262        | 2,262        | 5,509    |

| Device | Routing   | Invert  | Outlet Devices                                                   |
|--------|-----------|---------|------------------------------------------------------------------|
| #1     | Primary   | 182.00' | <b>6.0" Round 6" HDPE N-12</b> L= 33.0' Ke= 0.500                |
|        | _         |         | Inlet / Outlet Invert= 182.00' / 181.70' S= 0.0091 '/' Cc= 0.900 |
|        |           |         | n= 0.012, Flow Area= 0.20 sf                                     |
| #2     | Secondary | 182.00' | <b>15.0" Round 15" HDPE N-12</b> L= 26.0' Ke= 0.500              |
|        |           |         | Inlet / Outlet Invert= 182.00' / 181.70' S= 0.0115 '/' Cc= 0.900 |
|        |           |         | n= 0.012, Flow Area= 1.23 sf                                     |
| #3     | Device 1  | 182.00' | <b>0.7" Vert. 0.75" Orifice</b> C= 0.600                         |
| #4     | Device 3  | 182.25' | 10.000 in/hr Bio Media over Surface area                         |
| #5     | Device 2  | 184.90' | 6.0" W x 10.0" H Vert. 6"W x 10" T Notch C= 0.600                |
| #6     | Device 2  | 185.75' | <b>48.0" Horiz. 48" Outlet Structure</b> C= 0.600                |
|        |           |         | Limited to weir flow at low heads                                |

Primary OutFlow Max=0.02 cfs @ 12.71 hrs HW=185.45' TW=182.01' (Dynamic Tailwater)
1=6" HDPE N-12 (Passes 0.02 cfs of 1.47 cfs potential flow)
3=0.75" Orifice (Orifice Controls 0.02 cfs @ 8.91 fps)
4=Bio Media (Passes 0.02 cfs of 0.26 cfs potential flow)


Secondary OutFlow Max=0.66 cfs @ 12.71 hrs HW=185.45' TW=182.01' (Dynamic Tailwater)

2=15" HDPE N-12 (Passes 0.66 cfs of 9.93 cfs potential flow)

5=6"W x 10" T Notch (Orifice Controls 0.66 cfs @ 2.38 fps)

6=48" Outlet Structure (Controls 0.00 cfs)

#### Pond 201P: Bioretention W/ ISR #201



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 47

# Summary for Pond 202P: Bioretention W/ ISR #202

2.354 ac, 46.52% Impervious, Inflow Depth > 3.77" for 25YR-24HR event Inflow Area = Inflow 8.23 cfs @ 12.11 hrs, Volume= 0.739 af 0.68 cfs @ 13.37 hrs, Volume= Outflow = 0.566 af, Atten= 92%, Lag= 75.8 min Primary 0.09 cfs @ 12.99 hrs, Volume= 0.103 af 0.60 cfs @ 13.69 hrs, Volume= Secondary = 0.463 af 0.00 hrs, Volume= 0.000 af Tertiary 0.00 cfs @

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 179.19' @ 13.69 hrs Surf.Area= 1,981 sf Storage= 18,074 cf Flood Elev= 180.50' Surf.Area= 1,981 sf Storage= 28,868 cf

Plug-Flow detention time= 304.9 min calculated for 0.564 af (76% of inflow)

Center-of-Mass det. time= 219.9 min (1,012.9 - 793.0)

| Volume    | Invert A | vail.Storage | Storage Descript                     | ion                             |                   |                        |
|-----------|----------|--------------|--------------------------------------|---------------------------------|-------------------|------------------------|
| #1        | 173.75'  | 198 cf       | Stone (Irregular<br>495 cf Overall x | Listed below (Re<br>40.0% Voids | calc) -Impervious |                        |
| #2        | 174.00'  | 594 cf       | Bio Media (Irreg<br>2,972 cf Overall | ular)Listed below x 20.0% Voids | (Recalc)          |                        |
| #3        | 175.50'  | 903 cf       | Sediment Foreb                       | ay (Irregular)Liste             |                   | -Impervious            |
| #4        | 175.50'  | 6,102 cf     |                                      | isted below (Reca               |                   |                        |
| #5        | 177.50'  | 21,071 cf    |                                      | rage (Irregular)Li              | sted below (Recal | <u>c) -Impervio</u> us |
|           |          | 28,868 cf    | Total Available S                    | torage                          |                   |                        |
| Elevation | Surf.Are | a Perim.     | Inc.Store                            | Cum.Store                       | Wet.Area          |                        |
| (feet)    | (sq-f    | t) (feet)    | (cubic-feet)                         | (cubic-feet)                    | (sq-ft)           |                        |
| 173.75    | 1,98     | 1 351.5      | 0                                    | 0                               | 1,981             |                        |
| 174.00    | 1,98     | 1 351.5      | 495                                  | 495                             | 2,069             |                        |
| Elevation | Surf.Are | a Perim.     | Inc.Store                            | Cum.Store                       | Wet.Area          |                        |
| (feet)    | (sq-f    | t) (feet)    | (cubic-feet)                         | (cubic-feet)                    | (sq-ft)           |                        |
| 174.00    | 1,98     | 1 351.5      | 0                                    | 0                               | 1,981             |                        |
| 175.50    | 1,98     | 1 351.5      | 2,972                                | 2,972                           | 2,508             |                        |
| Elevation | Surf.Are |              | Inc.Store                            | Cum.Store                       | Wet.Area          |                        |
| (feet)    | (sq-f    |              | (cubic-feet)                         | (cubic-feet)                    | (sq-ft)           |                        |
| 175.50    | 24       |              | 0                                    | 0                               | 243               |                        |
| 176.00    | 33       |              | 144                                  | 144                             | 342               |                        |
| 177.00    | 56       |              | 445                                  | 590                             | 596               |                        |
| 177.50    | 69       | 3 98.2       | 313                                  | 903                             | 732               |                        |
| Elevation | Surf.Are | a Perim.     | Inc.Store                            | Cum.Store                       | Wet.Area          |                        |
| (feet)    | (sq-f    | t) (feet)    | (cubic-feet)                         | (cubic-feet)                    | (sq-ft)           |                        |
| 175.50    | 1,98     | 1 351.5      | 0                                    | 0                               | 1,981             |                        |
| 176.00    | 2,50     |              | 1,120                                | 1,120                           | 2,516             |                        |
| 177.00    | 3,60     |              | 3,040                                | 4,160                           | 3,671             |                        |
| 177.50    | 4,17     | 0 387.1      | 1,942                                | 6,102                           | 4,201             |                        |

Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 48

| Elevation (fee |           | Surf.Area<br>(sq-ft) | Perim.<br>(feet) | Inc.Store<br>(cubic-feet) | Cum.Store<br>(cubic-feet) | Wet.Area<br>(sq-ft) |
|----------------|-----------|----------------------|------------------|---------------------------|---------------------------|---------------------|
| 177.5          | 50        | 4,925                | 448.8            | 0                         | 0                         | 4,925               |
| 178.0          | 00        | 5,605                | 458.3            | 2,631                     | 2,631                     | 5,647               |
| 179.0          | 00        | 7,008                | 477.1            | 6,293                     | 8,924                     | 7,123               |
| 180.0          | 00        | 8,468                | 496.0            | 7,726                     | 16,651                    | 8,665               |
| 180.5          | 50        | 9,219                | 505.4            | 4,420                     | 21,071                    | 9,455               |
|                |           |                      |                  |                           |                           |                     |
| Device         | Routing   | Inver                | t Outle          | t Devices                 |                           |                     |
| #1             | Primary   | 173.75               | 6.0"             | Round 6" HDPE N-1:        | <b>2</b> L= 30.0' Ke= 0   | 0.500               |
|                | _         |                      | Inlet /          | Outlet Invert= 173.75     | 5' / 173.50' S= 0.        | 0083 '/' Cc= 0.900  |
|                |           |                      | n= 0.            | 012, Flow Area= 0.20      | ) sf                      |                     |
| #2             | Secondary | / 173.75             | ' 15.0"          | Round 15" HDPE N          | <b>I-12</b> L= 30.0' Ke   | = 0.500             |
|                |           |                      | Inlet /          | Outlet Invert= 173.75     | 5' / 173.50' S= 0.        | 0083 '/' Cc= 0.900  |
|                |           |                      | n= 0.            | 012, Flow Area= 1.23      | 3 sf                      |                     |
| #3             | Device 1  | 173.75               | ' 1.2" \         | Vert. 1.25" Orifice C     | c = 0.600                 |                     |
| #4             | Device 3  | 174.00               | ' 10.00          | 0 in/hr Bio Media ov      | er Surface area           |                     |
| #5             | Device 2  | 177.00               | ' 4.0" \         | Vert. 4" Orifice C= 0     | 0.600                     |                     |
| #6             | Device 2  | 179.75               | ' 48.0"          | Horiz. 48" Outlet St      | ructure C= 0.600          | )                   |

10.0' long x 8.5' breadth Spillway Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

2.50 3.00 3.50 4.00 4.50 5.00 5.50

Limited to weir flow at low heads

Coef. (English) 2.45 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64

2.64 2.65 2.65 2.65 2.66 2.67 2.69 2.71

Primary OutFlow Max=0.09 cfs @ 12.99 hrs HW=179.15' TW=173.82' (Dynamic Tailwater)

-1=6" HDPE N-12 (Passes 0.09 cfs of 1.91 cfs potential flow) **-3=1.25" Orifice** (Orifice Controls 0.09 cfs @ 11.12 fps)

180.00'

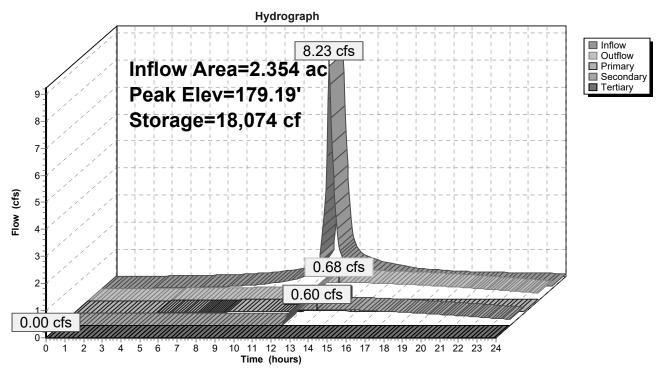
**4=Bio Media** (Passes 0.09 cfs of 0.46 cfs potential flow)

Secondary OutFlow Max=0.60 cfs @ 13.69 hrs HW=179.19' TW=174.35' (Dynamic Tailwater) **-2=15" HDPE N-12** (Passes 0.60 cfs of 12.97 cfs potential flow)

-5=4" Orifice (Orifice Controls 0.60 cfs @ 6.85 fps)

-6=48" Outlet Structure (Controls 0.00 cfs)

#7


**Tertiary** 

Tertiary OutFlow Max=0.00 cfs @ 0.00 hrs HW=173.75' TW=172.50' (Dynamic Tailwater) —7=Spillway (Controls 0.00 cfs)

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 49

# Pond 202P: Bioretention W/ ISR #202



Type III 24-hr 25YR-24HR Rainfall=5.87"

Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 50

# **Summary for Pond 203P: Infiltration Pond #203**

Inflow Area = 2.722 ac, 40.23% Impervious, Inflow Depth > 2.72" for 25YR-24HR event

Inflow = 1.08 cfs @ 12.20 hrs, Volume= 0.617 af

Outflow = 0.73 cfs @ 14.44 hrs, Volume= 0.510 af, Atten= 32%, Lag= 134.8 min

Discarded = 0.21 cfs @ 14.44 hrs, Volume= 0.233 af Primary = 0.52 cfs @ 14.44 hrs, Volume= 0.277 af

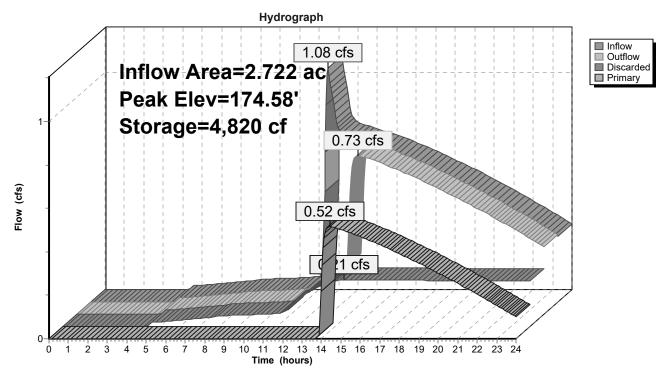
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 174.58' @ 14.44 hrs Surf.Area= 3,058 sf Storage= 4,820 cf

Flood Elev= 175.00' Surf.Area= 3,385 sf Storage= 6,181 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 50.7 min (1,051.9 - 1,001.2)

| Volume         | Inve     | <u>ert Avail</u>     | .Storage          | Storage Description       | n                            |                       |     |
|----------------|----------|----------------------|-------------------|---------------------------|------------------------------|-----------------------|-----|
| #1             | 172.5    | 60'                  | 6,181 cf          | Open Water Stora          | <b>ige (Irregular)</b> Liste | ed below (Recalc)     |     |
| Elevatio       |          | Surf.Area<br>(sq-ft) | Perim.<br>(feet)  | Inc.Store<br>(cubic-feet) | Cum.Store<br>(cubic-feet)    | Wet.Area<br>(sq-ft)   |     |
| 172.5<br>173.0 | -        | 1,574<br>1,967       | 204.2<br>225.0    | 0<br>883                  | 0<br>883                     | 1,574<br>2,292        |     |
| 174.0<br>175.0 | 00       | 2,638<br>3,385       | 239.5<br>258.5    | 2,294<br>3,004            | 3,178<br>6,181               | 2,877<br>3,670        |     |
| Device         | Routing  | Inv                  | ert Outle         | et Devices                |                              |                       |     |
| #1             | Discarde | d 172.               | 50' <b>3.00</b>   | 0 in/hr Infiltration o    | ver Surface area             |                       |     |
| #2             | Primary  | 174.                 | 50' <b>10.0</b> ' | long x 7.0' breadt        | th Spillway                  |                       |     |
|                | •        |                      | Head              | d (feet) 0.20 0.40 (      | 0.60 0.80 1.00 1.            | 20 1.40 1.60 1.80 2   | .00 |
|                |          |                      | 2.50              | 3.00 3.50 4.00 4.         | .50 5.00 5.50                |                       |     |
|                |          |                      | Coef              | . (English) 2.40 2.5      | 52 2.70 2.68 2.68            | 3 2.67 2.66 2.65 2.69 | 5   |
|                |          |                      | 2.65              | 2.66 2.65 2.66 2.         | .68 2.70 2.73 2.7            | 8                     |     |


**Discarded OutFlow** Max=0.21 cfs @ 14.44 hrs HW=174.58' (Free Discharge) **1=Infiltration** (Exfiltration Controls 0.21 cfs)

Primary OutFlow Max=0.52 cfs @ 14.44 hrs HW=174.58' TW=0.00' (Dynamic Tailwater) 2=Spillway (Weir Controls 0.52 cfs @ 0.67 fps)

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 51

# Pond 203P: Infiltration Pond #203



Type III 24-hr 25YR-24HR Rainfall=5.87"

Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 52

## **Summary for Pond 204P: Detention Pond #204**

Inflow Area = 2.767 ac, 35.90% Impervious, Inflow Depth > 2.73" for 25YR-24HR event

Inflow = 7.28 cfs @ 12.10 hrs, Volume= 0.630 af

Outflow = 4.16 cfs (a) 12.27 hrs, Volume= 0.625 af, Atten= 43%, Lag= 10.2 min

Primary =  $4.16 \text{ cfs} \ \textcircled{0}$  12.27 hrs, Volume= 0.625 af Secondary =  $0.00 \text{ cfs} \ \textcircled{0}$  0.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 178.85' @ 12.27 hrs Surf.Area= 2,707 sf Storage= 4,793 cf

Flood Elev= 180.00' Surf.Area= 3,505 sf Storage= 8,346 cf

Plug-Flow detention time= 38.8 min calculated for 0.624 af (99% of inflow)

Center-of-Mass det. time= 33.7 min ( 848.1 - 814.4 )

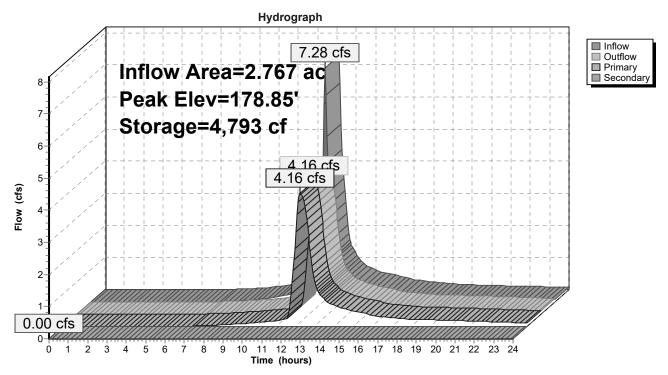
| Volume              | Invert  | Avai            | I.Storage        | Storage Descrip          | otion             |                    |          |
|---------------------|---------|-----------------|------------------|--------------------------|-------------------|--------------------|----------|
| #1                  | 176.25' |                 | 8,346 cf         | Open Water St            | orage (Irregular) | _isted below (Reca | ılc)     |
| Elevation<br>(feet) |         | Area<br>(sq-ft) | Perim.<br>(feet) | Inc.Store<br>(cubic-feet |                   |                    | =        |
| 176.25              |         | 4               | 4.0              | (                        | ) (               | ) 4                | ļ        |
| 176.50              |         | 1,320           | 155.0            | 116                      | 5 116             | 3 1,915            | ,<br>)   |
| 177.00              |         | 1,578           | 170.7            | 724                      | l 840             | 2,330              | )        |
| 178.00              |         | 2,183           | 202.8            | 1,872                    | 2,712             | 2 3,302            | <u>)</u> |
| 179.00              |         | 2,803           | 222.5            | 2,487                    | 7 5,199           | 9 4,002            | <u>)</u> |
| 180.00              |         | 3,505           | 242.8            | 3,147                    | 7 8,346           | 6 4,789            | )        |
| Device R            | outina  | In              | vert Outl        | et Devices               |                   |                    |          |

| Device | Routing   | Invert  | Outlet Devices                                                   |
|--------|-----------|---------|------------------------------------------------------------------|
| #1     | Primary   | 176.25' | 18.0" Round 18" HDPE N-12                                        |
|        |           |         | L= 29.0' CPP, square edge headwall, Ke= 0.500                    |
|        |           |         | Inlet / Outlet Invert= 176.25' / 176.00' S= 0.0086 '/' Cc= 0.900 |
|        |           |         | n= 0.012, Flow Area= 1.77 sf                                     |
| #2     | Device 1  | 176.25' | <b>3.0" Vert. 3" Orifice</b> C= 0.600                            |
| #3     | Device 1  | 177.25' | 8.0" Vert. 8" Orifice (2) X 2.00 C= 0.600                        |
| #4     | Device 1  | 179.25' | <b>48.0" Horiz. 48" Outlet Structure</b> C= 0.600                |
|        |           |         | Limited to weir flow at low heads                                |
| #5     | Secondary | 179.50' | 10.0' long x 9.0' breadth Spillway                               |
|        |           |         | Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00    |
|        |           |         | 2.50 3.00 3.50 4.00 4.50 5.00 5.50                               |
|        |           |         | Coef. (English) 2.46 2.55 2.70 2.69 2.68 2.68 2.67 2.64 2.64     |
|        |           |         | 2.64 2.65 2.64 2.65 2.65 2.66 2.67 2.69                          |

Primary OutFlow Max=4.15 cfs @ 12.27 hrs HW=178.85' TW=0.00' (Dynamic Tailwater)

-1=18" HDPE N-12 (Passes 4.15 cfs of 11.56 cfs potential flow)
-2=3" Orifice (Orifice Controls 0.37 cfs @ 7.57 fps)

**-3=8" Orifice (2)** (Orifice Controls 3.78 cfs @ 5.41 fps)


—4=48" Outlet Structure ( Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=176.25' TW=0.00' (Dynamic Tailwater) = 5=Spillway (Controls 0.00 cfs)

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 53

# Pond 204P: Detention Pond #204



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 54

# Summary for Pond C41P: Catch Basin #41

Inflow Area = 0.170 ac, 61.70% Impervious, Inflow Depth > 4.49" for 25YR-24HR event

Inflow = 0.66 cfs @ 12.20 hrs, Volume= 0.064 af

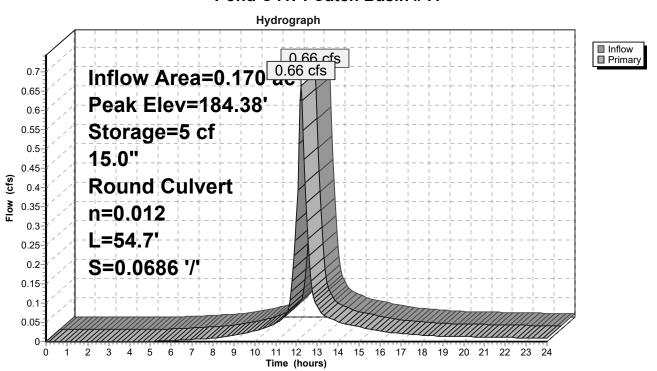
Outflow = 0.66 cfs @ 12.20 hrs, Volume= 0.064 af, Atten= 0%, Lag= 0.1 min

Primary = 0.66 cfs @ 12.20 hrs, Volume= 0.064 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 184.38' @ 12.20 hrs Surf.Area= 13 sf Storage= 5 cf

Flood Elev= 191.00' Surf.Area= 13 sf Storage= 88 cf


Plug-Flow detention time= 0.4 min calculated for 0.064 af (100% of inflow)

Center-of-Mass det. time= 0.3 min (799.1 - 798.9)

| Volume | Invert  | Avail.Storage | Storage Description                                                                                                                                               |
|--------|---------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | 184.00' | 88 cf         | 4.00'D x 7.00'H 4' Structure                                                                                                                                      |
| Device | Routing | Invert Out    | let Devices                                                                                                                                                       |
| #1     | Primary | L= 5<br>Inle  | 7" Round 15" HDPE N-12<br>54.7' CPP, square edge headwall, Ke= 0.500<br>t / Outlet Invert= 184.00' / 180.25' S= 0.0686 '/' Cc= 0.900<br>0.012, Flow Area= 1.23 sf |

Primary OutFlow Max=0.66 cfs @ 12.20 hrs HW=184.38' TW=181.06' (Dynamic Tailwater)
1=15" HDPE N-12 (Inlet Controls 0.66 cfs @ 2.10 fps)

### Pond C41P: Catch Basin #41



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 55

# Summary for Pond C42P: Catch Basin #42

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

Inflow Area = 1.268 ac, 12.14% Impervious, Inflow Depth > 1.62" for 25YR-24HR event

Inflow = 1.14 cfs @ 12.22 hrs, Volume= 0.171 af

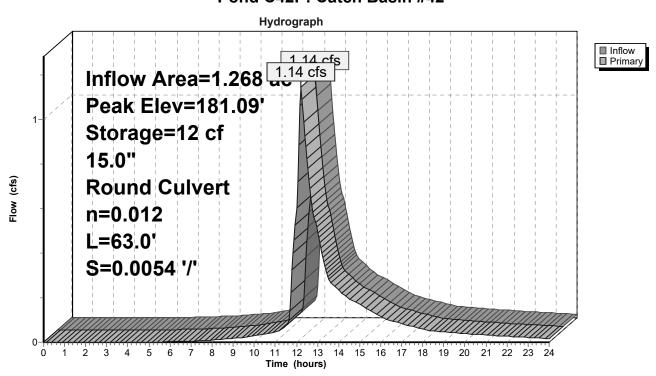
Outflow = 1.14 cfs @ 12.22 hrs, Volume= 0.171 af, Atten= 0%, Lag= 0.3 min

Primary = 1.14 cfs @ 12.22 hrs, Volume= 0.171 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 181.09' @ 12.17 hrs Surf.Area= 13 sf Storage= 12 cf

Flood Elev= 184.50' Surf.Area= 13 sf Storage= 55 cf


Plug-Flow detention time= 0.3 min calculated for 0.171 af (100% of inflow)

Center-of-Mass det. time= 0.2 min (837.7 - 837.5)

| Volume | Invert  | Avail.Storag | ge Storage Description                                                                                                                                                   |
|--------|---------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | 180.15' | 136          | cf 4.00'D x 10.85'H 4' Structure                                                                                                                                         |
| Device | Routing | Invert O     | Outlet Devices                                                                                                                                                           |
| #1     | Primary | L:<br>Ir     | <b>5.0" Round 15" HDPE N-12</b> = 63.0' CPP, square edge headwall, Ke= 0.500 nlet / Outlet Invert= 180.15' / 179.81' S= 0.0054 '/' Cc= 0.900 = 0.012, Flow Area= 1.23 sf |

Primary OutFlow Max=1.62 cfs @ 12.22 hrs HW=181.03' TW=180.77' (Dynamic Tailwater) 1=15" HDPE N-12 (Outlet Controls 1.62 cfs @ 2.48 fps)

#### Pond C42P: Catch Basin #42



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 56

# Summary for Pond C43P: Catch Basin #43

Inflow Area = 0.350 ac, 64.41% Impervious, Inflow Depth > 4.39" for 25YR-24HR event

Inflow = 1.67 cfs @ 12.10 hrs, Volume= 0.128 af

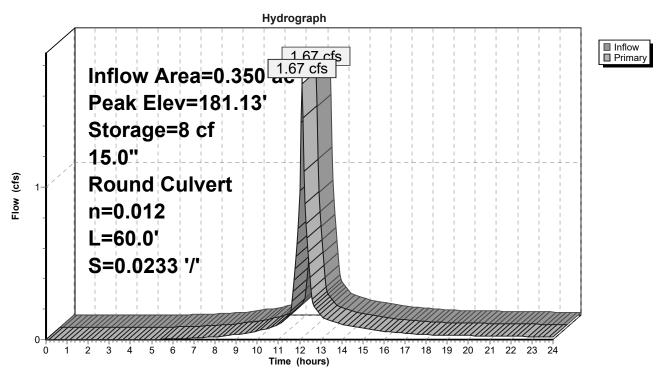
Outflow = 1.67 cfs @ 12.10 hrs, Volume= 0.128 af, Atten= 0%, Lag= 0.0 min

Primary = 1.67 cfs @ 12.10 hrs, Volume= 0.128 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 181.13' @ 12.10 hrs Surf.Area= 13 sf Storage= 8 cf

Flood Elev= 186.00' Surf.Area= 13 sf Storage= 69 cf


Plug-Flow detention time= 0.3 min calculated for 0.128 af (100% of inflow)

Center-of-Mass det. time= 0.2 min (795.9 - 795.8)

| Volume | Invert  | Avail.Storage | Storage Description                                                                                                                                              |
|--------|---------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | 180.50' | 69 cf         | 4.00'D x 5.50'H 4' Structure                                                                                                                                     |
| Device | Routing | Invert Outl   | et Devices                                                                                                                                                       |
| #1     | Primary | L= 6<br>Inlet | " Round 15" HDPE N-12<br>60.0' CPP, square edge headwall, Ke= 0.500<br>c / Outlet Invert= 180.50' / 179.10' S= 0.0233 '/' Cc= 0.900<br>0.012, Flow Area= 1.23 sf |

Primary OutFlow Max=1.67 cfs @ 12.10 hrs HW=181.13' TW=180.30' (Dynamic Tailwater) 1=15" HDPE N-12 (Inlet Controls 1.67 cfs @ 2.70 fps)

### Pond C43P: Catch Basin #43



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 57

# Summary for Pond C44P: Catch Basin #44

Inflow Area = 0.682 ac, 70.38% Impervious, Inflow Depth > 4.60" for 25YR-24HR event

Inflow = 3.33 cfs @ 12.10 hrs, Volume= 0.262 af

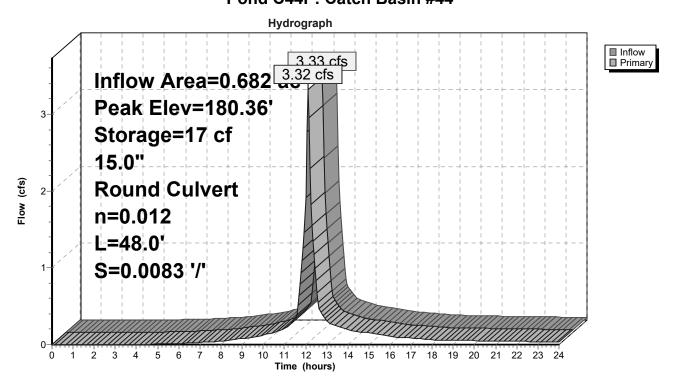
Outflow = 3.32 cfs @ 12.11 hrs, Volume= 0.262 af, Atten= 0%, Lag= 0.1 min

Primary = 3.32 cfs @ 12.11 hrs, Volume= 0.262 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 180.36' @ 12.13 hrs Surf.Area= 13 sf Storage= 17 cf

Flood Elev= 183.50' Surf.Area= 13 sf Storage= 57 cf


Plug-Flow detention time= 0.2 min calculated for 0.262 af (100% of inflow)

Center-of-Mass det. time= 0.2 min (789.3 - 789.2)

| Volume | Invert  | Avail.Storage | Storage Description                                                                                                       |
|--------|---------|---------------|---------------------------------------------------------------------------------------------------------------------------|
| #1     | 179.00' | 57 cf         | 4.00'D x 4.50'H 4' Structure                                                                                              |
| Device | Routing | Invert Outl   | et Devices                                                                                                                |
| #1     | Primary | L= 4<br>Inlet | " Round 15" HDPE N-12 8.0' CPP, square edge headwall, Ke= 0.500 COutlet Invert= 179.00' / 178.60' S= 0.0083 '/' Cc= 0.900 |
|        |         | n= 0          | 0.012, Flow Area= 1.23 sf                                                                                                 |

Primary OutFlow Max=2.74 cfs @ 12.11 hrs HW=180.30' TW=180.06' (Dynamic Tailwater) 1=15" HDPE N-12 (Outlet Controls 2.74 cfs @ 2.66 fps)

### Pond C44P: Catch Basin #44



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 58

#### **Summary for Pond C45P: Catch Basin #45**

Inflow Area = 0.388 ac, 94.23% Impervious, Inflow Depth > 5.39" for 25YR-24HR event

Inflow = 2.15 cfs @ 12.09 hrs, Volume= 0.174 af

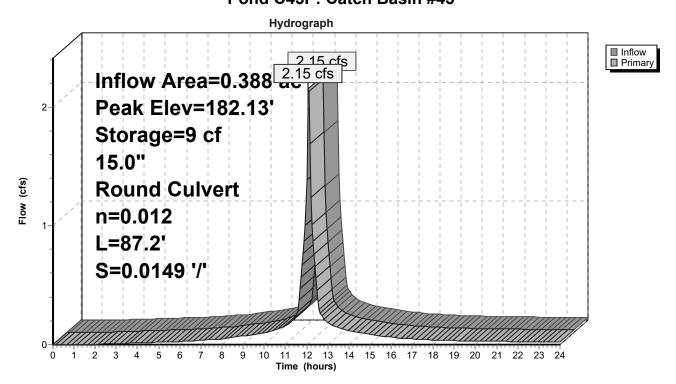
Outflow = 2.15 cfs @ 12.09 hrs, Volume= 0.174 af, Atten= 0%, Lag= 0.1 min

Primary = 2.15 cfs @ 12.09 hrs, Volume= 0.174 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 182.13' @ 12.09 hrs Surf.Area= 13 sf Storage= 9 cf

Flood Elev= 185.90' Surf.Area= 13 sf Storage= 57 cf


Plug-Flow detention time= 0.2 min calculated for 0.174 af (100% of inflow)

Center-of-Mass det. time= 0.2 min (758.5 - 758.3)

| Volume | Invert  | Avail.Storage | Storage Description                                                                                                                                      |
|--------|---------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | 181.40' | 57 cf         | 4.00'D x 4.50'H 4' Structure                                                                                                                             |
| Device | Routing | Invert Out    | et Devices                                                                                                                                               |
| #1     | Primary | L= 8<br>Inle  | P' Round 15" HDPE N-12 B7.2' CPP, square edge headwall, Ke= 0.500 t / Outlet Invert= 181.40' / 180.10' S= 0.0149 '/' Cc= 0.900 0.012, Flow Area= 1.23 sf |

Primary OutFlow Max=2.10 cfs @ 12.09 hrs HW=182.12' TW=180.90' (Dynamic Tailwater) 1=15" HDPE N-12 (Inlet Controls 2.10 cfs @ 2.88 fps)

#### Pond C45P: Catch Basin #45



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 59

#### **Summary for Pond C46P: Catch Basin #46**

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

Inflow Area = 0.562 ac, 96.02% Impervious, Inflow Depth > 5.47" for 25YR-24HR event

Inflow = 3.13 cfs @ 12.09 hrs, Volume= 0.256 af

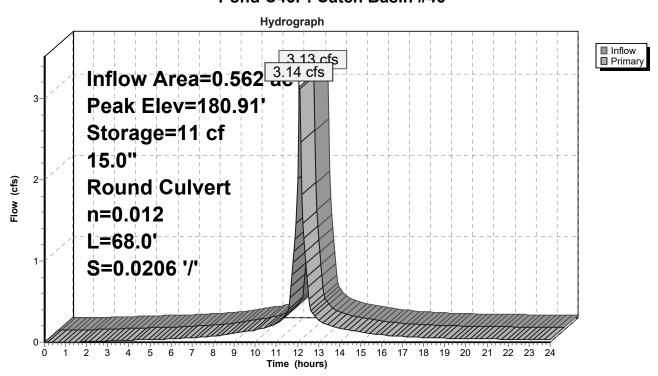
Outflow = 3.14 cfs @ 12.09 hrs, Volume= 0.256 af, Atten= 0%, Lag= 0.0 min

Primary = 3.14 cfs @ 12.09 hrs, Volume= 0.256 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 180.91' @ 12.09 hrs Surf.Area= 13 sf Storage= 11 cf

Flood Elev= 184.50' Surf.Area= 13 sf Storage= 57 cf


Plug-Flow detention time= 0.2 min calculated for 0.256 af (100% of inflow)

Center-of-Mass det. time= 0.2 min ( 754.3 - 754.2 )

| Volume | Invert  | Avail.Storage | Storage Description                                                                                                                      |
|--------|---------|---------------|------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | 180.00' | 57 cf         | 4.00'D x 4.50'H 4' Structure                                                                                                             |
| Device | Routing | Invert Outl   | et Devices                                                                                                                               |
| #1     | Primary | L= 6<br>Inlet | 88.0' CPP, square edge headwall, Ke= 0.500<br>b' / Outlet Invert= 180.00' / 178.60' S= 0.0206 '/' Cc= 0.900<br>0.012, Flow Area= 1.23 sf |

Primary OutFlow Max=3.02 cfs @ 12.09 hrs HW=180.90' TW=180.04' (Dynamic Tailwater) 1=15" HDPE N-12 (Outlet Controls 3.02 cfs @ 4.47 fps)

#### Pond C46P: Catch Basin #46



Type III 24-hr 25YR-24HR Rainfall=5.87"

Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 60

### Summary for Pond C47P: Catch Basin #47

Inflow Area = 1.318 ac, 82.97% Impervious, Inflow Depth > 5.03" for 25YR-24HR event

Inflow = 6.84 cfs @ 12.10 hrs, Volume= 0.552 af

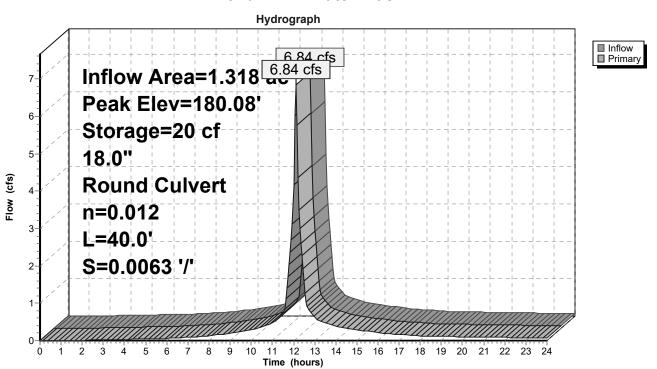
Outflow = 6.84 cfs @ 12.10 hrs, Volume= 0.552 af, Atten= 0%, Lag= 0.0 min

Primary = 6.84 cfs @ 12.10 hrs, Volume= 0.552 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 180.08' @ 12.10 hrs Surf.Area= 13 sf Storage= 20 cf

Flood Elev= 183.75' Surf.Area= 13 sf Storage= 66 cf


Plug-Flow detention time= 0.2 min calculated for 0.551 af (100% of inflow)

Center-of-Mass det. time= 0.2 min (770.5 - 770.3)

| Volume | Invert  | Avail.Storage | Storage Description                                                                                                                                       |
|--------|---------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | 178.50' | 66 cf         | 4.00'D x 5.25'H 4' Structure                                                                                                                              |
| Device | Routing | Invert Out    | et Devices                                                                                                                                                |
| #1     | Primary | L= 4<br>Inle  | P" Round 18" HDPE N-12 10.0' CPP, square edge headwall, Ke= 0.500 1 / Outlet Invert= 178.50' / 178.25' S= 0.0063 '/' Cc= 0.900 10.012, Flow Area= 1.77 sf |

Primary OutFlow Max=6.78 cfs @ 12.10 hrs HW=180.07' TW=177.91' (Dynamic Tailwater) 1=18" HDPE N-12 (Barrel Controls 6.78 cfs @ 4.57 fps)

#### Pond C47P: Catch Basin #47



Type III 24-hr 25YR-24HR Rainfall=5.87"

Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 61

#### **Summary for Pond C50P: Inlet Sump**

Inflow Area = 4.165 ac, 32.60% Impervious, Inflow Depth > 1.43" for 25YR-24HR event

Inflow = 3.39 cfs @ 12.59 hrs, Volume= 0.495 af

Outflow = 3.39 cfs @ 12.60 hrs, Volume= 0.495 af, Atten= 0%, Lag= 0.0 min

Primary = 3.39 cfs @ 12.60 hrs, Volume= 0.495 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 184.47' @ 12.60 hrs Surf.Area= 13 sf Storage= 12 cf

Flood Elev= 190.00' Surf.Area= 1,083 sf Storage= 1,167 cf

Plug-Flow detention time= 0.1 min calculated for 0.494 af (100% of inflow)

Center-of-Mass det. time= 0.1 min (890.5 - 890.5)

| Volume | Invert  | Avail.Storage | Storage Description                           |
|--------|---------|---------------|-----------------------------------------------|
| #1     | 187.50' | 1,117 cf      | Ponding Area (Irregular)Listed below (Recalc) |
| #2     | 183.50' | 50 cf         | 4.00'D x 4.00'H 4' Structure                  |

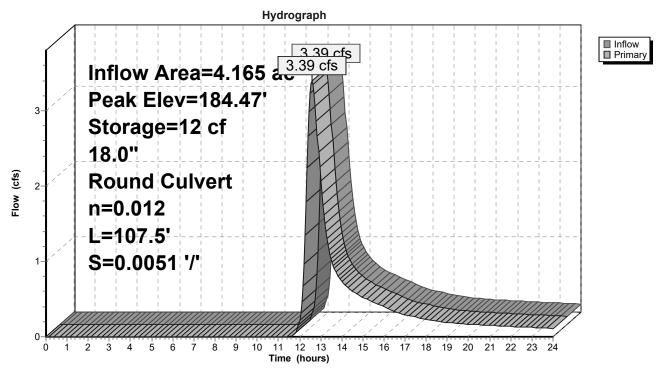
1,167 cf Total Available Storage

| Elevation<br>(feet) | Surf.Area<br>(sq-ft) | Perim.<br>(feet) | Inc.Store<br>(cubic-feet) | Cum.Store (cubic-feet) | Wet.Area<br>(sq-ft) |
|---------------------|----------------------|------------------|---------------------------|------------------------|---------------------|
| 187.50              | 71                   | 52.1             | 0                         | 0                      | 71                  |
| 188.00              | 156                  | 61.5             | 55                        | 55                     | 161                 |
| 189.00              | 483                  | 101.0            | 304                       | 360                    | 678                 |
| 190.00              | 1,070                | 143.1            | 757                       | 1,117                  | 1,505               |

| #1     | Drimary | 183 50' | 19 0" Pound 19" HDDE N 1 | 2 |
|--------|---------|---------|--------------------------|---|
| Device | Routing | invert  | Outlet Devices           |   |

L= 107.5' CPP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 183.50' / 182.95' S= 0.0051 '/' Cc= 0.900

n= 0.012, Flow Area= 1.77 sf


Primary OutFlow Max=3.39 cfs @ 12.60 hrs HW=184.47' TW=0.00' (Dynamic Tailwater) 1=18" HDPE N-12 (Barrel Controls 3.39 cfs @ 3.98 fps)

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Tillieu 4/17/2024

Page 62

# Pond C50P: Inlet Sump



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 63

# Summary for Pond D51P: DMH #51

Inflow Area = 1.174 ac, 43.96% Impervious, Inflow Depth > 1.77" for 25YR-24HR event

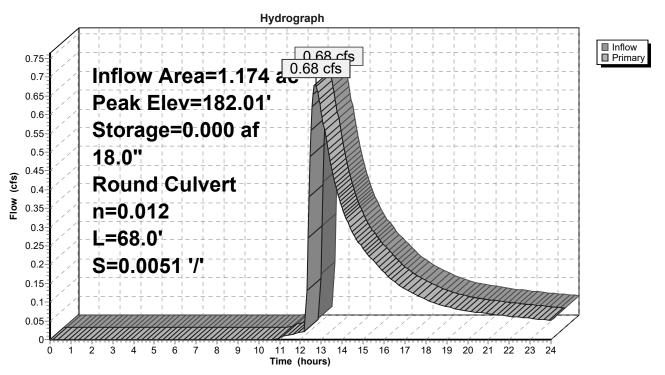
Inflow = 0.68 cfs @ 12.71 hrs, Volume= 0.173 af

Outflow = 0.68 cfs @ 12.73 hrs, Volume= 0.173 af, Atten= 0%, Lag= 1.3 min

Primary = 0.68 cfs @ 12.73 hrs, Volume= 0.173 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 182.01' @ 12.73 hrs Surf.Area= 0.000 ac Storage= 0.000 af

Flood Elev= 185.75' Surf.Area= 0.000 ac Storage= 0.001 af


Plug-Flow detention time= 0.2 min calculated for 0.173 af (100% of inflow)

Center-of-Mass det. time= 0.1 min ( 934.9 - 934.8 )

| Volume | Invert  | Avail.Storage | e Storage Description                                                                                                                                                         |
|--------|---------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | 181.60' | 0.001 a       | 4.00'D x 4.05'H Structure                                                                                                                                                     |
| Device | Routing | Invert C      | Outlet Devices                                                                                                                                                                |
| #1     | Primary | L<br>II       | 18.0" Round 18" HDPE N-12<br>L= 68.0' CPP, square edge headwall, Ke= 0.500<br>nlet / Outlet Invert= 181.60' / 181.25' S= 0.0051 '/' Cc= 0.900<br>n= 0.012. Flow Area= 1.77 sf |

Primary OutFlow Max=0.68 cfs @ 12.73 hrs HW=182.01' TW=0.00' (Dynamic Tailwater) 1=18" HDPE N-12 (Barrel Controls 0.68 cfs @ 2.62 fps)

#### Pond D51P: DMH #51



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 64

#### **Summary for Pond D52P: DMH #52**

[80] Warning: Exceeded Pond C42P by 0.08' @ 12.05 hrs (0.69 cfs 0.005 af)

Inflow Area = 2.590 ac, 38.34% Impervious, Inflow Depth > 2.81" for 25YR-24HR event

Inflow = 6.97 cfs @ 12.10 hrs, Volume= 0.606 af

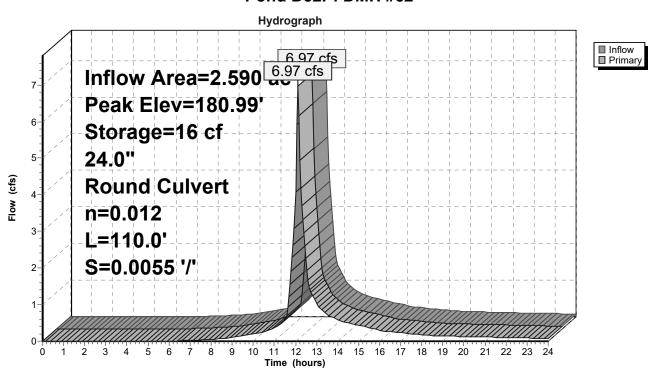
Outflow = 6.97 cfs @ 12.10 hrs, Volume= 0.606 af, Atten= 0%, Lag= 0.0 min

Primary = 6.97 cfs @ 12.10 hrs, Volume= 0.606 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 180.99' @ 12.11 hrs Surf.Area= 13 sf Storage= 16 cf

Flood Elev= 190.11' Surf.Area= 13 sf Storage= 131 cf


Plug-Flow detention time= 0.1 min calculated for 0.606 af (100% of inflow)

Center-of-Mass det. time= 0.1 min (812.1 - 812.0)

| Volume | Invert  | Avail.Storag | je Storage Description                                                                                                                                                      |
|--------|---------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | 179.71' | 131 (        | cf 4.00'D x 10.40'H 4' Structure                                                                                                                                            |
| Device | Routing | Invert O     | Outlet Devices                                                                                                                                                              |
| #1     | Primary | L:<br>In     | 4.0" Round 24" HDPE N-12<br>= 110.0' CPP, square edge headwall, Ke= 0.500<br>nlet / Outlet Invert= 179.71' / 179.10' S= 0.0055 '/' Cc= 0.900<br>= 0.012, Flow Area= 3.14 sf |

Primary OutFlow Max=6.55 cfs @ 12.10 hrs HW=180.98' TW=180.16' (Dynamic Tailwater)
1=24" HDPE N-12 (Outlet Controls 6.55 cfs @ 4.42 fps)

#### Pond D52P: DMH #52



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 65

#### **Summary for Pond D53P: DMH #53**

Inflow Area = 2.590 ac, 38.34% Impervious, Inflow Depth > 2.81" for 25YR-24HR event

Inflow = 6.97 cfs @ 12.10 hrs, Volume= 0.606 af

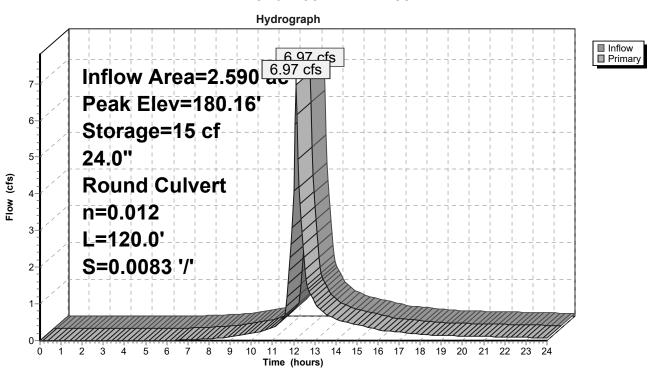
Outflow = 6.97 cfs @ 12.10 hrs, Volume= 0.606 af, Atten= 0%, Lag= 0.0 min

Primary = 6.97 cfs @ 12.10 hrs, Volume= 0.606 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 180.16' @ 12.10 hrs Surf.Area= 13 sf Storage= 15 cf

Flood Elev= 191.95' Surf.Area= 13 sf Storage= 163 cf


Plug-Flow detention time= 0.1 min calculated for 0.606 af (100% of inflow)

Center-of-Mass det. time= 0.1 min (812.1 - 812.1)

| Volume | Invert  | Avail.Storage | Storage Description                                                                                                                                                  |
|--------|---------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | 179.00' | 163 cf        | 4.00'D x 12.95'H 4' Structure                                                                                                                                        |
| Device | Routing | Invert Ou     | tlet Devices                                                                                                                                                         |
| #1     | Primary | L=<br>Inle    | 0" Round 24" HDPE N-12 120.0' CPP, end-section conforming to fill, Ke= 0.500 et / Outlet Invert= 179.00' / 178.00' S= 0.0083 '/' Cc= 0.900 0.012, Flow Area= 3.14 sf |

Primary OutFlow Max=6.91 cfs @ 12.10 hrs HW=180.16' TW=178.47' (Dynamic Tailwater) 1=24" HDPE N-12 (Inlet Controls 6.91 cfs @ 3.66 fps)

#### Pond D53P: DMH #53



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 66

### **Summary for Pond E01P: Existing Catch Basin**

Inflow Area = 0.452 ac, 56.06% Impervious, Inflow Depth > 3.86" for 25YR-24HR event

Inflow = 1.99 cfs @ 12.09 hrs, Volume= 0.145 af

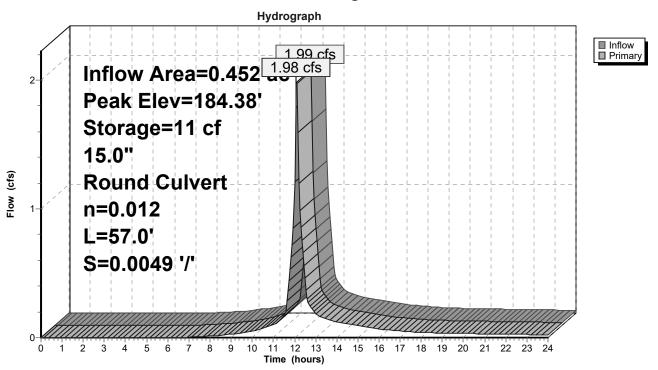
Outflow = 1.98 cfs @ 12.09 hrs, Volume= 0.145 af, Atten= 0%, Lag= 0.0 min

Primary = 1.98 cfs @ 12.09 hrs, Volume= 0.145 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Peak Elev= 184.38' @ 12.12 hrs Surf.Area= 13 sf Storage= 11 cf

Flood Elev= 190.33' Surf.Area= 13 sf Storage= 86 cf


Plug-Flow detention time= 0.3 min calculated for 0.145 af (100% of inflow)

Center-of-Mass det. time= 0.2 min (809.5 - 809.3)

| Volume | Invert  | Avail.Storage | Storage Description                                                                                                                                               |
|--------|---------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1     | 183.50' | 86 cf         | 4.00'D x 6.83'H 4' Structure                                                                                                                                      |
| Device | Routing | Invert Outl   | et Devices                                                                                                                                                        |
| #1     | Primary | L= 5<br>Inlet | 7" Round 15" HDPE N-12<br>67.0' CPP, square edge headwall, Ke= 0.500<br>t / Outlet Invert= 183.50' / 183.22' S= 0.0049 '/' Cc= 0.900<br>0.012, Flow Area= 1.23 sf |

Primary OutFlow Max=1.65 cfs @ 12.09 hrs HW=184.36' TW=184.08' (Dynamic Tailwater) 1=15" HDPE N-12 (Outlet Controls 1.65 cfs @ 2.61 fps)

#### Pond E01P: Existing Catch Basin



Type III 24-hr 25YR-24HR Rainfall=5.87"

Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 67

#### **Summary for Pond E02P: Existing Catch Basin**

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

Inflow Area = 1.322 ac, 63.48% Impervious, Inflow Depth > 4.07" for 25YR-24HR event Inflow = 6.08 cfs @ 12.09 hrs, Volume= 0.448 af Outflow = 6.09 cfs @ 12.10 hrs, Volume= 0.448 af, Atten= 0%, Lag= 0.5 min Oiscarded = 0.02 cfs @ 12.05 hrs, Volume= 0.013 af Primary = 6.08 cfs @ 12.10 hrs, Volume= 0.435 af

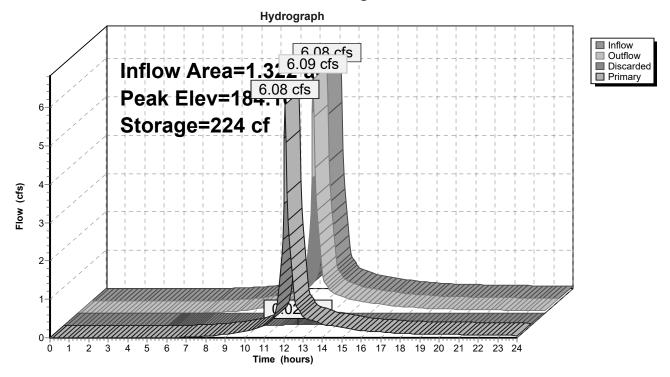
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 184.10' @ 12.10 hrs Surf.Area= 244 sf Storage= 224 cf Flood Elev= 189.42' Surf.Area= 0 sf Storage= 464 cf

Plug-Flow detention time= 1.2 min calculated for 0.447 af (100% of inflow) Center-of-Mass det. time= 0.9 min (804.6 - 803.7)

| Volume | Invert  | Avail.Storage | Storage Description                         |
|--------|---------|---------------|---------------------------------------------|
| #1     | 183.02' | 80 cf         | 4.00'D x 6.40'H 4' Structure-Impervious     |
| #2     | 183.02' | 384 cf        | 24.0" Round 24" HDPE N-12 Perf<br>L= 122.2' |
|        |         |               | L- 122.2                                    |

464 cf Total Available Storage

| Device | Routing   | Invert  | Outlet Devices                                                   |
|--------|-----------|---------|------------------------------------------------------------------|
| #1     | Primary   | 183.02' | 24.0" Round 24" HDPE N-12 Perf                                   |
|        |           |         | L= 122.2' CPP, square edge headwall, Ke= 0.500                   |
|        |           |         | Inlet / Outlet Invert= 183.02' / 179.71' S= 0.0271 '/' Cc= 0.900 |
|        |           |         | n= 0.012, Flow Area= 3.14 sf                                     |
| #2     | Discarded | 183.02' | 3.000 in/hr Infiltration over Surface area                       |


**Discarded OutFlow** Max=0.02 cfs @ 12.05 hrs HW=184.01' (Free Discharge) **2=Infiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=6.04 cfs @ 12.10 hrs HW=184.09' TW=180.98' (Dynamic Tailwater) 1=24" HDPE N-12 Perf (Inlet Controls 6.04 cfs @ 3.53 fps)

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 68

# Pond E02P: Existing Catch Basin



Type III 24-hr 2YR-24HR Rainfall=3.08" Printed 4/17/2024

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 1

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 2S: Subcat #2 Runoff Area=164,530 sf 2.77% Impervious Runoff Depth>0.39" Flow Length=298' Tc=16.6 min UI Adjusted CN=61 Runoff=0.77 cfs 0.124 af

Subcatchment 3S: Subcat. #3 Runoff Area=46,611 sf 0.00% Impervious Runoff Depth>0.07" Flow Length=158' Slope=0.0200 '/' Tc=11.3 min CN=48 Runoff=0.01 cfs 0.006 af

Subcatchment 4S: Subcat. #4 Runoff Area=55,483 sf 0.00% Impervious Runoff Depth>0.00" Flow Length=674' Tc=43.2 min CN=40 Runoff=0.00 cfs 0.000 af

Subcatchment 30S: Subcat #30 Runoff Area=47,823 sf 4.45% Impervious Runoff Depth>0.47" Flow Length=87' Slope=0.0110 '/' Tc=11.3 min CN=63 Runoff=0.34 cfs 0.043 af

Subcatchment 31S: Subcat #31 Runoff Area=19,678 sf 56.06% Impervious Runoff Depth>1.44"

Tc=6.0 min CN=82 Runoff=0.75 cfs 0.054 af

Subcatchment 32S: Subcat #32 Runoff Area=37,918 sf 67.33% Impervious Runoff Depth>1.65"
Tc=6.0 min CN=85 Runoff=1.66 cfs 0.120 af

Subcatchment 41S: Subcat #41 Runoff Area=7,421 sf 61.70% Impervious Runoff Depth>1.88" Flow Length=342' Tc=14.7 min CN=88 Runoff=0.29 cfs 0.027 af

Subcatchment 43S: Subcat #43

Runoff Area=15,256 sf 64.41% Impervious Runoff Depth>1.81"

Flow Length=100' Tc=7.0 min CN=87 Runoff=0.71 cfs 0.053 af

Subcatchment 44S: Subcat #44 Runoff Area=14,458 sf 76.68% Impervious Runoff Depth>2.14" Flow Length=98' Tc=7.7 min CN=91 Runoff=0.77 cfs 0.059 af

Subcatchment 45S: Subcat #45

Runoff Area=16,893 sf 94.23% Impervious Runoff Depth>2.63"
Flow Length=330' Tc=6.0 min CN=96 Runoff=1.09 cfs 0.085 af

Subcatchment 46S: Subcat #46 Runoff Area=7,602 sf 100.00% Impervious Runoff Depth>2.85"

Tc=6.0 min CN=98 Runoff=0.51 cfs 0.041 af

Subcatchment 47S: Subcat #47 Runoff Area=3,200 sf 100.00% Impervious Runoff Depth>2.85" Tc=6.0 min CN=98 Runoff=0.21 cfs 0.017 af

Subcatchment 50S: Subcat #50

Runoff Area=11,704 sf 0.00% Impervious Runoff Depth=0.00"

Flow Length=182' Tc=11.7 min CN=33 Runoff=0.00 cfs 0.000 af

Subcatchment 62S: Subcat. #62

Runoff Area=45,124 sf 0.15% Impervious Runoff Depth>0.50"
Flow Length=165' Tc=14.3 min CN=64 Runoff=0.33 cfs 0.043 af

Subcatchment 63S: Subcat. #63

Runoff Area=16,040 sf 0.00% Impervious Runoff Depth>0.30"
Flow Length=150' Tc=10.8 min CN=58 Runoff=0.05 cfs 0.009 af

Subcatchment 64S: Subcat #64 Runoff Area=7,675 sf 0.00% Impervious Runoff Depth>0.30" Tc=6.0 min CN=58 Runoff=0.03 cfs 0.004 af

| 22 047         | Dro | Analysis        | Ev | TCAM | Cita | Mada |
|----------------|-----|-----------------|----|------|------|------|
| <b>23-01</b> / | Pro | <b>Analysis</b> | EX | ICAM | Site | woas |

Type III 24-hr 2YR-24HR Rainfall=3.08"

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC
Page 2

Subcatchment 70S: Subcat #70 Runoff Area=51,128 sf 43.96% Impervious Runoff Depth>0.62" Flow Length=345' Tc=14.1 min CN=67 Runoff=0.53 cfs 0.061 af

Tion Longin Old To The Mill City of Marion 6.00 010 6.00 4

Subcatchment 71S: Subcat #71 Runoff Area=100,796 sf 29.45% Impervious Runoff Depth>0.16" Flow Length=563' Tc=39.5 min CN=53 Runoff=0.07 cfs 0.032 af

Subcatchment 72S: Subcat #72 Runoff Area=68,928 sf 42.73% Impervious Runoff Depth>0.46"

Flow Length=478' Tc=32.0 min CN=63 Runoff=0.34 cfs 0.061 af

Reach 30aR: Overland Flow Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af

n=0.022 L=151.0' S=0.0063 '/' Capacity=12.85 cfs Outflow=0.00 cfs 0.000 af

**Reach 30bR: Overland Flow**Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.022 L=35.0' S=0.2286'/' Capacity=77.47 cfs Outflow=0.00 cfs 0.000 af

Reach 30cR: Overland Flow Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af

n=0.035 L=58.0' S=0.0948 '/' Capacity=31.37 cfs Outflow=0.00 cfs 0.000 af

Reach 71aR: Wooded Swale Avg. Flow Depth=0.18' Max Vel=0.63 fps Inflow=0.34 cfs 0.070 af

n=0.035 L=78.5' S=0.0038 '/' Capacity=61.73 cfs Outflow=0.34 cfs 0.069 af

Reach 72R: Roadside Swale

Avg. Flow Depth=0.09' Max Vel=0.92 fps Inflow=0.31 cfs 0.038 af

n=0.022 L=495.6' S=0.0060 '/' Capacity=33.12 cfs Outflow=0.28 cfs 0.038 af

Reach 200R: Final Reach #200 Inflow=0.77 cfs 0.124 af
Outflow=0.77 cfs 0.124 af

Reach 300R: Final Reach #300 Inflow=1.55 cfs 0.217 af

Outflow=1.55 cfs 0.217 af

**Reach 400R: Final Reach #400**Inflow=0.36 cfs 0.089 af
Outflow=0.36 cfs 0.089 af

**Pond 30P: Infiltration/Trench**Peak Elev=183.51' Storage=162 cf Inflow=0.34 cfs 0.043 af Discarded=0.08 cfs 0.027 af Primary=0.21 cfs 0.016 af Secondary=0.00 cfs 0.000 af Outflow=0.28 cfs 0.043 af

Pond 71P: Existing Catch Basin Peak Elev=188.18' Inflow=0.34 cfs 0.070 af

18.0" Round Culvert n=0.012 L=10.2' S=0.0098 '/' Outflow=0.34 cfs 0.070 af

Pond 72P: Existing Depression Peak Elev=196.04' Storage=103 cf Inflow=0.34 cfs 0.061 af

Discarded=0.02 cfs 0.021 af Primary=0.31 cfs 0.038 af Outflow=0.33 cfs 0.059 af

Pond 201P: Bioretention W/ ISR #201 Peak Elev=184.56' Storage=1,815 cf Inflow=0.53 cfs 0.061 af

Primary=0.02 cfs 0.020 af Secondary=0.00 cfs 0.000 af Outflow=0.02 cfs 0.020 af

**Pond 202P: Bioretention W/ ISR #202** Peak Elev=177.39' Storage=7,276 cf Inflow=3.42 cfs 0.299 af Primary=0.07 cfs 0.084 af Secondary=0.20 cfs 0.085 af Tertiary=0.00 cfs 0.000 af Outflow=0.27 cfs 0.169 af

Pond 203P: Infiltration Pond #203 Peak Elev=173.49' Storage=1,933 cf Inflow=0.29 cfs 0.178 af

Discarded=0.16 cfs 0.158 af Primary=0.00 cfs 0.000 af Outflow=0.16 cfs 0.158 af

Pond 204P: Detention Pond #204 Peak Elev=177.73' Storage=2,147 cf Inflow=2.61 cfs 0.211 af

Primary=1.55 cfs 0.211 af Secondary=0.00 cfs 0.000 af Outflow=1.55 cfs 0.211 af

Type III 24-hr 2YR-24HR Rainfall=3.08"

Page 3

Prepared by Berry Surveying & Engineering Printed 4/17/2024 HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

| Pond C41P: Catch Basin #41  | Peak Elev=184.25' Storage=3 cf Inflow=0.29 cfs 0.027 af 15.0" Round Culvert n=0.012 L=54.7' S=0.0686'/' Outflow=0.29 cfs 0.027 af           |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Pond C42P: Catch Basin #42  | Peak Elev=180.56' Storage=5 cf Inflow=0.45 cfs 0.042 af 15.0" Round Culvert n=0.012 L=63.0' S=0.0054 '/' Outflow=0.45 cfs 0.042 af          |
| Pond C43P: Catch Basin #43  | Peak Elev=180.89' Storage=5 cf Inflow=0.71 cfs 0.053 af 15.0" Round Culvert n=0.012 L=60.0' S=0.0233 '/' Outflow=0.71 cfs 0.053 af          |
| Pond C44P: Catch Basin #44  | Peak Elev=179.74' Storage=9 cf Inflow=1.47 cfs 0.112 af 15.0" Round Culvert n=0.012 L=48.0' S=0.0083'/' Outflow=1.47 cfs 0.112 af           |
| Pond C45P: Catch Basin #45  | Peak Elev=181.90' Storage=6 cf Inflow=1.09 cfs 0.085 af 15.0" Round Culvert n=0.012 L=87.2' S=0.0149 '/' Outflow=1.09 cfs 0.085 af          |
| Pond C46P: Catch Basin #46  | Peak Elev=180.61' Storage=8 cf Inflow=1.60 cfs 0.126 af 15.0" Round Culvert n=0.012 L=68.0' S=0.0206'/' Outflow=1.60 cfs 0.126 af           |
| Pond C47P: Catch Basin #47  | Peak Elev=179.47' Storage=12 cf Inflow=3.27 cfs 0.256 af 18.0" Round Culvert n=0.012 L=40.0' S=0.0063 '/' Outflow=3.27 cfs 0.256 af         |
| Pond C50P: Inlet Sump       | Peak Elev=183.78' Storage=4 cf Inflow=0.34 cfs 0.069 af 18.0" Round Culvert n=0.012 L=107.5' S=0.0051 '/' Outflow=0.34 cfs 0.069 af         |
| Pond D51P: DMH #51          | Peak Elev=181.67' Storage=0.000 af Inflow=0.02 cfs 0.020 af 18.0" Round Culvert n=0.012 L=68.0' S=0.0051 '/' Outflow=0.02 cfs 0.020 af      |
| Pond D52P: DMH #52          | Peak Elev=180.44' Storage=9 cf Inflow=2.59 cfs 0.207 af 24.0" Round Culvert n=0.012 L=110.0' S=0.0055'/' Outflow=2.59 cfs 0.207 af          |
| Pond D53P: DMH #53          | Peak Elev=179.67' Storage=8 cf Inflow=2.59 cfs 0.207 af 24.0" Round Culvert n=0.012 L=120.0' S=0.0083 '/' Outflow=2.60 cfs 0.207 af         |
| Pond E01P: Existing Catch B | asin Peak Elev=183.97' Storage=6 cf Inflow=0.75 cfs 0.054 af 15.0" Round Culvert n=0.012 L=57.0' S=0.0049 '/' Outflow=0.75 cfs 0.054 af     |
| Pond E02P: Existing Catch B | asin Peak Elev=183.66' Storage=115 cf Inflow=2.40 cfs 0.174 af carded=0.02 cfs 0.010 af Primary=2.38 cfs 0.165 af Outflow=2.40 cfs 0.174 af |

Total Runoff Area = 16.948 ac Runoff Volume = 0.840 af Average Runoff Depth = 0.59" 76.01% Pervious = 12.882 ac 23.99% Impervious = 4.066 ac

Type III 24-hr 10YR-24HR Rainfall=4.65" Printed 4/17/2024

Prepared by Berry Surveying & Engineering HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 4

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Runoff Area=164,530 sf 2.77% Impervious Runoff Depth>1.16" Subcatchment 2S: Subcat #2 Flow Length=298' Tc=16.6 min UI Adjusted CN=61 Runoff=3.28 cfs 0.365 af

Runoff Area=46,611 sf 0.00% Impervious Runoff Depth>0.46" Subcatchment 3S: Subcat. #3 Flow Length=158' Slope=0.0200 '/' Tc=11.3 min CN=48 Runoff=0.23 cfs 0.041 af

Runoff Area=55,483 sf 0.00% Impervious Runoff Depth>0.16" Subcatchment 4S: Subcat. #4 Flow Length=674' Tc=43.2 min CN=40 Runoff=0.03 cfs 0.017 af

Runoff Area=47,823 sf 4.45% Impervious Runoff Depth>1.29" Subcatchment 30S: Subcat #30 Flow Length=87' Slope=0.0110 '/' Tc=11.3 min CN=63 Runoff=1.26 cfs 0.118 af

Runoff Area=19,678 sf 56.06% Impervious Runoff Depth>2.77" Subcatchment 31S: Subcat #31 Tc=6.0 min CN=82 Runoff=1.43 cfs 0.104 af

Runoff Area=37,918 sf 67.33% Impervious Runoff Depth>3.04" Subcatchment 32S: Subcat #32 Tc=6.0 min CN=85 Runoff=3.02 cfs 0.221 af

Runoff Area=7,421 sf 61.70% Impervious Runoff Depth>3.33" Subcatchment 41S: Subcat #41 Flow Length=342' Tc=14.7 min CN=88 Runoff=0.50 cfs 0.047 af

Runoff Area=15,256 sf 64.41% Impervious Runoff Depth>3.24" Subcatchment 43S: Subcat #43 Flow Length=100' Tc=7.0 min CN=87 Runoff=1.25 cfs 0.094 af

Runoff Area=14,458 sf 76.68% Impervious Runoff Depth>3.64" Subcatchment 44S: Subcat #44 Flow Length=98' Tc=7.7 min CN=91 Runoff=1.27 cfs 0.101 af

Runoff Area=16,893 sf 94.23% Impervious Runoff Depth>4.18" Subcatchment 45S: Subcat #45 Flow Length=330' Tc=6.0 min CN=96 Runoff=1.69 cfs 0.135 af

Runoff Area=7,602 sf 100.00% Impervious Runoff Depth>4.41" Subcatchment 46S: Subcat #46 Tc=6.0 min CN=98 Runoff=0.77 cfs 0.064 af

Runoff Area=3,200 sf 100.00% Impervious Runoff Depth>4.41" Subcatchment 47S: Subcat #47 Tc=6.0 min CN=98 Runoff=0.33 cfs 0.027 af

Runoff Area=11,704 sf 0.00% Impervious Runoff Depth>0.02" Subcatchment 50S: Subcat #50 Flow Length=182' Tc=11.7 min CN=33 Runoff=0.00 cfs 0.000 af

Runoff Area=45,124 sf 0.15% Impervious Runoff Depth>1.35" Subcatchment 62S: Subcat. #62 Flow Length=165' Tc=14.3 min CN=64 Runoff=1.16 cfs 0.117 af

Runoff Area=16,040 sf 0.00% Impervious Runoff Depth>0.98" Subcatchment 63S: Subcat. #63 Flow Length=150' Tc=10.8 min CN=58 Runoff=0.29 cfs 0.030 af

Runoff Area=7,675 sf 0.00% Impervious Runoff Depth>0.98" Subcatchment 64S: Subcat #64 Tc=6.0 min CN=58 Runoff=0.17 cfs 0.014 af

Type III 24-hr 10YR-24HR Rainfall=4.65"

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC
Page 5

Subcatchment 70S: Subcat #70 Runoff Area=51,128 sf 43.96% Impervious Runoff Depth>1.56"

Flow Length=345' Tc=14.1 min CN=67 Runoff=1.57 cfs 0.152 af

Subcatchment 71S: Subcat #71 Runoff Area=100,796 sf 29.45% Impervious Runoff Depth>0.69" Flow Length=563' Tc=39.5 min CN=53 Runoff=0.68 cfs 0.134 af

Subcatchment 72S: Subcat #72 Runoff Area=68,928 sf 42.73% Impervious Runoff Depth>1.28"

Flow Length=478' Tc=32.0 min CN=63 Runoff=1.20 cfs 0.169 af

Reach 30aR: Overland Flow Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af

 $n = 0.022 \quad L = 151.0' \quad S = 0.0063 \; \text{'/'} \quad Capacity = 12.85 \; \text{cfs} \quad Outflow = 0.00 \; \text{cfs} \; \; 0.000 \; \text{af}$ 

Reach 30bR: Overland Flow Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af

n=0.022 L=35.0' S=0.2286 '/' Capacity=77.47 cfs Outflow=0.00 cfs 0.000 af

Reach 30cR: Overland Flow

Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af

n=0.035 L=58.0' S=0.0948 '/' Capacity=31.37 cfs Outflow=0.00 cfs 0.000 af

Reach 71aR: Wooded Swale Avg. Flow Depth=0.38' Max Vel=1.05 fps Inflow=1.78 cfs 0.277 af

n=0.035 L=78.5' S=0.0038 '/' Capacity=61.73 cfs Outflow=1.78 cfs 0.277 af

Reach 72R: Roadside Swale Avg. Flow Depth=0.19' Max Vel=1.45 fps Inflow=1.16 cfs 0.144 af

n=0.022 L=495.6' S=0.0060 '/' Capacity=33.12 cfs Outflow=1.12 cfs 0.144 af

Reach 200R: Final Reach #200 Inflow=3.28 cfs 0.365 af

Outflow=3.28 cfs 0.365 af

Reach 300R: Final Reach #300 Inflow=3.49 cfs 0.599 af

Outflow=3.49 cfs 0.599 af

Reach 400R: Final Reach #400 Inflow=1.84 cfs 0.367 af

Outflow=1.84 cfs 0.367 af

Pond 30P: Infiltration/Trench

Peak Elev=183.71' Storage=667 cf Inflow=1.26 cfs 0.118 af

Discarded=0.36 cfs 0.053 af Primary=0.42 cfs 0.063 af Secondary=0.00 cfs 0.000 af Outflow=0.78 cfs 0.117 af

Pond 71P: Existing Catch Basin Peak Elev=188.60' Inflow=1.78 cfs 0.277 af

18.0" Round Culvert n=0.012 L=10.2' S=0.0098 '/' Outflow=1.78 cfs 0.277 af

Pond 72P: Existing Depression Peak Elev=196.14' Storage=138 cf Inflow=1.20 cfs 0.169 af

Discarded=0.02 cfs 0.023 af Primary=1.16 cfs 0.144 af Outflow=1.18 cfs 0.167 af

**Pond 201P: Bioretention W/ ISR #201** Peak Elev=185.13' Storage=3,247 cf Inflow=1.57 cfs 0.152 af

Primary=0.02 cfs 0.022 af Secondary=0.18 cfs 0.067 af Outflow=0.20 cfs 0.090 af

Pond 202P: Bioretention W/ ISR #202 Peak Elev=178.40' Storage=12,765 cf Inflow=6.06 cfs 0.538 af

Primary=0.08 cfs 0.092 af Secondary=0.47 cfs 0.303 af Tertiary=0.00 cfs 0.000 af Outflow=0.55 cfs 0.395 af

Pond 203P: Infiltration Pond #203 Peak Elev=174.56' Storage=4,756 cf Inflow=0.68 cfs 0.425 af

Discarded=0.21 cfs 0.221 af Primary=0.32 cfs 0.105 af Outflow=0.53 cfs 0.326 af

Pond 204P: Detention Pond #204 Peak Elev=178.35' Storage=3,509 cf Inflow=5.27 cfs 0.438 af

Primary=3.27 cfs 0.436 af Secondary=0.00 cfs 0.000 af Outflow=3.27 cfs 0.436 af

Type III 24-hr 10YR-24HR Rainfall=4.65"

Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 6

| Pond C41P: Catch Basin #41 | Peak Elev=184.33' | Storage=4 of | cf | Inflow=0.50 cfs | 0.047 af |
|----------------------------|-------------------|--------------|----|-----------------|----------|
|                            |                   |              |    |                 |          |

15.0" Round Culvert n=0.012 L=54.7' S=0.0686 '/' Outflow=0.50 cfs 0.047 af

Pond C42P: Catch Basin #42 Peak Elev=180.89' Storage=9 cf Inflow=0.88 cfs 0.110 af

15.0" Round Culvert n=0.012 L=63.0' S=0.0054 '/' Outflow=0.88 cfs 0.110 af

Pond C43P: Catch Basin #43 Peak Elev=181.04' Storage=7 cf Inflow=1.25 cfs 0.094 af

15.0" Round Culvert n=0.012 L=60.0' S=0.0233 '/' Outflow=1.25 cfs 0.094 af

Pond C44P: Catch Basin #44 Peak Elev=180.08' Storage=14 cf Inflow=2.52 cfs 0.195 af

15.0" Round Culvert  $\,$  n=0.012 L=48.0' S=0.0083 '/' Outflow=2.51 cfs  $\,$  0.195 af

Pond C45P: Catch Basin #45 Peak Elev=182.03' Storage=8 cf Inflow=1.69 cfs 0.135 af

15.0" Round Culvert n=0.012 L=87.2' S=0.0149 '/' Outflow=1.69 cfs 0.135 af

Pond C46P: Catch Basin #46 Peak Elev=180.79' Storage=10 cf Inflow=2.47 cfs 0.199 af

15.0" Round Culvert n=0.012 L=68.0' S=0.0206 '/' Outflow=2.47 cfs 0.199 af

Pond C47P: Catch Basin #47 Peak Elev=179.81' Storage=16 cf Inflow=5.28 cfs 0.421 af

18.0" Round Culvert n=0.012 L=40.0' S=0.0063 '/' Outflow=5.28 cfs 0.421 af

Pond C50P: Inlet Sump Peak Elev=184.17' Storage=8 cf Inflow=1.78 cfs 0.278 af

18.0" Round Culvert n=0.012 L=107.5' S=0.0051 '/' Outflow=1.78 cfs 0.277 af

Pond D51P: DMH #51 Peak Elev=181.82' Storage=0.000 af Inflow=0.20 cfs 0.090 af

18.0" Round Culvert n=0.012 L=68.0' S=0.0051 '/' Outflow=0.20 cfs 0.090 af

Pond D52P: DMH #52 Peak Elev=180.78' Storage=13 cf Inflow=5.11 cfs 0.423 af

24.0" Round Culvert n=0.012 L=110.0' S=0.0055 '/' Outflow=5.11 cfs 0.423 af

Pond D53P: DMH #53 Peak Elev=179.97' Storage=12 cf Inflow=5.11 cfs 0.423 af

24.0" Round Culvert n=0.012 L=120.0' S=0.0083 '/' Outflow=5.11 cfs 0.423 af

Pond E01P: Existing Catch Basin Peak Elev=184.21' Storage=9 cf Inflow=1.43 cfs 0.104 af

15.0" Round Culvert n=0.012 L=57.0' S=0.0049 '/' Outflow=1.43 cfs 0.104 af

Pond E02P: Existing Catch Basin Peak Elev=183.92' Storage=179 cf Inflow=4.45 cfs 0.325 af

Discarded=0.02 cfs 0.012 af Primary=4.44 cfs 0.313 af Outflow=4.46 cfs 0.325 af

Total Runoff Area = 16.948 ac Runoff Volume = 1.951 af Average Runoff Depth = 1.38" 76.01% Pervious = 12.882 ac 23.99% Impervious = 4.066 ac

# **23-017 Pro Analysis Ex TCAM Site Mods**Prepared by Berry Surveying & Engineering

Type III 24-hr 25YR-24HR Rainfall=5.87" Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 7

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 2S: Subcat #2 Runoff Area=164,530 sf 2.77% Impervious Runoff Depth>1.91" Flow Length=298' Tc=16.6 min UI Adjusted CN=61 Runoff=5.80 cfs 0.602 af

Subcatchment 3S: Subcat. #3 Runoff Area=46,611 sf 0.00% Impervious Runoff Depth>0.94" Flow Length=158' Slope=0.0200 '/' Tc=11.3 min CN=48 Runoff=0.69 cfs 0.084 af

Subcatchment 4S: Subcat. #4 Runoff Area=55,483 sf 0.00% Impervious Runoff Depth>0.45" Flow Length=674' Tc=43.2 min CN=40 Runoff=0.15 cfs 0.048 af

Subcatchment 30S: Subcat #30 Runoff Area=47,823 sf 4.45% Impervious Runoff Depth>2.08" Flow Length=87' Slope=0.0110 '/' Tc=11.3 min CN=63 Runoff=2.15 cfs 0.190 af

Subcatchment 31S: Subcat #31 Runoff Area=19,678 sf 56.06% Impervious Runoff Depth>3.86" Tc=6.0 min CN=82 Runoff=1.99 cfs 0.145 af

Subcatchment 32S: Subcat #32 Runoff Area=37,918 sf 67.33% Impervious Runoff Depth>4.18" Tc=6.0 min CN=85 Runoff=4.10 cfs 0.303 af

Subcatchment 41S: Subcat #41 Runoff Area=7,421 sf 61.70% Impervious Runoff Depth>4.49" Flow Length=342' Tc=14.7 min CN=88 Runoff=0.66 cfs 0.064 af

Subcatchment 43S: Subcat #43

Runoff Area=15,256 sf 64.41% Impervious Runoff Depth>4.39"
Flow Length=100' Tc=7.0 min CN=87 Runoff=1.67 cfs 0.128 af

Subcatchment 44S: Subcat #44

Runoff Area=14,458 sf 76.68% Impervious Runoff Depth>4.83"
Flow Length=98' Tc=7.7 min CN=91 Runoff=1.66 cfs 0.133 af

Subcatchment 45S: Subcat #45

Runoff Area=16,893 sf 94.23% Impervious Runoff Depth>5.39"
Flow Length=330' Tc=6.0 min CN=96 Runoff=2.15 cfs 0.174 af

Subcatchment 46S: Subcat #46 Runoff Area=7,602 sf 100.00% Impervious Runoff Depth>5.63" Tc=6.0 min CN=98 Runoff=0.98 cfs 0.082 af

Subcatchment 47S: Subcat #47 Runoff Area=3,200 sf 100.00% Impervious Runoff Depth>5.63" Tc=6.0 min CN=98 Runoff=0.41 cfs 0.034 af

Subcatchment 50S: Subcat #50

Runoff Area=11,704 sf 0.00% Impervious Runoff Depth>0.15"

Flow Length=182' Tc=11.7 min CN=33 Runoff=0.01 cfs 0.003 af

Subcatchment 62S: Subcat. #62

Runoff Area=45,124 sf 0.15% Impervious Runoff Depth>2.16"
Flow Length=165' Tc=14.3 min CN=64 Runoff=1.95 cfs 0.187 af

Subcatchment 63S: Subcat. #63

Runoff Area=16,040 sf 0.00% Impervious Runoff Depth>1.67"

Flow Length=150' Tc=10.8 min CN=58 Runoff=0.56 cfs 0.051 af

Subcatchment 64S: Subcat #64 Runoff Area=7,675 sf 0.00% Impervious Runoff Depth>1.67"
Tc=6.0 min CN=58 Runoff=0.31 cfs 0.025 af

Type III 24-hr 25YR-24HR Rainfall=5.87"

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC
Page 8

Subcatchment 70S: Subcat #70 Runoff Area=51,128 sf 43.96% Impervious Runoff Depth>2.43"

Flow Length=345' Tc=14.1 min CN=67 Runoff=2.53 cfs 0.237 af

Subcatchment 71S: Subcat #71 Runoff Area=100,796 sf 29.45% Impervious Runoff Depth>1.28" Flow Length=563' Tc=39.5 min CN=53 Runoff=1.48 cfs 0.246 af

Subcatchment 72S: Subcat #72 Runoff Area=68,928 sf 42.73% Impervious Runoff Depth>2.07"

Flow Length=478' Tc=32.0 min CN=63 Runoff=2.04 cfs 0.273 af

Reach 30aR: Overland Flow Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af

n=0.022 L=151.0' S=0.0063 '/' Capacity=12.85 cfs Outflow=0.00 cfs 0.000 af

Reach 30bR: Overland Flow Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af

n=0.022 L=35.0' S=0.2286 '/' Capacity=77.47 cfs Outflow=0.00 cfs 0.000 af

Reach 30cR: Overland Flow Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af

n=0.035 L=58.0' S=0.0948 '/' Capacity=31.37 cfs Outflow=0.00 cfs 0.000 af

Reach 71aR: Wooded Swale Avg. Flow Depth=0.52' Max Vel=1.28 fps Inflow=3.40 cfs 0.492 af

n=0.035 L=78.5' S=0.0038 '/' Capacity=61.73 cfs Outflow=3.39 cfs 0.492 af

Reach 72R: Roadside Swale Avg. Flow Depth=0.25' Max Vel=1.71 fps Inflow=2.00 cfs 0.247 af

n=0.022 L=495.6' S=0.0060 '/' Capacity=33.12 cfs Outflow=1.95 cfs 0.246 af

Reach 200R: Final Reach #200 Inflow=5.80 cfs 0.602 af

Outflow=5.80 cfs 0.602 af

Reach 300R: Final Reach #300 Inflow=4.82 cfs 1.034 af

Outflow=4.82 cfs 1.034 af

Reach 400R: Final Reach #400 Inflow=4.05 cfs 0.668 af

Outflow=4.05 cfs 0.668 af

Pond 30P: Infiltration/Trench

Peak Elev=183.82' Storage=1,384 cf Inflow=2.15 cfs 0.190 af

Discarded=0.59 cfs 0.081 af Primary=0.51 cfs 0.107 af Secondary=0.00 cfs 0.000 af Outflow=1.10 cfs 0.188 af

Pond 71P: Existing Catch Basin Peak Elev=188.93' Inflow=3.40 cfs 0.492 af

18.0" Round Culvert n=0.012 L=10.2' S=0.0098 '/' Outflow=3.40 cfs 0.492 af

Pond 72P: Existing Depression Peak Elev=196.21' Storage=160 cf Inflow=2.04 cfs 0.273 af

Discarded=0.02 cfs 0.024 af Primary=2.00 cfs 0.247 af Outflow=2.02 cfs 0.271 af

**Pond 201P: Bioretention W/ ISR #201** Peak Elev=185.45' Storage=4,286 cf Inflow=2.53 cfs 0.237 af

Primary=0.02 cfs 0.023 af Secondary=0.66 cfs 0.150 af Outflow=0.68 cfs 0.173 af

Pond 202P: Bioretention W/ ISR #202 Peak Elev=179.19' Storage=18,074 cf Inflow=8.23 cfs 0.739 af

Primary=0.09 cfs 0.103 af Secondary=0.60 cfs 0.463 af Tertiary=0.00 cfs 0.000 af Outflow=0.68 cfs 0.566 af

Pond 203P: Infiltration Pond #203 Peak Elev=174.58' Storage=4,820 cf Inflow=1.08 cfs 0.617 af

Discarded=0.21 cfs 0.233 af Primary=0.52 cfs 0.277 af Outflow=0.73 cfs 0.510 af

Pond 204P: Detention Pond #204 Peak Elev=178.85' Storage=4,793 cf Inflow=7.28 cfs 0.630 af

Primary=4.16 cfs 0.625 af Secondary=0.00 cfs 0.000 af Outflow=4.16 cfs 0.625 af

Type III 24-hr 25YR-24HR Rainfall=5.87"

Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 9

| Pond C41P: Catch Basin #41 | Peak Elev=184.38' Storage=5 cf Inflow=0.66 cfs | 0.064 af |
|----------------------------|------------------------------------------------|----------|
|----------------------------|------------------------------------------------|----------|

15.0" Round Culvert n=0.012 L=54.7' S=0.0686 '/' Outflow=0.66 cfs 0.064 af

Pond C42P: Catch Basin #42 Peak Elev=181.09' Storage=12 cf Inflow=1.14 cfs 0.171 af

15.0" Round Culvert n=0.012 L=63.0' S=0.0054 '/' Outflow=1.14 cfs 0.171 af

Pond C43P: Catch Basin #43 Peak Elev=181.13' Storage=8 cf Inflow=1.67 cfs 0.128 af

15.0" Round Culvert n=0.012 L=60.0' S=0.0233 '/' Outflow=1.67 cfs 0.128 af

Pond C44P: Catch Basin #44 Peak Elev=180.36' Storage=17 cf Inflow=3.33 cfs 0.262 af

15.0" Round Culvert n=0.012 L=48.0' S=0.0083 '/' Outflow=3.32 cfs 0.262 af

Pond C45P: Catch Basin #45 Peak Elev=182.13' Storage=9 cf Inflow=2.15 cfs 0.174 af

15.0" Round Culvert n=0.012 L=87.2' S=0.0149 '/' Outflow=2.15 cfs 0.174 af

Pond C46P: Catch Basin #46 Peak Elev=180.91' Storage=11 cf Inflow=3.13 cfs 0.256 af

15.0" Round Culvert n=0.012 L=68.0' S=0.0206 '/' Outflow=3.14 cfs 0.256 af

Pond C47P: Catch Basin #47 Peak Elev=180.08' Storage=20 cf Inflow=6.84 cfs 0.552 af

18.0" Round Culvert n=0.012 L=40.0' S=0.0063 '/' Outflow=6.84 cfs 0.552 af

Pond C50P: Inlet Sump Peak Elev=184.47' Storage=12 cf Inflow=3.39 cfs 0.495 af

18.0" Round Culvert n=0.012 L=107.5' S=0.0051 '/' Outflow=3.39 cfs 0.495 af

Pond D51P: DMH #51 Peak Elev=182.01' Storage=0.000 af Inflow=0.68 cfs 0.173 af

18.0" Round Culvert n=0.012 L=68.0' S=0.0051 '/' Outflow=0.68 cfs 0.173 af

Pond D52P: DMH #52 Peak Elev=180.99' Storage=16 cf Inflow=6.97 cfs 0.606 af

24.0" Round Culvert n=0.012 L=110.0' S=0.0055 '/' Outflow=6.97 cfs 0.606 af

Pond D53P: DMH #53 Peak Elev=180.16' Storage=15 cf Inflow=6.97 cfs 0.606 af

24.0" Round Culvert n=0.012 L=120.0' S=0.0083 '/' Outflow=6.97 cfs 0.606 af

Pond E01P: Existing Catch Basin Peak Elev=184.38' Storage=11 cf Inflow=1.99 cfs 0.145 af

15.0" Round Culvert n=0.012 L=57.0' S=0.0049 '/' Outflow=1.98 cfs 0.145 af

Pond E02P: Existing Catch Basin Peak Elev=184.10' Storage=224 cf Inflow=6.08 cfs 0.448 af

Discarded=0.02 cfs 0.013 af Primary=6.08 cfs 0.435 af Outflow=6.09 cfs 0.448 af

Total Runoff Area = 16.948 ac Runoff Volume = 3.011 af Average Runoff Depth = 2.13" 76.01% Pervious = 12.882 ac 23.99% Impervious = 4.066 ac

Prepared by Berry Surveying & Engineering

Type III 24-hr 50YR-24HR Rainfall=7.02" Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 10

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 2S: Subcat #2 Runoff Area=164,530 sf 2.77% Impervious Runoff Depth>2.71" Flow Length=298' Tc=16.6 min UI Adjusted CN=61 Runoff=8.45 cfs 0.852 af

Subcatchment 3S: Subcat. #3 Runoff Area=46,611 sf 0.00% Impervious Runoff Depth>1.50" Flow Length=158' Slope=0.0200 '/' Tc=11.3 min CN=48 Runoff=1.28 cfs 0.133 af

Subcatchment 4S: Subcat. #4 Runoff Area=55,483 sf 0.00% Impervious Runoff Depth>0.83" Flow Length=674' Tc=43.2 min CN=40 Runoff=0.38 cfs 0.089 af

Subcatchment 30S: Subcat #30 Runoff Area=47,823 sf 4.45% Impervious Runoff Depth>2.91" Flow Length=87' Slope=0.0110 '/' Tc=11.3 min CN=63 Runoff=3.07 cfs 0.266 af

Subcatchment 31S: Subcat #31 Runoff Area=19,678 sf 56.06% Impervious Runoff Depth>4.93"

Tc=6.0 min CN=82 Runoff=2.52 cfs 0.186 af

Subcatchment 32S: Subcat #32 Runoff Area=37,918 sf 67.33% Impervious Runoff Depth>5.27"

Tc=6.0 min CN=85 Runoff=5.11 cfs 0.382 af

Subcatchment 41S: Subcat #41 Runoff Area=7,421 sf 61.70% Impervious Runoff Depth>5.60" Flow Length=342' Tc=14.7 min CN=88 Runoff=0.82 cfs 0.080 af

Subcatchment 43S: Subcat #43

Runoff Area=15,256 sf 64.41% Impervious Runoff Depth>5.49"
Flow Length=100' Tc=7.0 min CN=87 Runoff=2.07 cfs 0.160 af

Subcatchment 44S: Subcat #44 Runoff Area=14,458 sf 76.68% Impervious Runoff Depth>5.95" Flow Length=98' Tc=7.7 min CN=91 Runoff=2.02 cfs 0.165 af

Subcatchment 45S: Subcat #45

Runoff Area=16,893 sf 94.23% Impervious Runoff Depth>6.54"

Flow Length=330' Tc=6.0 min CN=96 Runoff=2.59 cfs 0.211 af

Subcatchment 46S: Subcat #46 Runoff Area=7,602 sf 100.00% Impervious Runoff Depth>6.78" Tc=6.0 min CN=98 Runoff=1.17 cfs 0.099 af

Subcatchment 47S: Subcat #47 Runoff Area=3,200 sf 100.00% Impervious Runoff Depth>6.78" Tc=6.0 min CN=98 Runoff=0.49 cfs 0.041 af

Subcatchment 50S: Subcat #50

Runoff Area=11,704 sf 0.00% Impervious Runoff Depth>0.37"

Flow Length=182' Tc=11.7 min CN=33 Runoff=0.03 cfs 0.008 af

Subcatchment 62S: Subcat. #62

Runoff Area=45,124 sf 0.15% Impervious Runoff Depth>3.01"
Flow Length=165' Tc=14.3 min CN=64 Runoff=2.77 cfs 0.260 af

Subcatchment 63S: Subcat. #63

Runoff Area=16,040 sf 0.00% Impervious Runoff Depth>2.42"
Flow Length=150' Tc=10.8 min CN=58 Runoff=0.84 cfs 0.074 af

Subcatchment 64S: Subcat #64 Runoff Area=7,675 sf 0.00% Impervious Runoff Depth>2.42"
Tc=6.0 min CN=58 Runoff=0.47 cfs 0.036 af

Type III 24-hr 50YR-24HR Rainfall=7.02"

| Prepared by Berry Surveying & Engineering                           | Printed 4/17/2024 |
|---------------------------------------------------------------------|-------------------|
| HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC | Page 11           |

| Subcatchment 70S: Subcat #70 | Runoff Area=51,128 s  | f 43.96% Impervious | Runoff Depth>3.31"    |
|------------------------------|-----------------------|---------------------|-----------------------|
|                              | Flow Length=345' Tc=1 | 4.1 min CN=67 Rur   | off=3.50 cfs 0.324 af |

Subcatchment 71S: Subcat #71 Runoff Area=100,796 sf 29.45% Impervious Runoff Depth>1.93" Flow Length=563' Tc=39.5 min CN=53 Runoff=2.39 cfs 0.372 af

Subcatchment 72S: Subcat #72

Runoff Area=68,928 sf 42.73% Impervious Runoff Depth>2.89"
Flow Length=478' Tc=32.0 min CN=63 Runoff=2.91 cfs 0.382 af

Reach 30aR: Overland Flow

Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af

n=0.022 L=151.0' S=0.0063 '/' Capacity=12.85 cfs Outflow=0.00 cfs 0.000 af

**Reach 30bR: Overland Flow**Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.022 L=35.0' S=0.2286'/' Capacity=77.47 cfs Outflow=0.00 cfs 0.000 af

**Reach 30cR: Overland Flow**Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af n=0.035 L=58.0' S=0.0948'/' Capacity=31.37 cfs Outflow=0.00 cfs 0.000 af

**Reach 71aR: Wooded Swale**Avg. Flow Depth=0.63' Max Vel=1.46 fps Inflow=5.16 cfs 0.725 af n=0.035 L=78.5' S=0.0038'/ Capacity=61.73 cfs Outflow=5.16 cfs 0.724 af

**Reach 72R: Roadside Swale**Avg. Flow Depth=0.31' Max Vel=1.90 fps Inflow=2.86 cfs 0.354 af n=0.022 L=495.6' S=0.0060'/' Capacity=33.12 cfs Outflow=2.82 cfs 0.353 af

Reach 200R: Final Reach #200 Inflow=8.45 cfs 0.852 af
Outflow=8.45 cfs 0.852 af

**Reach 300R: Final Reach #300**Inflow=6.43 cfs 1.461 af
Outflow=6.43 cfs 1.461 af

Reach 400R: Final Reach #400 Inflow=6.44 cfs 0.991 af
Outflow=6.44 cfs 0.991 af

**Pond 30P: Infiltration/Trench**Peak Elev=183.91' Storage=2,238 cf Inflow=3.07 cfs 0.266 af Discarded=0.79 cfs 0.114 af Primary=0.64 cfs 0.150 af Secondary=0.00 cfs 0.000 af Outflow=1.43 cfs 0.264 af

Pond 71P: Existing Catch Basin

Peak Elev=189.23' Inflow=5.16 cfs 0.725 af

18.0" Round Culvert n=0.012 L=10.2' S=0.0098 '/' Outflow=5.16 cfs 0.725 af

Pond 72P: Existing Depression Peak Elev=196.26' Storage=179 cf Inflow=2.91 cfs 0.382 af

Discarded=0.02 cfs 0.026 af Primary=2.86 cfs 0.354 af Outflow=2.89 cfs 0.380 af

Pond 201P: Bioretention W/ ISR #201 Peak Elev=185.74' Storage=5,447 cf Inflow=3.50 cfs 0.324 af Primary=0.02 cfs 0.025 af Secondary=1.23 cfs 0.234 af Outflow=1.26 cfs 0.259 af

**Pond 202P: Bioretention W/ ISR #202** Peak Elev=179.80' Storage=22,760 cf Inflow=10.32 cfs 0.936 af Primary=0.09 cfs 0.112 af Secondary=1.10 cfs 0.597 af Tertiary=0.00 cfs 0.000 af Outflow=1.19 cfs 0.709 af

Pond 203P: Infiltration Pond #203 Peak Elev=174.61' Storage=4,928 cf Inflow=1.46 cfs 0.783 af Discarded=0.21 cfs 0.241 af Primary=0.90 cfs 0.433 af Outflow=1.12 cfs 0.674 af

Pond 204P: Detention Pond #204 Peak Elev=179.30' Storage=6,074 cf Inflow=9.17 cfs 0.818 af Primary=5.24 cfs 0.806 af Secondary=0.00 cfs 0.000 af Outflow=5.24 cfs 0.806 af

Type III 24-hr 50YR-24HR Rainfall=7.02"

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Printed 4/17/2024

Page 12

Pond C41P: Catch Basin #41 Peak Elev=184.43' Storage=5 cf Inflow=0.82 cfs 0.080 af

15.0" Round Culvert n=0.012 L=54.7' S=0.0686 '/' Outflow=0.82 cfs 0.080 af

Pond C42P: Catch Basin #42 Peak Elev=181.27' Storage=14 cf Inflow=1.37 cfs 0.230 af

15.0" Round Culvert n=0.012 L=63.0' S=0.0054 '/' Outflow=1.38 cfs 0.230 af

Pond C43P: Catch Basin #43 Peak Elev=181.22' Storage=9 cf Inflow=2.07 cfs 0.160 af

15.0" Round Culvert n=0.012 L=60.0' S=0.0233 '/' Outflow=2.07 cfs 0.160 af

Pond C44P: Catch Basin #44 Peak Elev=180.78' Storage=22 cf Inflow=4.09 cfs 0.325 af

15.0" Round Culvert n=0.012 L=48.0' S=0.0083 '/' Outflow=4.06 cfs 0.325 af

Pond C45P: Catch Basin #45 Peak Elev=182.21' Storage=10 cf Inflow=2.59 cfs 0.211 af

15.0" Round Culvert  $\,$  n=0.012 L=87.2' S=0.0149 '/' Outflow=2.59 cfs 0.211 af

Pond C46P: Catch Basin #46 Peak Elev=181.04' Storage=13 cf Inflow=3.76 cfs 0.310 af

15.0" Round Culvert n=0.012 L=68.0' S=0.0206 '/' Outflow=3.76 cfs 0.310 af

Pond C47P: Catch Basin #47 Peak Elev=180.38' Storage=24 cf Inflow=8.28 cfs 0.676 af

18.0" Round Culvert n=0.012 L=40.0' S=0.0063 '/' Outflow=8.28 cfs 0.676 af

Pond C50P: Inlet Sump Peak Elev=184.77' Storage=16 cf Inflow=5.19 cfs 0.733 af

18.0" Round Culvert n=0.012 L=107.5' S=0.0051 '/' Outflow=5.19 cfs 0.732 af

Pond D51P: DMH #51 Peak Elev=182.16' Storage=0.000 af Inflow=1.26 cfs 0.259 af

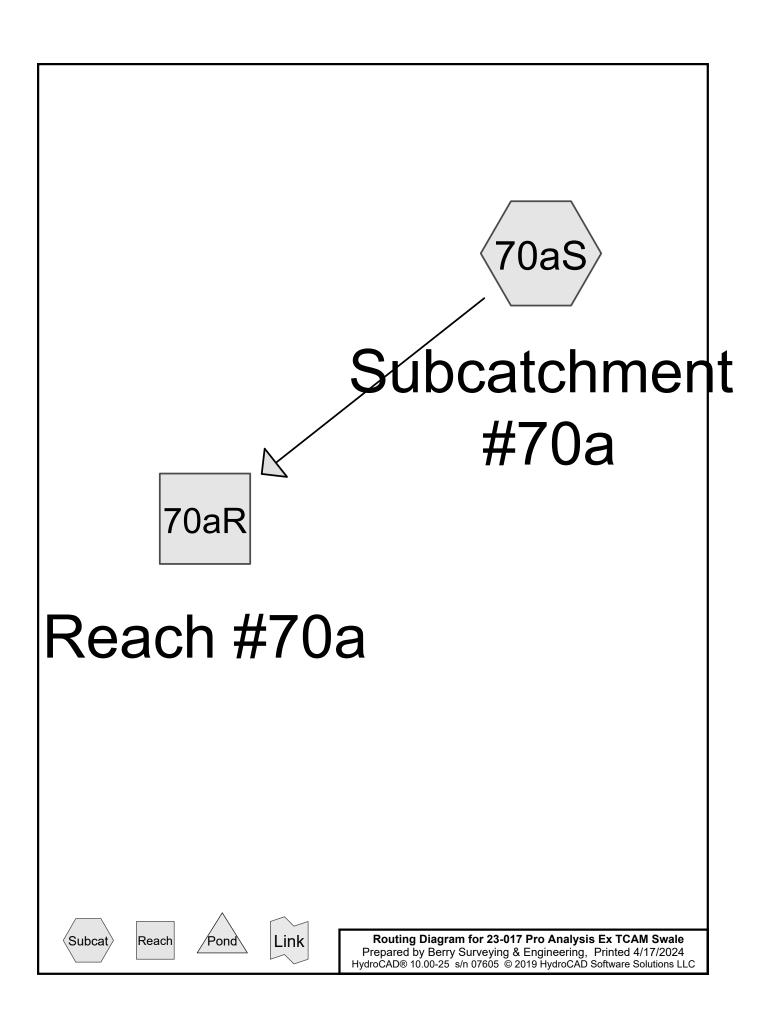
18.0" Round Culvert n=0.012 L=68.0' S=0.0051 '/' Outflow=1.25 cfs 0.259 af

Pond D52P: DMH #52 Peak Elev=181.18' Storage=19 cf Inflow=8.70 cfs 0.783 af

24.0" Round Culvert n=0.012 L=110.0' S=0.0055 '/' Outflow=8.70 cfs 0.783 af

Pond D53P: DMH #53 Peak Elev=180.33' Storage=17 cf Inflow=8.70 cfs 0.783 af

24.0" Round Culvert n=0.012 L=120.0' S=0.0083 '/' Outflow=8.70 cfs 0.783 af


Pond E01P: Existing Catch Basin Peak Elev=184.54' Storage=13 cf Inflow=2.52 cfs 0.186 af

15.0" Round Culvert n=0.012 L=57.0' S=0.0049 '/' Outflow=2.51 cfs 0.186 af

Pond E02P: Existing Catch Basin Peak Elev=184.25' Storage=262 cf Inflow=7.62 cfs 0.568 af

Discarded=0.02 cfs 0.015 af Primary=7.63 cfs 0.553 af Outflow=7.64 cfs 0.568 af

Total Runoff Area = 16.948 ac Runoff Volume = 4.119 af Average Runoff Depth = 2.92" 76.01% Pervious = 12.882 ac 23.99% Impervious = 4.066 ac



23-017 Pro Analysis Ex TCAM Swale
Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Printed 4/17/2024 Page 2

# Area Listing (all nodes)

| Area    | CN | Description                          |
|---------|----|--------------------------------------|
| (acres) |    | (subcatchment-numbers)               |
| 0.112   | 39 | >75% Grass cover, Good, HSG A (70aS) |
| 0.064   | 98 | Paved parking, HSG A (70aS)          |
| 0.043   | 30 | Woods, Good, HSG A (70aS)            |
| 0.219   | 55 | TOTAL AREA                           |

23-017 Pro Analysis Ex TCAM Swale
Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Printed 4/17/2024 Page 3

# Soil Listing (all nodes)

| Area    | Soil  | Subcatchment |
|---------|-------|--------------|
| (acres) | Group | Numbers      |
| 0.219   | HSG A | 70aS         |
| 0.000   | HSG B |              |
| 0.000   | HSG C |              |
| 0.000   | HSG D |              |
| 0.000   | Other |              |
| 0.219   |       | TOTAL AREA   |

23-017 Pro Analysis Ex TCAM Swale
Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Printed 4/17/2024 Page 4

# **Ground Covers (all nodes)**

| <br>HSG-A<br>(acres) | HSG-B<br>(acres) | HSG-C<br>(acres) | HSG-D<br>(acres) | Other (acres) | Total<br>(acres) | Ground<br>Cover        | Subcatchment<br>Numbers |
|----------------------|------------------|------------------|------------------|---------------|------------------|------------------------|-------------------------|
| 0.112                | 0.000            | 0.000            | 0.000            | 0.000         | 0.112            | >75% Grass cover, Good | 70aS                    |
| 0.064                | 0.000            | 0.000            | 0.000            | 0.000         | 0.064            | Paved parking          | 70aS                    |
| 0.043                | 0.000            | 0.000            | 0.000            | 0.000         | 0.043            | Woods, Good            | 70aS                    |
| 0.219                | 0.000            | 0.000            | 0.000            | 0.000         | 0.219            | TOTAL AREA             |                         |

#### 23-017 Pro Analysis Ex TCAM Swale

Type III 24-hr 50YR-24HR Rainfall=7.02" Printed 4/17/2024

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page F

Page 5

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 70aS: Subcatchment #70a Runoff Area=9,558 sf 29.27% Impervious Runoff Depth>2.13"

Tc=6.0 min CN=55 Runoff=0.51 cfs 0.039 af

Reach 70aR: Reach #70a

Avg. Flow Depth=0.11' Max Vel=1.94 fps Inflow=0.51 cfs 0.039 af n=0.022 L=13.0' S=0.0192 '/' Capacity=178.16 cfs Outflow=0.51 cfs 0.039 af

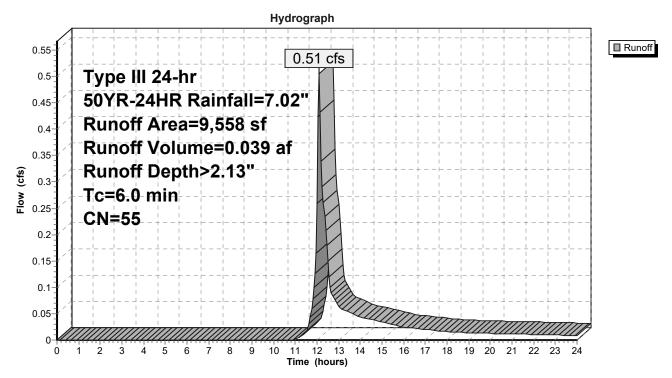
Total Runoff Area = 0.219 ac Runoff Volume = 0.039 af Average Runoff Depth = 2.13" 70.73% Pervious = 0.155 ac 29.27% Impervious = 0.064 ac

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 6

# Summary for Subcatchment 70aS: Subcatchment #70a


Runoff 0.51 cfs @ 12.10 hrs, Volume= 0.039 af, Depth> 2.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 50YR-24HR Rainfall=7.02"

| A     | rea (sf) | CN     | Description |             |               |              |  |
|-------|----------|--------|-------------|-------------|---------------|--------------|--|
|       | 4,896    | 39     | >75% Gras   | s cover, Go | od, HSG A     |              |  |
|       | 2,798    | 98     | Paved park  | ing, HSG A  | 1             |              |  |
|       | 1,864    | 30     | Woods, Go   |             |               |              |  |
|       | 9,558    |        | Weighted A  | •           |               |              |  |
|       | 6,760    |        | 70.73% Pei  | vious Area  |               |              |  |
|       | 2,798    |        | 29.27% lmp  | pervious Ar | ea            |              |  |
| _     |          |        |             |             |               |              |  |
| Тс    | Length   | Slope  | ,           | Capacity    | Description   |              |  |
| (min) | (feet)   | (ft/ft | (ft/sec)    | (cfs)       |               |              |  |
| 6.0   |          |        |             |             | Direct Entry, | Direct Entry |  |

**Direct Entry, Direct Entry** 

#### Subcatchment 70aS: Subcatchment #70a



Printed 4/17/2024

HydroCAD® 10.00-25 s/n 07605 © 2019 HydroCAD Software Solutions LLC

Page 7

### Summary for Reach 70aR: Reach #70a

Inflow Area = 0.219 ac, 29.27% Impervious, Inflow Depth > 2.13" for 50YR-24HR event

Inflow = 0.51 cfs @ 12.10 hrs, Volume= 0.039 af

Outflow = 0.51 cfs (a) 12.10 hrs, Volume= 0.039 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

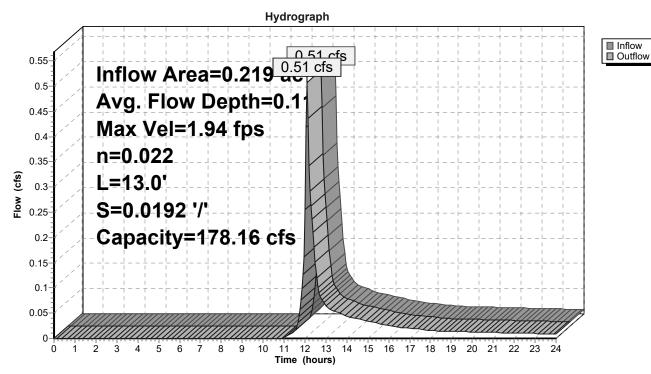
Max. Velocity= 1.94 fps, Min. Travel Time= 0.1 min Avg. Velocity = 0.76 fps, Avg. Travel Time= 0.3 min

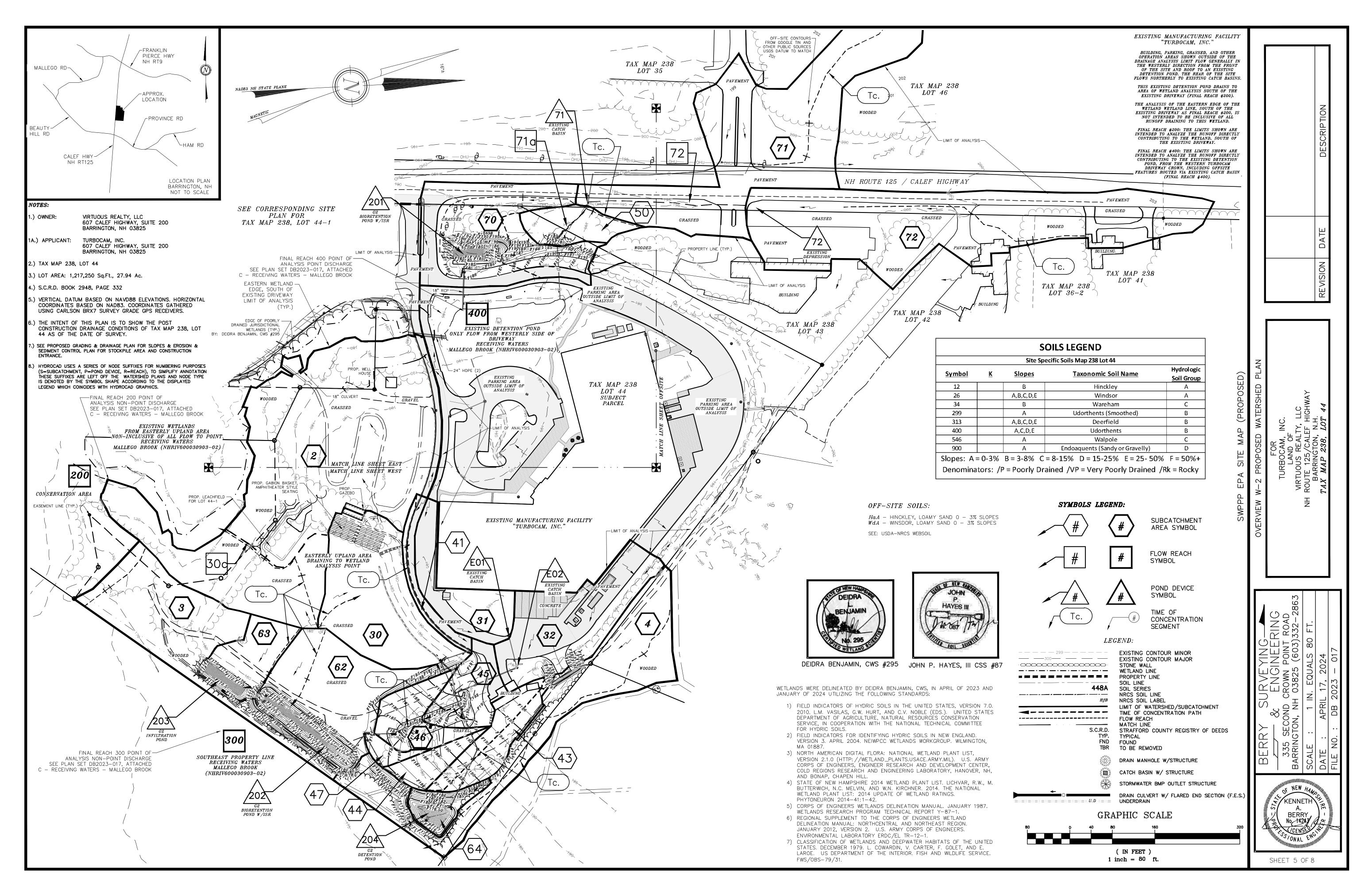
Peak Storage= 3 cf @ 12.10 hrs

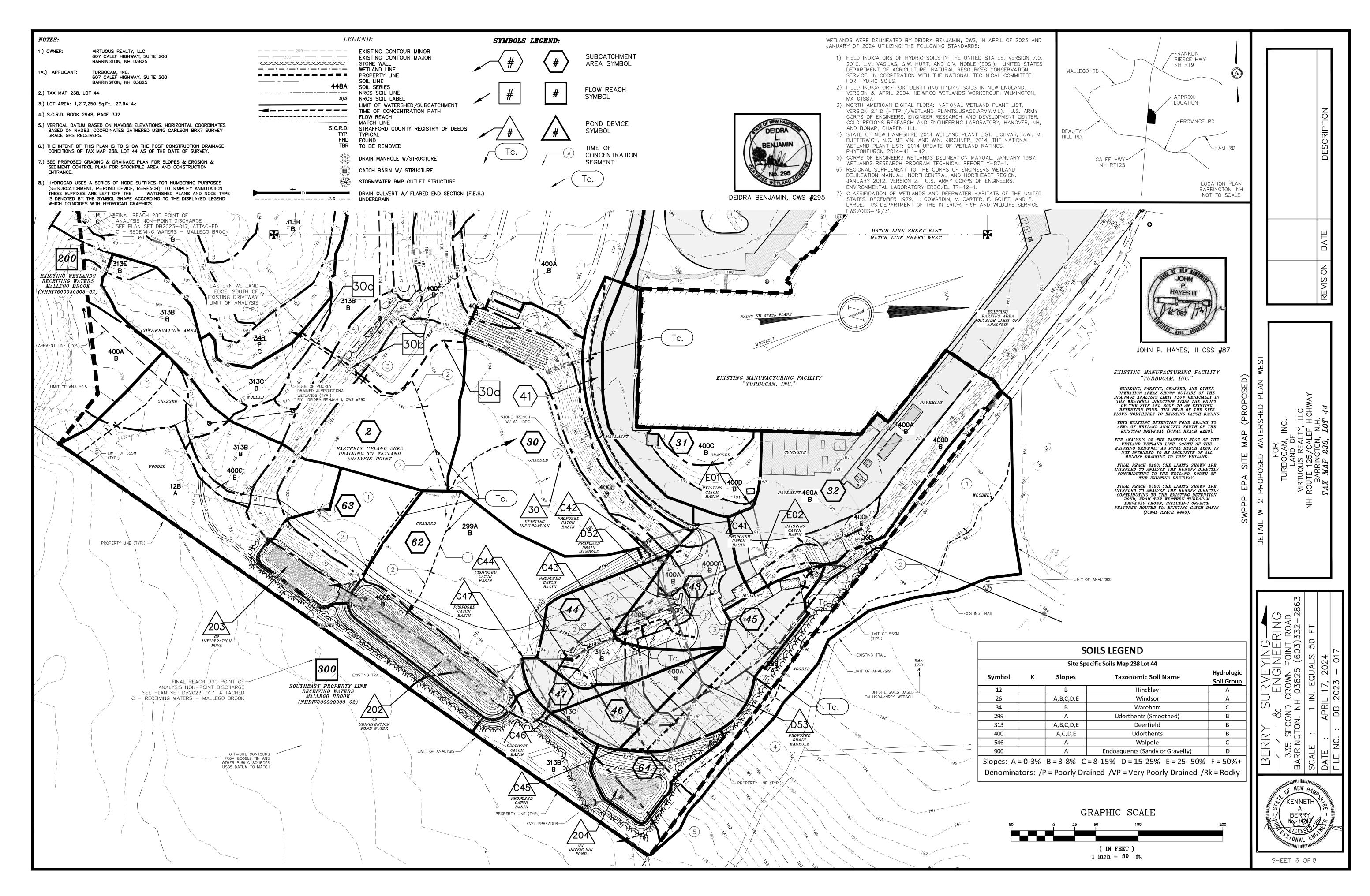
Average Depth at Peak Storage= 0.11'

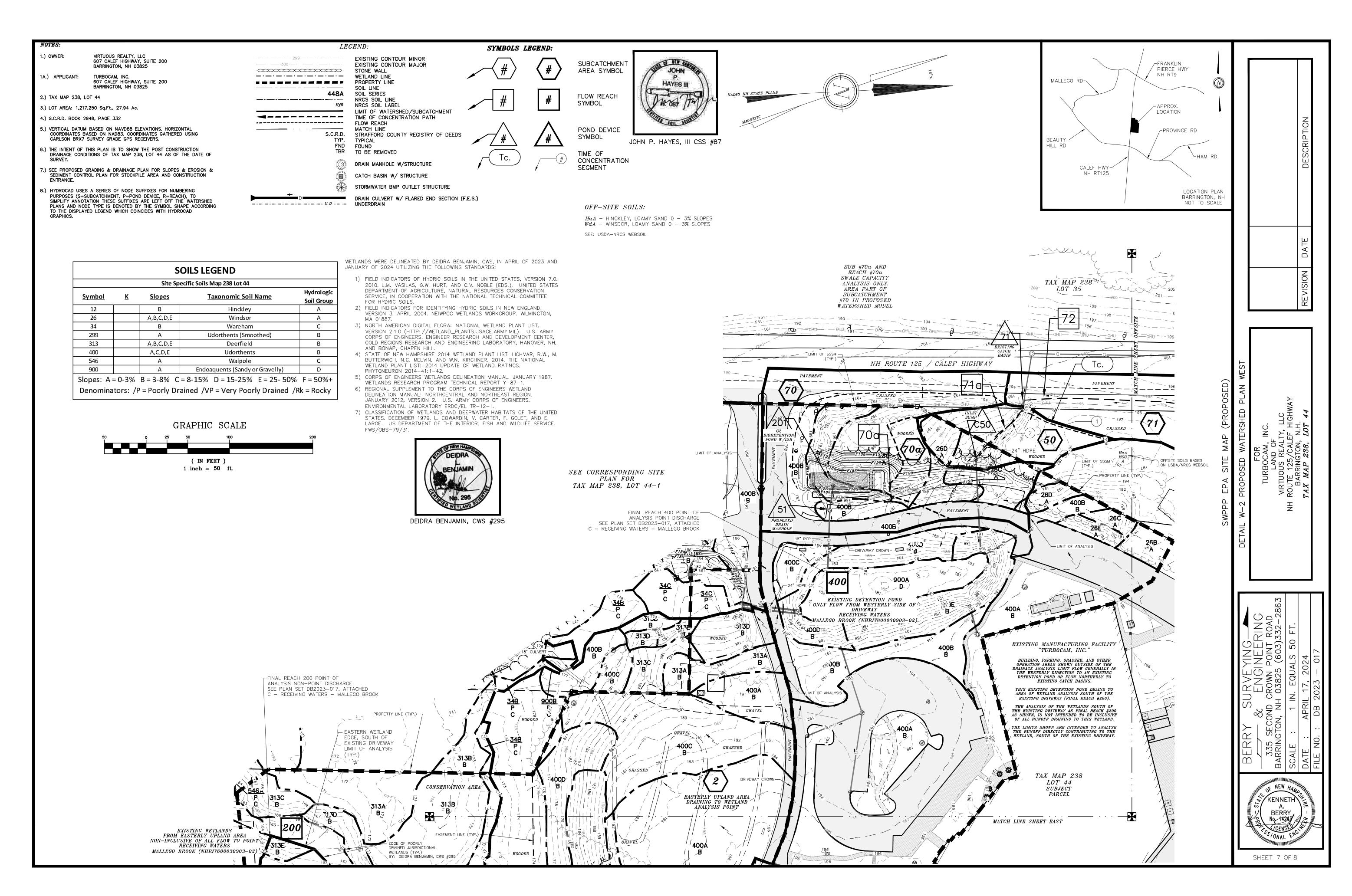
Bank-Full Depth= 2.00' Flow Area= 18.0 sf, Capacity= 178.16 cfs

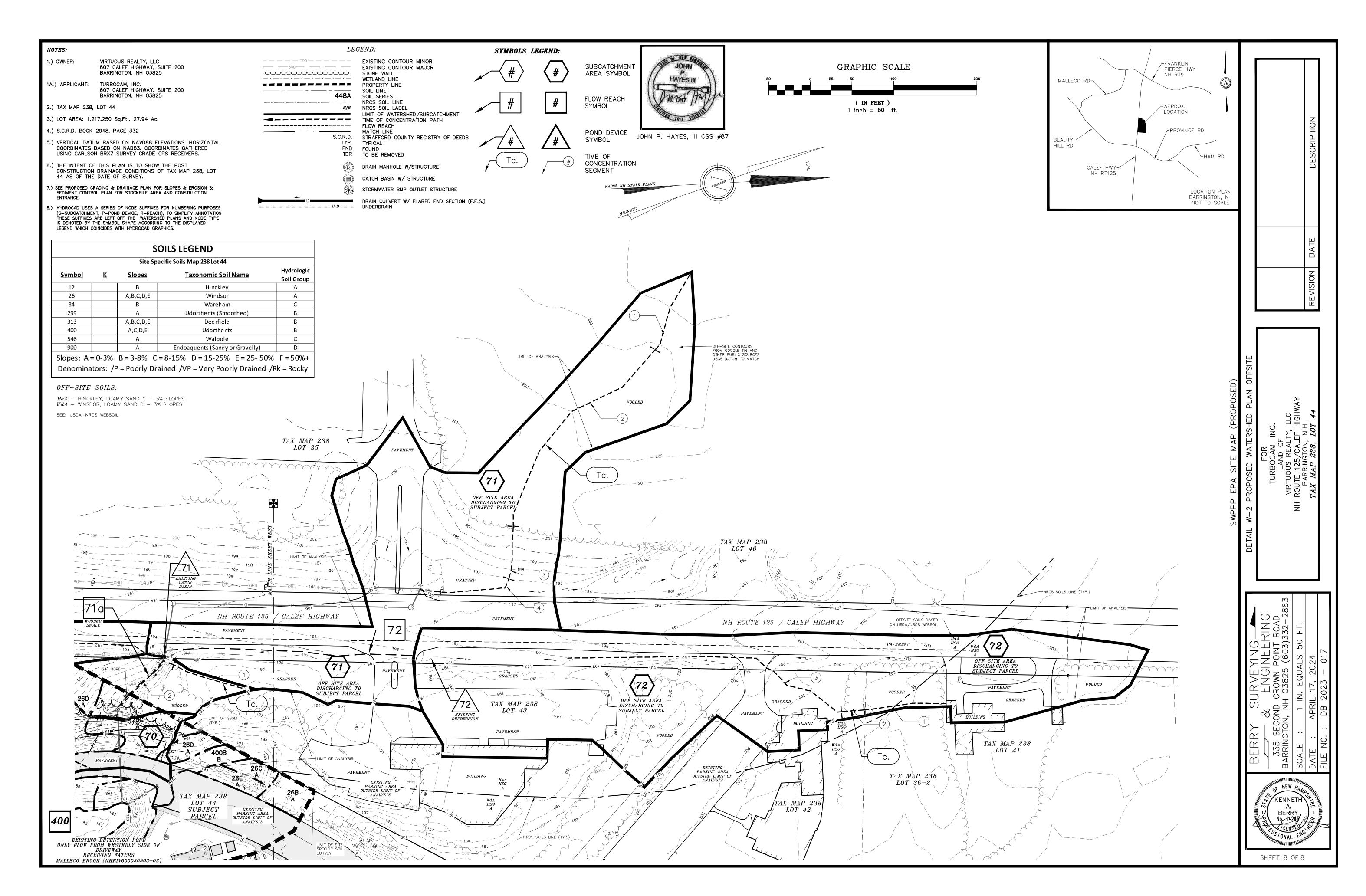
2.00' x 2.00' deep channel, n= 0.022 Earth, clean & straight


Side Slope Z-value= 4.0 3.0 '/' Top Width= 16.00'


Length= 13.0' Slope= 0.0192 '/'


Inlet Invert= 185.50', Outlet Invert= 185.25'





#### Reach 70aR: Reach #70a











# Appendix III - Calculations, Charts, & Graphs

**Extreme Precipitation Tables** 

**Rip Rap Calculations** 

**AoT Stormwater Treatment Spreadsheets** 

NCRS USDA Web-soil Map

Site Specific Soil Survey Report & Plan

Stormwater System Management: Inspection & Maintenance Manual, Plan, Invasive

Species & NHDES Green SnoPro Utilization Chart

Infiltration Feasibility Study & Report

Ksat Values for New Hampshire Soils, SSSNNE Special Publication #5, 2009

**UNH Stormwater Center Hybrid Bioretention Template** 

Filtrexx Specifications Sheets

# **Extreme Precipitation Tables**

#### **Northeast Regional Climate Center**

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

#### Metadata for Point

Smoothing Yes

State Location

Latitude43.205 degrees NorthLongitude70.995 degrees West

Elevation 50 feet

**Date/Time** Fri Apr 07 2023 13:37:20 GMT-0400 (Eastern Daylight Time)

#### **Extreme Precipitation Estimates**

|       | 5min | 10min | 15min | 30min | 60min | 120min |       | 1hr  | 2hr  | 3hr  | 6hr  | 12hr | 24hr  | 48hr  |       | 1day  | 2day  | 4day  | 7day  | 10day |       |
|-------|------|-------|-------|-------|-------|--------|-------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1yr   | 0.26 | 0.40  | 0.50  | 0.65  | 0.81  | 1.03   | 1yr   | 0.70 | 0.98 | 1.20 | 1.53 | 1.97 | 2.56  | 2.81  | 1yr   | 2.27  | 2.71  | 3.12  | 3.84  | 4.41  | 1yr   |
| 2yr   | 0.32 | 0.49  | 0.61  | 0.80  | 1.01  | 1.28   | 2yr   | 0.87 | 1.16 | 1.49 | 1.89 | 2.41 | 3.08  | 3.43  | 2yr   | 2.73  | 3.30  | 3.80  | 4.52  | 5.15  | 2yr   |
| 5yr   | 0.37 | 0.57  | 0.72  | 0.96  | 1.23  | 1.57   | 5yr   | 1.06 | 1.44 | 1.84 | 2.36 | 3.03 | 3.89  | 4.39  | 5yr   | 3.45  | 4.22  | 4.83  | 5.70  | 6.45  | 5yr   |
| 10yr  | 0.40 | 0.63  | 0.80  | 1.09  | 1.42  | 1.84   | 10yr  | 1.22 | 1.69 | 2.17 | 2.80 | 3.61 | 4.65  | 5.29  | 10yr  | 4.11  | 5.08  | 5.81  | 6.80  | 7.65  | 10yr  |
| 25yr  | 0.46 | 0.74  | 0.94  | 1.30  | 1.72  | 2.27   | 25yr  | 1.49 | 2.08 | 2.69 | 3.50 | 4.54 | 5.87  | 6.77  | 25yr  | 5.20  | 6.51  | 7.41  | 8.58  | 9.59  | 25yr  |
| 50yr  | 0.52 | 0.83  | 1.06  | 1.49  | 2.00  | 2.66   | 50yr  | 1.73 | 2.45 | 3.17 | 4.15 | 5.41 | 7.02  | 8.17  | 50yr  | 6.21  | 7.85  | 8.91  | 10.24 | 11.39 | 50yr  |
| 100yr | 0.58 | 0.94  | 1.21  | 1.71  | 2.33  | 3.12   | 100yr | 2.01 | 2.88 | 3.74 | 4.92 | 6.43 | 8.39  | 9.86  | 100yr | 7.42  | 9.48  | 10.72 | 12.23 | 13.53 | 100yr |
| 200yr | 0.64 | 1.05  | 1.37  | 1.96  | 2.71  | 3.68   | 200yr | 2.34 | 3.39 | 4.42 | 5.85 | 7.68 | 10.03 | 11.90 | 200yr | 8.87  | 11.44 | 12.89 | 14.61 | 16.07 | 200yr |
| 500yr | 0.76 | 1.25  | 1.63  | 2.37  | 3.32  | 4.55   | 500yr | 2.86 | 4.21 | 5.49 | 7.32 | 9.67 | 12.70 | 15.27 | 500yr | 11.24 | 14.68 | 16.47 | 18.49 | 20.21 | 500yr |

#### **Lower Confidence Limits**

|       | 5min | 10min | 15min | 30min | 60min | 120min |       | 1hr  | 2hr  | 3hr  | 6hr  | 12hr | 24hr | 48hr  |       | 1day | 2day  | 4day  | 7day  | 10day |       |
|-------|------|-------|-------|-------|-------|--------|-------|------|------|------|------|------|------|-------|-------|------|-------|-------|-------|-------|-------|
| 1yr   | 0.24 | 0.36  | 0.45  | 0.60  | 0.74  | 0.90   | 1yr   | 0.64 | 0.88 | 0.91 | 1.25 | 1.52 | 1.94 | 2.49  | 1yr   | 1.72 | 2.39  | 2.92  | 3.28  | 3.96  | 1yr   |
| 2yr   | 0.31 | 0.48  | 0.60  | 0.81  | 0.99  | 1.18   | 2yr   | 0.86 | 1.15 | 1.36 | 1.82 | 2.34 | 2.99 | 3.33  | 2yr   | 2.65 | 3.21  | 3.69  | 4.41  | 5.03  | 2yr   |
| 5yr   | 0.35 | 0.54  | 0.67  | 0.92  | 1.16  | 1.40   | 5yr   | 1.01 | 1.37 | 1.61 | 2.14 | 2.77 | 3.61 | 4.05  | 5yr   | 3.20 | 3.89  | 4.50  | 5.35  | 6.03  | 5yr   |
| 10yr  | 0.38 | 0.59  | 0.73  | 1.02  | 1.32  | 1.60   | 10yr  | 1.14 | 1.56 | 1.82 | 2.43 | 3.12 | 4.14 | 4.69  | 10yr  | 3.66 | 4.51  | 5.22  | 6.18  | 6.90  | 10yr  |
| 25yr  | 0.44 | 0.67  | 0.83  | 1.19  | 1.57  | 1.91   | 25yr  | 1.35 | 1.87 | 2.12 | 2.84 | 3.64 | 4.94 | 5.67  | 25yr  | 4.37 | 5.45  | 6.37  | 7.49  | 8.28  | 25yr  |
| 50yr  | 0.49 | 0.74  | 0.92  | 1.33  | 1.79  | 2.20   | 50yr  | 1.54 | 2.15 | 2.37 | 3.20 | 4.08 | 5.65 | 6.54  | 50yr  | 5.00 | 6.29  | 7.40  | 8.65  | 9.55  | 50yr  |
| 100yr | 0.55 | 0.83  | 1.03  | 1.49  | 2.05  | 2.52   | 100yr | 1.77 | 2.46 | 2.67 | 3.60 | 4.55 | 6.44 | 7.54  | 100yr | 5.70 | 7.25  | 8.61  | 10.00 | 10.92 | 100yr |
| 200yr | 0.61 | 0.92  | 1.16  | 1.68  | 2.34  | 2.89   | 200yr | 2.02 | 2.83 | 2.99 | 4.05 | 5.08 | 7.34 | 8.85  | 200yr | 6.50 | 8.51  | 10.03 | 11.55 | 12.51 | 200yr |
| 500yr | 0.71 | 1.06  | 1.37  | 1.99  | 2.82  | 3.50   | 500yr | 2.44 | 3.42 | 3.50 | 4.72 | 5.91 | 8.68 | 10.73 | 500yr | 7.68 | 10.32 | 12.28 | 14.00 | 14.91 | 500yr |

#### **Upper Confidence Limits**

| 1 1   |      |       |       |       |       |        |       |      |      |      |      |       |       |       |       |       |       |       |       |       |       |
|-------|------|-------|-------|-------|-------|--------|-------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|       | 5min | 10min | 15min | 30min | 60min | 120min |       | 1hr  | 2hr  | 3hr  | 6hr  | 12hr  | 24hr  | 48hr  |       | 1day  | 2day  | 4day  | 7day  | 10day |       |
| 1yr   | 0.28 | 0.43  | 0.53  | 0.71  | 0.87  | 1.07   | 1yr   | 0.75 | 1.05 | 1.23 | 1.72 | 2.18  | 2.76  | 3.02  | 1yr   | 2.44  | 2.90  | 3.34  | 4.12  | 4.73  | 1yr   |
| 2yr   | 0.33 | 0.50  | 0.62  | 0.84  | 1.03  | 1.24   | 2yr   | 0.89 | 1.21 | 1.46 | 1.94 | 2.50  | 3.19  | 3.54  | 2yr   | 2.82  | 3.41  | 3.92  | 4.66  | 5.30  | 2yr   |
| 5yr   | 0.39 | 0.60  | 0.75  | 1.02  | 1.30  | 1.57   | 5yr   | 1.12 | 1.54 | 1.84 | 2.47 | 3.16  | 4.18  | 4.71  | 5yr   | 3.70  | 4.53  | 5.18  | 6.06  | 6.85  | 5yr   |
| 10yr  | 0.45 | 0.70  | 0.87  | 1.21  | 1.56  | 1.90   | 10yr  | 1.35 | 1.86 | 2.21 | 3.01 | 3.80  | 5.16  | 5.87  | 10yr  | 4.57  | 5.64  | 6.42  | 7.40  | 8.32  | 10yr  |
| 25yr  | 0.55 | 0.84  | 1.05  | 1.49  | 1.96  | 2.44   | 25yr  | 1.70 | 2.39 | 2.84 | 3.91 | 4.87  | 6.83  | 7.84  | 25yr  | 6.04  | 7.54  | 8.50  | 9.75  | 10.75 | 25yr  |
| 50yr  | 0.64 | 0.97  | 1.21  | 1.74  | 2.34  | 2.94   | 50yr  | 2.02 | 2.87 | 3.44 | 4.75 | 5.90  | 8.45  | 9.79  | 50yr  | 7.48  | 9.41  | 10.54 | 11.96 | 13.15 | 50yr  |
| 100yr | 0.74 | 1.12  | 1.41  | 2.03  | 2.79  | 3.54   | 100yr | 2.41 | 3.46 | 4.17 | 5.80 | 7.15  | 10.45 | 12.22 | 100yr | 9.25  | 11.75 | 13.05 | 14.70 | 16.05 | 100yr |
| 200yr | 0.86 | 1.30  | 1.64  | 2.38  | 3.32  | 4.28   | 200yr | 2.86 | 4.18 | 5.06 | 7.08 | 8.66  | 12.98 | 15.08 | 200yr | 11.49 | 14.50 | 16.16 | 18.04 | 19.63 | 200yr |
| 500yr | 1.05 | 1.56  | 2.01  | 2.93  | 4.16  | 5.48   | 500yr | 3.59 | 5.35 | 6.52 | 9.23 | 11.17 | 17.33 | 20.20 | 500yr | 15.33 | 19.42 | 21.45 | 23.71 | 25.63 | 500yr |



#### RIP RAP CALCULATIONS

23-017 Calef Highway
TurboCam International Lot 44
Barrington, NH

## **Berry Surveying & Engineering**

335 Second Crown Point Road TURBOCAM, INC., Barrington, NH

17-Apr-24

Rip Rap equations were obtained from the Stormwater Management and Erosion

Control Handbook for Urban and Developing Areas in New

Hampshire. Rip Rap was sized for the 25 year storm event. (Some d50 sizes and T values have been modified)

#### TAILWATER < HALF THE Do

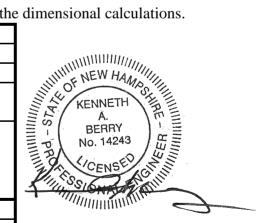
La = (1.8 x Q) / Do 3/2 + (7 x Do) Q = Peak Flow & Do is Pipe Diameter

W = La + 3\*Do or defined channel width

 $d50 = (0.02 \times Q4/3) / (Tw \times Do)$ 

Tw = Tailwater Depth

T = Largest Stone Size x 1.5


Culvert or Tailwater Discharge Diameter Length of Width of d50-Stone Catch Basin (Feet) (C.F.S.) of Pipe Rip Rap Rip Rap Rip Rap Actual TwQ Do La (feet) W (feet) d50(ft.) Size Thickness

| 18" HDPE (Pond #C50P) | 0.30 | 3.39 | 1.50 | 13.8 | 18.3 | 0.23 | 0.50 | 1.20 |
|-----------------------|------|------|------|------|------|------|------|------|
| 18" RCP (Pond #D51P)  | 0.30 | 0.68 | 1.50 | 11.2 | 15.7 | 0.03 | 0.50 | 1.20 |
| 24" HDPE (Pond #D53P) | 0.40 | 6.97 | 2.00 | 18.4 | 24.4 | 0.33 | 0.50 | 1.20 |
| 18" HDPE (Pond #204P) | 0.30 | 4.16 | 1.50 | 14.6 | 19.1 | 0.30 | 0.50 | 1.20 |
| 18" HDPE (Pond #C47P) | 0.30 | 6.84 | 1.50 | 17.2 | 21.7 | 0.58 | 0.67 | 2.00 |
| 15" HDPE (Pond #202P) | 0.25 | 0.68 | 1.25 | 9.6  | 13.4 | 0.04 | 0.50 | 1.20 |

Please note that the designer chose to use the 25 Year Event for the dimensional calculations.

| Table 7-24 Recommended Rip Rap Gradation Ranges |     |                        |   |        |  |  |
|-------------------------------------------------|-----|------------------------|---|--------|--|--|
|                                                 |     |                        |   |        |  |  |
| d50 Size =                                      | 0.5 | Feet                   | 6 | Inches |  |  |
| % of Weight Smaller                             |     | Size of Stone (Inches) |   |        |  |  |
| Than the Given d50 Size                         |     | From To                |   |        |  |  |
| 100%                                            |     | 9                      |   | 12     |  |  |
| 85%                                             |     | 8                      |   | 11     |  |  |
| 50%                                             |     | 6                      |   | 9      |  |  |
| 15%                                             |     | 2                      |   | 3      |  |  |
| Table 7-24 Recommended Rip Rap Gradation Ranges |     |                        |   |        |  |  |

| F                       | 1                      |      | 0 |        |
|-------------------------|------------------------|------|---|--------|
|                         |                        |      |   |        |
| d50 Size =              | 0.67                   | Feet | 8 | Inches |
| % of Weight Smaller     | Size of Stone (Inches) |      |   |        |
| Than the Given d50 Size |                        | From |   | To     |
| 100%                    |                        | 12   |   | 16     |
| 85%                     |                        | 10   |   | 14     |
| 50%                     |                        | 8    |   | 12     |
| 15%                     |                        | 2    |   | 4      |
|                         |                        |      |   | •      |





# GROUNDWATER RECHARGE VOLULME (GRV) CALCULATION (Env-Wq 1507.04)

| Г | 0.22         | ac     | Area of HSG A soil that was replaced by impervious cover                     | 0.40" |  |
|---|--------------|--------|------------------------------------------------------------------------------|-------|--|
| Н | 0.54         |        | Area of HSG B soil that was replaced by impervious cover                     | 0.25" |  |
| L | 0.54         | ac     | , , ,                                                                        |       |  |
|   |              | ac     | Area of HSG C soil that was replaced by impervious cover                     | 0.10" |  |
|   |              | ac     | Area of HSG D soil or impervious cover that was replaced by impervious cover | 0.0"  |  |
|   | 0.29         | inches | Rd = Weighted groundwater recharge depth                                     |       |  |
|   | 0.2218 ac-in |        | GRV = AI * Rd                                                                |       |  |
|   | 805          | cf     | GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")                              |       |  |

| Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04): |
|-------------------------------------------------------------------------------------------------------------------|
| Infiltration Pond #203 stores 4,586 cf below the lowest orifice elevation of 174.50 (Emergency Spillway)          |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |



# BIORETENTION SYSTEM WITH INTERNAL STORAGE RESERVOIR (UNH Stormwater Center Specification)

Last Revised: Sept 2020

#### Type/Node Name: Bioretention W/ ISR #201 (Pond 201P)

Enter the node name in the drainage analysis if applicable.

|                  | Effect the flowe flame in the dramage analysis it applicable.         |                        |
|------------------|-----------------------------------------------------------------------|------------------------|
| 1.17 ac          | A = Area draining to the practice                                     |                        |
| 0.52 ac          | A <sub>I</sub> = Impervious area draining to the practice             |                        |
| 0.44 decimal     | I = Percent impervious area draining to the practice, in decimal form |                        |
| 0.45 unitless    | Rv = Runoff coefficient = 0.05 + (0.9 x I)                            |                        |
| 0.52 ac-in       | WQV= 1" x Rv x A                                                      |                        |
| 1,899 cf         | WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")                       |                        |
| 190 cf           | 10% x WQV (check calc for sediment forebay)                           |                        |
| 475 cf           | 25% x WQV (check calc for water stored in saturated zone)             |                        |
| Sediment Forebay | Method of Pretreatment                                                |                        |
| 1,032 cf         | If pretrt is sed forebay: V <sub>SED</sub> (sediment forebay volume)  | ≥ 10%WQV               |
| 2,170 cf         | Volume below lowest orifice <sup>1</sup>                              | ≥ 100%WQV              |
| 590 cf           | Water stored in voids of saturated zone                               | <u>&gt;</u> 26%WQV     |
| 0.04 cfs         | 2Q <sub>avg</sub> = 2* WQV / 24 hrs * (1hr / 3600 sec) <sup>2</sup>   |                        |
| 184.60 ft        | E <sub>WQV</sub> = Elevation of WQV (attach stage-storage table)      |                        |
| 0.02 cfs         | $Q_{WQV}$ = Discharge at the $E_{WQV}$ (attach stage-discharge table) | < 2Q <sub>wqv</sub>    |
| 52.75 hours      | $T_{ED}$ = Drawdown time of extended detention = $2WQV/Q_{WQV}$       | <u>&gt;</u> 24-hrs     |
| 18.00 in         | Depth of Filter Media                                                 | <u>≥</u> 18"           |
| 3.00 :1          | Pond side slopes                                                      | <u>&gt;</u> 3:1        |
| Angle Grate      | What mechanism is proposed to prevent the outlet structure from cl    | ogging (applicable for |
| / ingic drace    | orifices/weirs with a dimension of $\leq$ 6")?                        |                        |
| 185.74 ft        | Peak elevation of the 50-year storm event $(E_{50})$                  |                        |
| 186.00 ft        | Berm elevation of the pond                                            |                        |
| YES              | $E_{50} \le $ the berm elevation?                                     | ← yes                  |
|                  |                                                                       |                        |

<sup>1.</sup> Volume stored above the wetland soil and below the high flow by-pass.

#### **Designer's Notes:**

26% WQV = 494 CF 1,118 SF Bottom Pond, Stone = 40% Voids, 18" ISR Stone Base

Min ISR height @ Liner Low Point = 1.17'

1.17FT\*1,118 SF= 1,308 CF \* 40% Voids = 523 CF

Triangle of ISR remaining between liner low and high point

Max ISR height above triangle = 0.3'

0.5\*0.3FT\*1,118 SF= 168 CF \* 40% Voids =67 CF

523 CF + 67 CF = 590 CF Total ISR Storage

Prepared by Berry Surveying & Engineering

HydroCAD® 10.00-25 s/n 10221 © 2019 HydroCAD Software Solutions LLC

# Summary for Pond 201P: Bioretention W/ ISR #201

Inflow Area = 1.174 ac, 43.96% Impervious, Inflow Depth > 3.31" for 50YR-24HR event

Inflow = 3.50 cfs @ 12.20 hrs, Volume= 0.324 af

Outflow = 1.26 cfs (a) 12.61 hrs, Volume= 0.259 af, Atten= 64%, Lag= 24.3 min

Primary = 0.02 cfs @ 12.54 hrs, Volume= 0.025 af Secondary = 1.23 cfs @ 12.61 hrs, Volume= 0.234 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 185.74' @ 12.61 hrs Surf.Area= 1,118 sf Storage= 5,447 cf

Flood Elev= 186.00' Surf.Area= 1,118 sf Storage= 6,720 cf

Plug-Flow detention time= 144.5 min calculated for 0.259 af (80% of inflow)

Center-of-Mass det. time= 66.2 min ( 909.4 - 843.2 )

1,118

1,459

1,877

2,101

165.5

183.1

199.3

207.6

183.75

184.00

185.00

185.50

| Volume     | Invert Av | ail.Storage | Storage Description     | on                                                                                 |                  |               |  |  |  |  |
|------------|-----------|-------------|-------------------------|------------------------------------------------------------------------------------|------------------|---------------|--|--|--|--|
| #1         | 182.00'   | 112 cf      |                         | Stone (Irregular)Listed below (Recalc) -Impervious<br>280 cf Overall x 40.0% Voids |                  |               |  |  |  |  |
| #2         | 182.25'   | 335 cf      | Bio Media (Irregu       | Bio Media (Irregular)Listed below (Recalc) 1,677 cf Overall x 20.0% Voids          |                  |               |  |  |  |  |
| #3         | 184.00'   | 1,032 cf    | Sediment Foreba         |                                                                                    | d below (Recalc) | -Impervious   |  |  |  |  |
| #4         | 183.75'   | 2,979 cf    | Cell (Irregular) Lis    |                                                                                    |                  | •             |  |  |  |  |
| <u>#</u> 5 | 185.50'   | 2,262 cf    | Open Water Stor         |                                                                                    |                  | ) -Impervious |  |  |  |  |
|            |           | 6,720 cf    | Total Available Storage |                                                                                    |                  |               |  |  |  |  |
| Elevation  | Surf.Area |             | Inc.Store               | Cum.Store                                                                          | Wet.Area         |               |  |  |  |  |
| (feet)     | (sq-ft    |             | (cubic-feet)            | (cubic-feet)                                                                       | (sq-ft)          |               |  |  |  |  |
| 182.00     | 1,118     |             | 0                       | 0                                                                                  | 1,118            |               |  |  |  |  |
| 182.25     | 1,118     | 165.5       | 280                     | 280                                                                                | 1,159            |               |  |  |  |  |
| Elevation  | Surf.Area | Perim.      | Inc.Store               | Cum.Store                                                                          | Wet.Area         |               |  |  |  |  |
| (feet)     | (sq-ft    | (feet)      | (cubic-feet)            | (cubic-feet)                                                                       | (sq-ft)          |               |  |  |  |  |
| 182.25     | 1,118     | 165.5       | 0                       | 0                                                                                  | 1,118            |               |  |  |  |  |
| 183.75     | 1,118     | 165.5       | 1,677                   | 1,677                                                                              | 1,366            |               |  |  |  |  |
| Elevation  | Surf.Area | Perim.      | Inc.Store               | Cum.Store                                                                          | Wet.Area         |               |  |  |  |  |
| (feet)     | (sq-ft    | (feet)      | (cubic-feet)            | (cubic-feet)                                                                       | (sq-ft)          |               |  |  |  |  |
| 184.00     | 160       |             | 0                       | 0                                                                                  | 160              |               |  |  |  |  |
| 185.00     | 822       |             | 448                     | 448                                                                                | 3,917            |               |  |  |  |  |
| 185.50     | 1,551     |             | 584                     | 1,032                                                                              | 6,027            |               |  |  |  |  |
| Elevation  | Surf.Area | n Perim.    | Inc.Store               | Cum.Store                                                                          | Wet.Area         |               |  |  |  |  |
| (feet)     | (sq-ft    | (feet)      | (cubic-feet)            | (cubic-feet)                                                                       | (sq-ft)          |               |  |  |  |  |

0

321

994

1,664

0

321

1,985

2,979

1,118

1,608

2,137

2,424

## 23-017 Pro Analysis Ex TCAM Site Mods

Type III 24-hr 50YR-24HR Rainfall=7.02"

Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 10221 © 2019 HydroCAD Software Solutions LLC

| Elevation | Surf.Area | Perim. | Inc.Store    | Cum.Store (cubic-feet) | Wet.Area |
|-----------|-----------|--------|--------------|------------------------|----------|
| (feet)    | (sq-ft)   | (feet) | (cubic-feet) |                        | (sq-ft)  |
| 185.50    | 3,838     | 302.2  | 0            | 0                      | 3,838    |
| 186.00    | 5,247     | 335.0  | 2,262        | 2,262                  | 5,509    |

| Device | Routing   | Invert  | Outlet Devices                                                   |
|--------|-----------|---------|------------------------------------------------------------------|
| #1     | Primary   | 182.00' | <b>6.0" Round 6" HDPE N-12</b> L= 33.0' Ke= 0.500                |
|        | •         |         | Inlet / Outlet Invert= 182.00' / 181.70' S= 0.0091 '/' Cc= 0.900 |
|        |           |         | n= 0.012, Flow Area= 0.20 sf                                     |
| #2     | Secondary | 182.00' | <b>15.0" Round 15" HDPE N-12</b> L= 26.0' Ke= 0.500              |
|        |           |         | Inlet / Outlet Invert= 182.00' / 181.70' S= 0.0115 '/' Cc= 0.900 |
|        |           |         | n= 0.012, Flow Area= 1.23 sf                                     |
| #3     | Device 1  | 182.00' | <b>0.7" Vert. 0.75" Orifice</b> C= 0.600                         |
| #4     | Device 3  | 182.25' | 10.000 in/hr Bio Media over Surface area                         |
| #5     | Device 2  | 184.90' | 6.0" W x 10.0" H Vert. 6"W x 10" T Notch C= 0.600                |
| #6     | Device 2  | 185.75' | <b>48.0" Horiz. 48" Outlet Structure</b> C= 0.600                |
|        |           |         | Limited to weir flow at low heads                                |

Primary OutFlow Max=0.02 cfs @ 12.54 hrs HW=185.73' TW=182.16' (Dynamic Tailwater)

-1=6" HDPE N-12 (Passes 0.02 cfs of 1.53 cfs potential flow)

3=0.75" Orifice (Orifice Controls 0.02 cfs @ 9.10 fps)
4=Bio Media (Passes 0.02 cfs of 0.26 cfs potential flow)

Secondary OutFlow Max=1.23 cfs @ 12.61 hrs HW=185.74' TW=182.16' (Dynamic Tailwater)

**-2=15" HDPE N-12** (Passes 1.23 cfs of 10.42 cfs potential flow)

-5=6"W x 10" T Notch (Orifice Controls 1.23 cfs @ 2.95 fps)

-6=48" Outlet Structure (Controls 0.00 cfs)

HydroCAD® 10.00-25 s/n 10221 © 2019 HydroCAD Software Solutions LLC

### Stage-Area-Storage for Pond 201P: Bioretention W/ ISR #201

|                  | Oluge-A        | il cu-otoruge | 011 0114 2011    | . Dioreteritie  | /// W/ IOIX #2 |
|------------------|----------------|---------------|------------------|-----------------|----------------|
| Elevation        | Surface        | Storage       | Elevation        | Surface         | Storage        |
| (feet)           | (sq-ft)        | (cubic-feet)  | (feet)           | (sq-ft)         | (cubic-feet)   |
| 182.00           | 0              | 0             | 184.65           | 1,118           | 2,015          |
| 182.05           | 0              | 22            | 184.70           | 1,118           | 2,129          |
| 182.10           | 0              | 45            | 184.75           | 1,118           | 2,247          |
| 182.15           | 0              | 67            | 184.80           | 1,118           | 2,367          |
| 182.20           | 0              | 89            | 184.85           | 1.118           | 2.490          |
| 182.25           | 1,118          | 112           | 184.90           | 1,118           | 2,617          |
| 182.30           | 1,118          | 123           | 184.95           | 1,118           | 2,747          |
| 182.35           | 1,118          | 134           | 185.00           | 1,118           | 2,880          |
| 182.40           | 1,118          | 145           | 185.05           | 1,118           | 3,017          |
| 182.45           | 1,118          | 157           | 185.10           | 1,118           | 3,159          |
| 182.50           | 1,118          | 168           | 185.15           | 1,118           | 3,304          |
| 182.55           | 1,118          | 179           | 185.20           | 1,118           | 3,455          |
| 182.60           | 1,118          | 190           | 185.25           | 1,118           | 3,609          |
| 182.65           | 1,118          | 201<br>212    | 185.30           | 1,118           | 3,769          |
| 182.70<br>182.75 | 1,118<br>1,118 | 212<br>224    | 185.35<br>185.40 | 1,118<br>1,118  | 3,934<br>4,103 |
| 182.75           | 1,118          | 235           | 185.45           | 1,118           | 4,103<br>4,278 |
| 182.85           | 1,118          | 235<br>246    | 185.50           | 1,118           | 4,458          |
| 182.90           | 1,118          | 257           | 185.55           | 1,118           | 4,653          |
| 182.95           | 1,118          | 268           | 185.60           | 1,118           | 4,855          |
| 183.00           | 1,118          | 280           | 185.65           | 1,118           | 5,063          |
| 183.05           | 1,118          | 291           | 185.70           | 1,118           | 5,279          |
| 183.10           | 1,118          | 302           | 185.75           | 1,118           | 5,501          |
| 183.15           | 1,118          | 313           | 185.80           | 1,118           | 5,730          |
| 183.20           | 1,118          | 324           | 185.85           | 1,118           | 5,967          |
| 183.25           | 1,118          | 335           | 185.90           | 1,118           | 6,210          |
| 183.30           | 1,118          | 347           | 185.95           | 1,118           | 6,461          |
| 183.35           | 1,118          | 358           | 186.00           | 1,118           | 6,720          |
| 183.40           | 1,118          | 369           |                  |                 |                |
| 183.45           | 1,118          | 380           | Low              | Orifice = 184   | 90             |
| 183.50           | 1,118          | 391           |                  | Bottom = 183    |                |
| 183.55           | 1,118          | 402           | Cell             | DOMOIII = 103   | .75            |
| 183.60           | 1,118          | 414           |                  |                 |                |
| 183.65           | 1,118          | 425           |                  | 2.61            | 7 cf           |
| 183.70           | 1.118          | 436           |                  |                 | 7 cf           |
| 183.75<br>183.80 | 1,118<br>1,118 | 447<br>505    |                  |                 |                |
| 183.85           | 1,118          | 565<br>565    |                  | 2,17            | '0 cf          |
| 183.90           | 1,118          | 630           |                  |                 |                |
| 183.95           | 1,118          | 697           |                  |                 |                |
| 184.00           | 1,118          | 768           | Volume B         | elow Lowest Ori | fice Table     |
| 184.05           | 1,118          | 850           |                  |                 |                |
| 184.10           | 1,118          | 934           |                  |                 |                |
| 184.15           | 1,118          | 1,021         |                  |                 |                |
| 184.20           | 1,118          | 1,109         |                  |                 |                |
| 184.25           | 1,118          | 1,200         |                  |                 |                |
| 184.30           | 1,118          | 1,292         |                  |                 |                |
| 184.35           | 1,118          | 1,388         |                  |                 |                |
| 184.40           | 1,118          | 1,486         |                  |                 |                |
| 184.45           | 1,118          | 1,586         |                  |                 |                |
|                  |                |               |                  |                 |                |

1,689

1,795

1,904

1,118

1,118

1,118

184.50

184.55

184.60

Storage (cubic-feet) 2,015 2,129 2,247 2,367 2,490 2,617 2,747 2,880 3,017 3,159 3,304 3,455 3,609 3,769 3,934 4,103 4,278 4,458 4,653 4,855 5,063 5,279 5,501 5,730 5,967 6,210 6,461 6,720

HydroCAD® 10.00-25 s/n 10221 © 2019 HydroCAD Software Solutions LLC

# Stage-Area-Storage for Pond 201P: Bioretention W/ ISR #201

|                  | Stage-A        | rea-Storage i | or Pona 201P     | ': Bioretentio   |
|------------------|----------------|---------------|------------------|------------------|
| Elevation        | Surface        | Storage       | Elevation        | Surface          |
| (feet)           | (sq-ft)        | (cubic-feet)  | (feet)           | (sq-ft)          |
| 182.00           | 0              | 0             | 184.65           | 1,118            |
| 182.05           | 0              | 22            | 184.70           | 1,118            |
| 182.10           | 0              | 45            | 184.75           | 1,118            |
| 182.15           | 0              | 67            | 184.80           | 1,118            |
| 182.20           | 0              | 89            | 184.85           | 1,118            |
| 182.25           | 1,118          | 112           | 184.90           | 1,118            |
| 182.30           | 1,118          | 123           | 184.95           | 1,118            |
| 182.35           | 1,118          | 134           | 185.00           | 1,118            |
| 182.40           | 1,118          | 145           | 185.05           | 1,118            |
| 182.45           | 1,118          | 157           | 185.10           | 1,118            |
| 182.50           | 1,118          | 168           | 185.15           | 1,118            |
| 182.55           | 1,118          | 179           | 185.20           | 1,118            |
| 182.60           | 1,118          | 190           | 185.25           | 1,118            |
| 182.65           | 1,118          | 201           | 185.30           | 1,118            |
| 182.70           | 1,118          | 212           | 185.35           | 1,118            |
| 182.75           | 1,118          | 224           | 185.40           | 1,118            |
| 182.80           | 1,118          | 235           | 185.45           | 1,118            |
| 182.85           | 1,118          | 246<br>257    | 185.50           | 1,118            |
| 182.90<br>182.95 | 1,118<br>1,118 | 257<br>268    | 185.55<br>185.60 | 1,118<br>1,118   |
| 183.00           | 1,118          | 280           | 185.65           | 1,118            |
| 183.05           | 1,118          | 291           | 185.70           | 1,118            |
| 183.10           | 1,118          | 302           | 185.75           | 1,118            |
| 183.15           | 1,118          | 313           | 185.80           | 1,118            |
| 183.20           | 1,118          | 324           | 185.85           | 1,118            |
| 183.25           | 1,118          | 335           | 185.90           | 1,118            |
| 183.30           | 1,118          | 347           | 185.95           | 1,118            |
| 183.35           | 1,118          | 358           | 186.00           | 1,118            |
| 183.40           | 1,118          | 369           |                  | 1,110            |
| 183.45           | 1,118          | 380           |                  |                  |
| 183.50           | 1,118          | 391           | W                | /QV = 1,899  cf  |
| 183.55           | 1,118          | 402           |                  | 1.60 = 1,904  cf |
| 183.60           | 1,118          | 414           | Liev 10-         | F.00 = 1,904 CI  |
| 183.65           | 1,118          | 425           |                  |                  |
| 183.70           | 1,118          | 436           |                  |                  |
| 183.75           | 1,118          | 447           |                  |                  |
| 183.80           | 1,118          | 505           | WQV 9            | Storage Table    |
| 183.85           | 1,118          | 565           |                  |                  |
| 183.90           | 1,118          | 630           |                  |                  |
| 183.95           | 1,118          | 697           |                  |                  |
| 184.00           | 1,118          | 768           |                  |                  |
| 184.05           | 1,118          | 850           |                  |                  |
| 184.10           | 1,118          | 934           |                  |                  |
| 184.15           | 1,118          | 1,021         |                  |                  |
| 184.20           | 1,118          | 1,109         |                  |                  |
| 184.25           | 1,118          | 1,200         |                  |                  |
|                  |                |               |                  |                  |

1,292

1,388

1,486 1,586

1,689 1.795

1,904

1,118

1,118

1,118

1,118

1,118

1.118

1,118

184.30

184.35

184.40

184.45

184.50

184.55

184.60

Type III 24-hr 50YR-24HR Rainfall=7.02" Printed 4/17/2024

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 10221 © 2019 HydroCAD Software Solutions LLC

# Stage-Discharge for Pond 201P: Bioretention W/ ISR #201

| Elevation        | Discharge    | Primary      | Secondary    | Elevation | Discharge       | Primary | Secondary |
|------------------|--------------|--------------|--------------|-----------|-----------------|---------|-----------|
| (feet)           | (cfs)        | (cfs)        | (cfs)        | (feet)    | (cfs)           | (cfs)   | (cfs)     |
| 182.00           | 0.00         | 0.00         | 0.00         | 184.65    | 0.02            | 0.02    | 0.00      |
| 182.05           | 0.00         | 0.00         | 0.00         | 184.70    | 0.02            | 0.02    | 0.00      |
| 182.10           | 0.00         | 0.00         | 0.00         | 184.75    | 0.02            | 0.02    | 0.00      |
| 182.15           | 0.00         | 0.00         | 0.00         | 184.80    | 0.02            | 0.02    | 0.00      |
| 182.20           | 0.00         | 0.00         | 0.00         | 184.85    | 0.02            | 0.02    | 0.00      |
| 182.25           | 0.01         | 0.01         | 0.00         | 184.90    | 0.02            | 0.02    | 0.00      |
| 182.30           | 0.01         | 0.01         | 0.00         | 184.95    | 0.04            | 0.02    | 0.02      |
| 182.35           | 0.01         | 0.01         | 0.00         | 185.00    | 0.07            | 0.02    | 0.05      |
| 182.40           | 0.01         | 0.01         | 0.00         | 185.05    | 0.12            | 0.02    | 0.09      |
| 182.45           | 0.01         | 0.01         | 0.00         | 185.10    | 0.17            | 0.02    | 0.14      |
| 182.50           | 0.01         | 0.01         | 0.00         | 185.15    | 0.22            | 0.02    | 0.20      |
| 182.55           | 0.01         | 0.01         | 0.00         | 185.20    | 0.29            | 0.02    | 0.26      |
| 182.60           | 0.01         | 0.01         | 0.00         | 185.25    | 0.36            | 0.02    | 0.33      |
| 182.65           | 0.01         | 0.01         | 0.00         | 185.30    | 0.43            | 0.02    | 0.41      |
| 182.70           | 0.01         | 0.01         | 0.00         | 185.35    | 0.51            | 0.02    | 0.48      |
| 182.75           | 0.01         | 0.01         | 0.00         | 185.40    | 0.59            | 0.02    | 0.57      |
| 182.80           | 0.01         | 0.01         | 0.00         | 185.45    | 0.68            | 0.02    | 0.65      |
| 182.85           | 0.01         | 0.01         | 0.00         | 185.50    | 0.77            | 0.02    | 0.75      |
| 182.90           | 0.01         | 0.01         | 0.00         | 185.55    | 0.87            | 0.02    | 0.84      |
| 182.95           | 0.01         | 0.01         | 0.00         | 185.60    | 0.96            | 0.02    | 0.94      |
| 183.00           | 0.01         | 0.01         | 0.00         | 185.65    | 1.07            | 0.02    | 1.04      |
| 183.05           | 0.01         | 0.01         | 0.00         | 185.70    | 1.17            | 0.02    | 1.15      |
| 183.10           | 0.01         | 0.01         | 0.00         | 185.75    | 1.28            | 0.02    | 1.25      |
| 183.15           | 0.01         | 0.01         | 0.00         | 185.80    | 1.83            | 0.02    | 1.80      |
| 183.20           | 0.01         | 0.01         | 0.00         | 185.85    | 2.75            | 0.03    | 2.72      |
| 183.25           | 0.01         | 0.01         | 0.00         | 185.90    | 3.91            | 0.03    | 3.88      |
| 183.30           | 0.01         | 0.01         | 0.00         | 185.95    | 5.27            | 0.03    | 5.24      |
| 183.35           | 0.01         | 0.01         | 0.00         | 186.00    | 6.79            | 0.03    | 6.77      |
| 183.40           | 0.02         | 0.02         | 0.00         |           |                 |         |           |
| 183.45           | 0.02         | 0.02         | 0.00         |           |                 |         |           |
| 183.50           | 0.02         | 0.02         | 0.00         |           |                 |         |           |
| 183.55           | 0.02         | 0.02         | 0.00         |           |                 |         |           |
| 183.60           | 0.02         | 0.02         | 0.00         |           |                 |         |           |
| 183.65           | 0.02         | 0.02         | 0.00         |           |                 |         |           |
| 183.70<br>183.75 | 0.02<br>0.02 | 0.02<br>0.02 | 0.00         |           |                 |         |           |
| 183.80           | 0.02         | 0.02         | 0.00<br>0.00 |           |                 |         |           |
| 183.85           | 0.02         | 0.02         | 0.00         |           |                 |         |           |
| 183.90           | 0.02         | 0.02         | 0.00         |           |                 |         |           |
| 183.95           | 0.02         | 0.02         | 0.00         |           |                 |         |           |
| 184.00           | 0.02         | 0.02         | 0.00         |           |                 |         |           |
| 184.05           | 0.02         | 0.02         | 0.00         |           |                 |         |           |
| 184.10           | 0.02         | 0.02         | 0.00         |           |                 |         |           |
| 184.15           | 0.02         | 0.02         | 0.00         |           |                 |         |           |
| 184.20           | 0.02         | 0.02         | 0.00         |           |                 |         |           |
| 184.25           | 0.02         | 0.02         | 0.00         |           |                 |         |           |
| 184.30           | 0.02         | 0.02         | 0.00         |           |                 |         |           |
| 184.35           | 0.02         | 0.02         | 0.00         |           | –               |         |           |
| 184.40           | 0.02         | 0.02         | 0.00         | J WQV     | Discharge Table | е       |           |
| 184.45           | 0.02         | 0.02         | 0.00         |           |                 |         |           |
| 184.50           | 0.02         | 0.02         | 0.00         | 10105     | _               |         |           |
| 184.55           | 0.02         | 0.02         | 0.00         | 184.60 =  |                 |         |           |
| 184.60           | 0.02         | 0.02         | 0.00         | 0.02CFS   | _               |         |           |



# BIORETENTION SYSTEM WITH INTERNAL STORAGE RESERVOIR (UNH Stormwater Center Specification)

Last Revised: Sept 2020

#### Type/Node Name: Bioretention W/ ISR #202 (Pond 202P)

Enter the node name in the drainage analysis if applicable.

|                  | Effect the flode flame in the dramage analysis if applicable.                |                        |  |  |  |
|------------------|------------------------------------------------------------------------------|------------------------|--|--|--|
| 2.35 ac          | A = Area draining to the practice                                            |                        |  |  |  |
| 1.10 ac          | A <sub>I</sub> = Impervious area draining to the practice                    |                        |  |  |  |
| 0.47 decimal     | I = Percent impervious area draining to the practice, in decimal form        |                        |  |  |  |
| 0.47 unitless    | Rv = Runoff coefficient = 0.05 + (0.9 x I)                                   |                        |  |  |  |
| 1.10 ac-in       | WQV= 1" x Rv x A                                                             |                        |  |  |  |
| 4,005 cf         | WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")                              |                        |  |  |  |
| 400 cf           | 10% x WQV (check calc for sediment forebay)                                  |                        |  |  |  |
| 1,001 cf         | 25% x WQV (check calc for water stored in saturated zone)                    |                        |  |  |  |
| Sediment Forebay | Method of Pretreatment                                                       |                        |  |  |  |
| 903 cf           | If pretrt is sed forebay: $V_{SED}$ (sediment forebay volume) $\geq 10\%WQV$ |                        |  |  |  |
| 4,740 cf         | Volume below lowest orifice <sup>1</sup> ≥ 100%WQV                           |                        |  |  |  |
| 1,288 cf         | Water stored in voids of saturated zone > 26%WQV                             |                        |  |  |  |
| 0.09 cfs         | $2Q_{avg} = 2*WQV / 24 hrs * (1hr / 3600 sec)^2$                             |                        |  |  |  |
| 176.61 ft        | E <sub>WQV</sub> = Elevation of WQV (attach stage-storage table)             |                        |  |  |  |
| 0.06 cfs         | $Q_{WQV}$ = Discharge at the $E_{WQV}$ (attach stage-discharge table)        | < 2Q <sub>WQV</sub>    |  |  |  |
| 37.08 hours      | $T_{ED}$ = Drawdown time of extended detention = 2WQV/ $Q_{WQV}$             | <u>&gt;</u> 24-hrs     |  |  |  |
| 18.00 in         | Depth of Filter Media                                                        | <u>&gt;</u> 18"        |  |  |  |
| 3.00 :1          | Pond side slopes                                                             | <u>&gt;</u> 3:1        |  |  |  |
|                  | What mechanism is proposed to prevent the outlet structure from clo          | ogging (applicable for |  |  |  |
| Angle Grate      | orifices/weirs with a dimension of $\leq 6$ ")?                              |                        |  |  |  |
| 179.80 ft        | Peak elevation of the 50-year storm event (E <sub>50</sub> )                 |                        |  |  |  |
| 180.50 ft        | Berm elevation of the pond                                                   |                        |  |  |  |
| YES              | $E_{50} \le$ the berm elevation?                                             | ← yes                  |  |  |  |
|                  |                                                                              |                        |  |  |  |

<sup>1.</sup> Volume stored above the wetland soil and below the high flow by-pass.

#### **Designer's Notes:**

| 26% | WQV | = 1 | .041 | CF |
|-----|-----|-----|------|----|
|     |     |     |      |    |

1,981 SF Bottom Pond, Stone = 40% Voids, 24" ISR Stone Base

Min ISR height @ Liner Low Point = 1.25'

1.25FT\*1,981 SF= 2,476 CF \* 40% Voids = 991 CF

Triangle of ISR remaining between liner low and high point

Max ISR height above triangle = 0.75'

0.5\*0.75FT\*1,981 SF= 743 CF \* 40% Voids = 297 CF

991 CF + 297 CF = 1,288 CF Total ISR Storage

Prepared by Berry Surveying & Engineering

HydroCAD® 10.00-25 s/n 10221 © 2019 HydroCAD Software Solutions LLC

# Summary for Pond 202P: Bioretention W/ ISR #202

Inflow Area = 2.354 ac, 46.52% Impervious, Inflow Depth > 4.77" for 50YR-24HR event 10.32 cfs @ 12.11 hrs, Volume= Inflow 0.936 af 1.19 cfs @ 13.02 hrs, Volume= Outflow = 0.709 af, Atten= 88%, Lag= 54.6 min 0.09 cfs @ 12.64 hrs, Volume= Primary 0.112 af Secondary = 1.10 cfs @ 13.02 hrs, Volume= 0.597 af 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Tertiary

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 179.80' @ 13.02 hrs Surf.Area= 1,981 sf Storage= 22,760 cf Flood Elev= 180.50' Surf.Area= 1,981 sf Storage= 28,868 cf

Plug-Flow detention time= 312.0 min calculated for 0.709 af (76% of inflow)

Center-of-Mass det. time= 225.2 min ( 1,014.8 - 789.6 )

| Volume           | Invert A          | vail.Storage       | Storago Dosorint                      | ion                 |                      |             |
|------------------|-------------------|--------------------|---------------------------------------|---------------------|----------------------|-------------|
| #1               | 173.75'           | 198 cf             | Stone (Irregular                      | )Listed below (Re   | calc) -Impervious    |             |
| $\pi$ i          | 173.73            | 190 CI             | 495 cf Overall x                      |                     | caic) -impervious    |             |
| #2               | 174.00'           | 594 cf             |                                       | ular)Listed below   | (Recalc)             |             |
|                  |                   |                    | 2,972 cf Overall                      |                     | ,                    |             |
| #3               | 175.50'           | 903 cf             |                                       |                     | ed below (Recalc) -I | mpervious   |
| #4               | 175.50'           | 6,102 cf           |                                       | isted below (Reca   |                      |             |
| #5               | 177.50'           | 21,071 cf          | Open Water Sto                        | rage (Irregular)Lis | sted below (Recalc)  | -Impervious |
|                  |                   | 28,868 cf          | Total Available S                     | torage              |                      |             |
| Elevation        | Surf.Are          | ea Perim.          | Inc.Store                             | Cum.Store           | Wet.Area             |             |
| (feet)           | (sq-              | ft) (feet)         | (cubic-feet)                          | (cubic-feet)        | (sq-ft)              |             |
| 173.75           | 1,98              | 351.5              | 0                                     | 0                   | 1,981                |             |
| 174.00           | 1,98              | 351.5              | 495                                   | 495                 | 2,069                |             |
|                  |                   |                    |                                       |                     |                      |             |
| Elevation        | Surf.Are          |                    | Inc.Store                             | Cum.Store           | Wet.Area             |             |
| (feet)           | -pa)              | ft) (feet)         | (cubic-feet)                          | (cubic-feet)        | (sq-ft)              |             |
| 174.00           | 1,98              |                    | 0                                     | 0                   | 1,981                |             |
| 175.50           | 1,98              | 351.5              | 2,972                                 | 2,972               | 2,508                |             |
| Elevation        | Surf.Are          | ea Perim.          | Inc.Store                             | Cum.Store           | Wet.Area             |             |
| (feet)           | Suri.Are<br>-(sq- |                    | (cubic-feet)                          | (cubic-feet)        |                      |             |
|                  |                   |                    | · · · · · · · · · · · · · · · · · · · | (Cubic-leet)        | (sq-ft)              |             |
| 175.50<br>176.00 |                   | 43 61.9<br>37 70.7 | 0<br>144                              | 144                 | 243<br>342           |             |
| 170.00           |                   | 63 89.6            | 445                                   | 590                 | 542<br>596           |             |
| 177.50           |                   | 98.2               | 313                                   | 903                 | 732                  |             |
| 177.50           | 0.                | 90.2               | 313                                   | 303                 | 132                  |             |
| Elevation        | Surf.Are          | ea Perim.          | Inc.Store                             | Cum.Store           | Wet.Area             |             |
| (feet)           | (sq-              | ft) (feet)         | (cubic-feet)                          | (cubic-feet)        | (sq-ft)              |             |
| 175.50           | 1,98              |                    | 0                                     | 0                   | 1,981                |             |
| 176.00           | 2,50              | 9 360.4            | 1,120                                 | 1,120               | 2,516                |             |
| 177.00           | 3,60              | 04 379.0           | 3,040                                 | 4,160               | 3,671                |             |
| 177.50           | 4,17              | 70 387.1           | 1,942                                 | 6,102               | 4,201                |             |

Prepared by Berry Surveying & Engineering

Printed 4/17/2024

HydroCAD® 10.00-25 s/n 10221 © 2019 HydroCAD Software Solutions LLC

| Elevation (fee |             | urf.Area l<br>(sq-ft) | Perim.<br>(feet) | Inc.Store<br>(cubic-feet)  | Cum.Store<br>(cubic-feet) | Wet.Area<br>(sq-ft)   |
|----------------|-------------|-----------------------|------------------|----------------------------|---------------------------|-----------------------|
| 177.5          | 50          | 4,925                 | 448.8            | 0                          | 0                         | 4,925                 |
| 178.0          |             | 5,605                 | 458.3            | 2,631                      | 2,631                     | 5,647                 |
| 179.0          | 00          | 7,008                 | 477.1            | 6,293                      | 8,924                     | 7,123                 |
| 180.0          | 00          | 8,468                 | 496.0            | 7,726                      | 16,651                    | 8,665                 |
| 180.5          | 50          | 9,219                 | 505.4            | 4,420                      | 21,071                    | 9,455                 |
| Device         | Routing     | Invert                | Outlet           | Devices                    |                           |                       |
| #1             | Primary     | 173.75'               |                  | Round 6" HDPE N-1          | 2 l = 30 0' Ke= (         | 500                   |
| $\pi$ 1        | 1 IIIIIai y | 173.73                |                  | Outlet Invert= 173.75      |                           |                       |
|                |             |                       |                  | 0.20 112, Flow Area = 0.20 |                           | 0.000                 |
| #2             | Secondary   | 173.75'               |                  | Round 15" HDPE N           |                           | = 0.500               |
|                | ,           |                       |                  | Outlet Invert= 173.75      | 5' / 173.50' S= 0.        | 0083 '/' Cc= 0.900    |
|                |             |                       | n = 0.0          | 12, Flow Area= 1.23        | 3 sf                      |                       |
| #3             | Device 1    | 173.75'               | 1.2" V           | ert. 1.25" Orifice C       | C= 0.600                  |                       |
| #4             | Device 3    | 174.00'               | 10.00            | 0 in/hr Bio Media ov       | er Surface area           |                       |
| #5             | Device 2    | 177.00'               | 4.0" V           | ert. 4" Orifice C= 0       | 0.600                     |                       |
| #6             | Device 2    | 179.75'               | 48.0"            | Horiz. 48" Outlet St       | ructure C= 0.600          | 0                     |
|                |             |                       |                  | d to weir flow at low h    | heads                     |                       |
| #7             | Tertiary    | 180.00'               |                  | ong x 8.5' breadth         |                           |                       |
|                |             |                       |                  |                            |                           | 0 1.40 1.60 1.80 2.00 |
|                |             |                       |                  | 3.00 3.50 4.00 4.50        |                           |                       |
|                |             |                       |                  |                            |                           | 2.68 2.66 2.64 2.64   |
|                |             |                       | 2.64             | 2.65 2.65 2.65 2.66        | 3 2.67 2.69 2.71          |                       |

Primary OutFlow Max=0.09 cfs @ 12.64 hrs HW=179.71' TW=173.86' (Dynamic Tailwater) -1=6" HDPE N-12 (Passes 0.09 cfs of 2.01 cfs potential flow) **-3=1.25" Orifice** (Orifice Controls 0.09 cfs @ 11.64 fps) 4=Bio Media (Passes 0.09 cfs of 0.46 cfs potential flow)

Secondary OutFlow Max=1.10 cfs @ 13.02 hrs HW=179.80' TW=174.34' (Dynamic Tailwater) **-2=15" HDPE N-12** (Passes 1.10 cfs of 13.76 cfs potential flow)

-5=4" Orifice (Orifice Controls 0.68 cfs @ 7.81 fps)

-6=48" Outlet Structure (Weir Controls 0.42 cfs @ 0.71 fps)

**Tertiary OutFlow** Max=0.00 cfs @ 0.00 hrs HW=173.75' TW=172.50' (Dynamic Tailwater) **7=Spillway** (Controls 0.00 cfs)

# Stage-Area-Storage for Pond 202P: Bioretention W/ ISR #202

|                     |                    |                         | · · · · · · · · · · · · · · · · · · · |
|---------------------|--------------------|-------------------------|---------------------------------------|
| Elevation<br>(feet) | Surface<br>(sq-ft) | Storage<br>(cubic-feet) | Elevation<br>(feet)                   |
|                     |                    |                         |                                       |
| 173.75              | 0                  | 0                       | 179.05                                |
| 173.85              | 0                  | 79                      | 179.15                                |
| 173.95              | 0                  | 158                     | 179.25                                |
| 174.05              | 1,981              | 218                     | 179.35                                |
| 174.15              | 1,981              | 258                     | 179.45                                |
| 174.25              | 1,981              | 297                     | 179.55                                |
| 174.35              | 1,981              | 337                     | 179.65                                |
| 174.45              | 1,981              | 376                     | 179.75                                |
| 174.55              | 1,981              | 416                     | 179.85                                |
| 174.65              | 1,981              | 456                     | 179.95                                |
| 174.75              | 1,981              | 495                     | 180.05                                |
| 174.85              | 1,981              | 535                     | 180.15                                |
| 174.95              | 1,981              | 574                     | 180.25                                |
| 175.05              |                    | 614                     | 180.35                                |
|                     | 1,981              | 654                     |                                       |
| 175.15              | 1,981              |                         | 180.45                                |
| 175.25              | 1,981              | 693                     |                                       |
| 175.35              | 1,981              | 733                     |                                       |
| 175.45              | 1,981              | 773                     |                                       |
| 175.55              | 1,981              | 905                     | Low                                   |
| 175.65              | 1,981              | 1,139                   | Cell                                  |
| 175.75              | 1,981              | 1,386                   | 00                                    |
| 175.85              | 1,981              | 1,644                   |                                       |
| 175.95              | 1,981              | 1,916                   |                                       |
| 176.05              | 1,981              | 2,200                   |                                       |
| 176.15              | 1,981              | 2,497                   |                                       |
| 176.25              | 1,981              | 2,806                   |                                       |
| 176.35              | 1,981              | 3,128                   |                                       |
| 176.45              | 1,981              | 3,462                   |                                       |
| 176.55              | 1,981              | 3,810                   |                                       |
| 176.65              | 1,981              | 4,170                   | Valuma Pal                            |
| 176.75              | 1,981              | 4,545                   | Volume Bel                            |
| 176.85              | 1,981              | 4,933                   |                                       |
| 176.95              | 1.981              | 5.335                   |                                       |
| 177.05              | 1,981              | 5,752                   |                                       |
| 177.15              | 1,981              | 6,182                   |                                       |
| 177.25              | 1,981              | 6,626                   |                                       |
| 177.35              | 1,981              | 7,084                   |                                       |
| 177.45              | 1,981              | 7,556                   |                                       |
| 177.55              | 1,981              | 8,045                   |                                       |
| 177.65              | 1,981              | 8,551                   |                                       |
| 177.75              | 1,981              | 9,070                   |                                       |
| 177.85              | 1,981              | 9,603                   |                                       |
| 177.95              | 1,981              | 10,149                  |                                       |
| 177.05              | 1,981              | 10,710                  |                                       |
| 178.15              | 1,981              | 11,284                  |                                       |
| 178.15              | 1,981              | 11,871                  |                                       |
|                     |                    |                         |                                       |
| 178.35              | 1,981              | 12,472                  |                                       |
| 178.45              | 1,981              | 13,087<br>13,715        |                                       |
| 178.55              | 1,981              | 13,715                  |                                       |
| 178.65              | 1,981              | 14,358                  |                                       |
| 178.75              | 1,981              | 15,015                  |                                       |
| 178.85              | 1,981              | 15,687                  |                                       |
| 178.95              | 1,981              | 16,373                  |                                       |
|                     |                    |                         |                                       |

| Surface | Storage                                                                                     |
|---------|---------------------------------------------------------------------------------------------|
| (sq-ft) | (cubic-feet)                                                                                |
| 1,981   | 17,073                                                                                      |
| 1,981   | 17,788                                                                                      |
| 1,981   | 18,517                                                                                      |
| 1,981   | 19,260                                                                                      |
| 1,981   | 20,018                                                                                      |
| 1,981   | 20,790                                                                                      |
| 1,981   | 21,577                                                                                      |
| 1,981   | 22,378                                                                                      |
| 1,981   | 23,195                                                                                      |
| 1,981   | 24,026                                                                                      |
| 1,981   | 24,873                                                                                      |
| 1,981   | 25,735                                                                                      |
| 1,981   | 26,611                                                                                      |
| 1,981   | 27,502                                                                                      |
| 1,981   | 28,409                                                                                      |
|         | (sq-ft) 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 |

Orifice = 177.00 Bottom = 175.50

> 5,542 cf 802 cf 4,740 cf

low Lowest Orifice Table

# Stage-Area-Storage for Pond 202P: Bioretention W/ ISR #202

| (feet)   (sq-ft)   (cubic-feet)   (feet)   (sq-ft)   (cubic-feet)     173,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Elevation | Surface | Storage | Elevation      | Surface     | Storage |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|---------|----------------|-------------|---------|
| 173.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _         |         |         | · ·            |             |         |
| 173.95 174.05 1,981 174.05 1,981 174.15 1,981 179.35 1,981 179.45 1,981 179.55 1,981 20,790 174.35 1,981 179.55 1,981 20,790 179.55 1,981 21,577 174.45 1,981 179.65 1,981 179.75 1,981 21,577 174.45 1,981 179.65 1,981 179.75 1,981 21,577 174.65 1,981 179.65 1,981 179.75 1,981 22,378 174.75 1,981 179.85 1,981 22,378 174.75 1,981 179.95 1,981 22,378 174.75 1,981 179.95 1,981 22,378 179.95 1,981 22,378 179.95 1,981 22,378 179.95 1,981 22,406 179.95 1,981 24,673 179.95 1,981 24,673 179.95 1,981 24,673 179.95 1,981 24,673 179.95 1,981 24,673 179.95 1,981 24,673 179.95 1,981 24,673 179.95 1,981 24,673 179.95 1,981 24,673 179.95 1,981 24,673 180.05 1,981 24,673 180.05 1,981 27,502 176.15 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1 |           |         | -       |                |             |         |
| 174.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |         |                |             |         |
| 174.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |         |                |             |         |
| 174.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |         | 179.35         |             |         |
| 174.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 174.15    | 1,981   | 258     | 179.45         |             | 20,018  |
| 174.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 174.25    | 1,981   | 297     | 179.55         | 1,981       | 20,790  |
| 174.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 174.35    | 1,981   | 337     | 179.65         | 1,981       | 21,577  |
| 174.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 174.45    | 1,981   | 376     | 179.75         | 1,981       | 22,378  |
| 174.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 174.55    |         | 416     | 179.85         |             | 23,195  |
| 174.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |         |                |             |         |
| 174.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |         |                |             |         |
| 174.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |         |                |             | 25,735  |
| 175.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |         |                |             |         |
| 175.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |         |                |             |         |
| 175.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |         |                |             |         |
| 175.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |         |                | ,           | -,      |
| 175.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |         |                |             |         |
| 175.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |         |                |             |         |
| 175.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |         | WQV Sto        | orage Table |         |
| 175.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |         |                |             |         |
| 175.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |         |                |             |         |
| 175.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         | ,       |                |             |         |
| 176.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |         |                |             |         |
| 176.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         | ,       |                |             |         |
| 176.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |         |                |             |         |
| 176.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |         |                |             |         |
| 176.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |         |                |             |         |
| 176.55       1,981       3,810         176.65       1,981       4,170         176.75       1,981       4,545         176.85       1,981       4,545         176.95       1,981       4,933         177.05       1,981       5,752         177.15       1,981       6,182         177.25       1,981       6,626         177.35       1,981       7,084         177.45       1,981       8,045         177.65       1,981       8,551         177.75       1,981       9,070         177.85       1,981       10,149         178.05       1,981       10,149         178.05       1,981       11,284         178.25       1,981       11,284         178.25       1,981       11,871         178.35       1,981       13,087         178.45       1,981       13,087         178.65       1,981       13,715         178.65       1,981       14,358         178.75       1,981       14,358         178.85       1,981       15,015         178.85       1,981       15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 176.45    |         |         |                |             |         |
| 176.75       1,981       4,545         176.85       1,981       4,933         176.95       1,981       5,335         177.05       1,981       5,752         177.15       1,981       6,182         177.25       1,981       6,626         177.35       1,981       7,084         177.45       1,981       7,556         177.55       1,981       8,045         177.65       1,981       8,551         177.75       1,981       9,070         177.85       1,981       9,603         177.95       1,981       10,710         178.15       1,981       10,710         178.15       1,981       11,284         178.25       1,981       11,871         178.35       1,981       12,472         178.45       1,981       13,087         178.55       1,981       13,715         178.65       1,981       14,358         178.75       1,981       15,015         178.85       1,981       15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 176.55    | 1,981   | 3,810   | WQV =          | 4,005 cf    |         |
| 176.85       1,981       4,933         176.95       1,981       5,335         177.05       1,981       5,752         177.15       1,981       6,182         177.25       1,981       7,084         177.45       1,981       7,556         177.55       1,981       8,045         177.65       1,981       8,551         177.75       1,981       9,070         177.85       1,981       9,603         177.95       1,981       10,149         178.05       1,981       10,710         178.15       1,981       11,284         178.25       1,981       11,871         178.35       1,981       12,472         178.45       1,981       13,087         178.55       1,981       13,715         178.65       1,981       14,358         178.75       1,981       15,015         178.85       1,981       15,015         178.85       1,981       15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 176.65    | 1,981   | 4,170   | Elev. 176.61 = | 4,024 cf    |         |
| 176.95       1,981       5,335         177.05       1,981       5,752         177.15       1,981       6,182         177.25       1,981       6,626         177.35       1,981       7,084         177.45       1,981       7,556         177.55       1,981       8,045         177.65       1,981       8,551         177.75       1,981       9,070         177.85       1,981       9,603         177.95       1,981       10,149         178.05       1,981       10,710         178.15       1,981       11,284         178.25       1,981       11,871         178.35       1,981       13,087         178.45       1,981       13,087         178.55       1,981       13,715         178.65       1,981       14,358         178.75       1,981       15,015         178.85       1,981       15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 1,981   |         |                |             |         |
| 177.05       1,981       5,752         177.15       1,981       6,182         177.25       1,981       6,626         177.35       1,981       7,084         177.45       1,981       7,556         177.55       1,981       8,045         177.75       1,981       9,070         177.85       1,981       9,603         177.95       1,981       10,149         178.05       1,981       10,710         178.15       1,981       11,284         178.25       1,981       11,871         178.35       1,981       12,472         178.45       1,981       13,087         178.55       1,981       13,715         178.65       1,981       14,358         178.75       1,981       15,015         178.85       1,981       15,015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |         |                |             |         |
| 177.15       1,981       6,182         177.25       1,981       6,626         177.35       1,981       7,084         177.45       1,981       7,556         177.55       1,981       8,045         177.75       1,981       9,070         177.85       1,981       9,603         177.95       1,981       10,149         178.05       1,981       10,710         178.15       1,981       11,284         178.25       1,981       11,871         178.35       1,981       12,472         178.45       1,981       13,087         178.55       1,981       13,715         178.65       1,981       14,358         178.75       1,981       15,015         178.85       1,981       15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |         |         |                |             |         |
| 177.25       1,981       6,626         177.35       1,981       7,084         177.45       1,981       7,556         177.55       1,981       8,045         177.65       1,981       9,070         177.85       1,981       9,603         177.95       1,981       10,149         178.05       1,981       10,710         178.15       1,981       11,284         178.25       1,981       11,871         178.35       1,981       12,472         178.45       1,981       13,087         178.55       1,981       13,715         178.65       1,981       14,358         178.75       1,981       15,015         178.85       1,981       15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 177.05    | 1,981   | 5,752   |                |             |         |
| 177.35       1,981       7,084         177.45       1,981       7,556         177.55       1,981       8,045         177.65       1,981       9,070         177.85       1,981       9,603         177.95       1,981       10,149         178.05       1,981       10,710         178.15       1,981       11,284         178.25       1,981       11,871         178.35       1,981       12,472         178.45       1,981       13,087         178.55       1,981       13,715         178.65       1,981       14,358         178.75       1,981       15,015         178.85       1,981       15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 1,981   |         |                |             |         |
| 177.45       1,981       7,556         177.55       1,981       8,045         177.65       1,981       8,551         177.75       1,981       9,070         177.85       1,981       9,603         177.95       1,981       10,149         178.05       1,981       10,710         178.15       1,981       11,284         178.25       1,981       11,871         178.35       1,981       12,472         178.45       1,981       13,087         178.55       1,981       13,715         178.65       1,981       14,358         178.75       1,981       15,015         178.85       1,981       15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |         |                |             |         |
| 177.55       1,981       8,045         177.65       1,981       8,551         177.75       1,981       9,070         177.85       1,981       9,603         177.95       1,981       10,149         178.05       1,981       10,710         178.15       1,981       11,284         178.25       1,981       11,871         178.35       1,981       12,472         178.45       1,981       13,087         178.55       1,981       13,715         178.65       1,981       14,358         178.75       1,981       15,015         178.85       1,981       15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |         |         |                |             |         |
| 177.65       1,981       8,551         177.75       1,981       9,070         177.85       1,981       9,603         177.95       1,981       10,149         178.05       1,981       10,710         178.15       1,981       11,284         178.25       1,981       11,871         178.35       1,981       12,472         178.45       1,981       13,087         178.55       1,981       13,715         178.65       1,981       14,358         178.75       1,981       15,015         178.85       1,981       15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |         |         |                |             |         |
| 177.75       1,981       9,070         177.85       1,981       9,603         177.95       1,981       10,149         178.05       1,981       10,710         178.15       1,981       11,284         178.25       1,981       11,871         178.35       1,981       12,472         178.45       1,981       13,087         178.55       1,981       13,715         178.65       1,981       14,358         178.75       1,981       15,015         178.85       1,981       15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 177.55    |         |         |                |             |         |
| 177.85       1,981       9,603         177.95       1,981       10,149         178.05       1,981       10,710         178.15       1,981       11,284         178.25       1,981       11,871         178.35       1,981       12,472         178.45       1,981       13,087         178.55       1,981       13,715         178.65       1,981       14,358         178.75       1,981       15,015         178.85       1,981       15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |         | ,       |                |             |         |
| 177.95       1,981       10,149         178.05       1,981       10,710         178.15       1,981       11,284         178.25       1,981       11,871         178.35       1,981       12,472         178.45       1,981       13,087         178.55       1,981       13,715         178.65       1,981       14,358         178.75       1,981       15,015         178.85       1,981       15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 177.75    | 1,981   |         |                |             |         |
| 178.05     1,981     10,710       178.15     1,981     11,284       178.25     1,981     11,871       178.35     1,981     12,472       178.45     1,981     13,087       178.55     1,981     13,715       178.65     1,981     14,358       178.75     1,981     15,015       178.85     1,981     15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |         |         |                |             |         |
| 178.15     1,981     11,284       178.25     1,981     11,871       178.35     1,981     12,472       178.45     1,981     13,087       178.55     1,981     13,715       178.65     1,981     14,358       178.75     1,981     15,015       178.85     1,981     15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |         |         |                |             |         |
| 178.25       1,981       11,871         178.35       1,981       12,472         178.45       1,981       13,087         178.55       1,981       13,715         178.65       1,981       14,358         178.75       1,981       15,015         178.85       1,981       15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |         |                |             |         |
| 178.35       1,981       12,472         178.45       1,981       13,087         178.55       1,981       13,715         178.65       1,981       14,358         178.75       1,981       15,015         178.85       1,981       15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |         |         |                |             |         |
| 178.45       1,981       13,087         178.55       1,981       13,715         178.65       1,981       14,358         178.75       1,981       15,015         178.85       1,981       15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |         |                |             |         |
| 178.55       1,981       13,715         178.65       1,981       14,358         178.75       1,981       15,015         178.85       1,981       15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |         |         |                |             |         |
| 178.65 1,981 14,358<br>178.75 1,981 15,015<br>178.85 1,981 15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |         |         |                |             |         |
| 178.75 1,981 15,015<br>178.85 1,981 15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |         |                |             |         |
| 178.85 1,981 15,687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |         |         |                |             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |         |                |             |         |
| 170.95 1,981 10,373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |         |         |                |             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 178.95    | 1,981   | 10,3/3  |                |             |         |

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 10221 © 2019 HydroCAD Software Solutions LLC

# Stage-Discharge for Pond 202P: Bioretention W/ ISR #202

| Elevation | Diochargo          | Primary | Secondary | Tortion           |          |                 |
|-----------|--------------------|---------|-----------|-------------------|----------|-----------------|
| (feet)    | Discharge<br>(cfs) | (cfs)   | (cfs)     | Tertiary<br>(cfs) |          |                 |
| 173.75    | 0.00               | 0.00    | 0.00      | 0.00              |          |                 |
| 173.75    | 0.00               | 0.00    | 0.00      | 0.00              |          |                 |
| 173.95    | 0.02               | 0.00    | 0.00      | 0.00              |          |                 |
| 174.13    | 0.02               | 0.02    | 0.00      | 0.00              |          |                 |
| 174.55    | 0.03               | 0.03    | 0.00      | 0.00              |          |                 |
| 174.33    | 0.03               | 0.03    | 0.00      | 0.00              | MOV      | Discharge Table |
| 174.75    | 0.04               | 0.04    | 0.00      | 0.00              | WQV      | Discharge rable |
| 174.95    | 0.04               | 0.04    | 0.00      | 0.00              |          |                 |
| 175.15    | 0.05               | 0.04    | 0.00      | 0.00              |          |                 |
| 175.55    | 0.05               | 0.05    | 0.00      | 0.00              |          |                 |
| 175.75    | 0.05               | 0.05    | 0.00      | 0.00              |          |                 |
| 175.75    | 0.06               | 0.03    | 0.00      | 0.00              |          |                 |
| 176.15    | 0.06               | 0.06    | 0.00      | 0.00              |          |                 |
| 176.15    | 0.06               | 0.06    | 0.00      | 0.00              |          |                 |
| 176.55    | 0.06               | 0.06    | 0.00      | 0.00              | 170.04   | 1               |
| 176.75    | 0.06               | 0.06    | 0.00      | 0.00              | 176.61 = |                 |
| 176.95    | 0.07               | 0.07    | 0.00      | 0.00              | 0.06CFS  |                 |
| 177.15    | 0.12               | 0.07    | 0.05      | 0.00              |          |                 |
| 177.35    | 0.25               | 0.07    | 0.18      | 0.00              |          |                 |
| 177.55    | 0.33               | 0.07    | 0.26      | 0.00              |          |                 |
| 177.75    | 0.40               | 0.08    | 0.32      | 0.00              |          |                 |
| 177.95    | 0.45               | 0.08    | 0.37      | 0.00              |          |                 |
| 178.15    | 0.50               | 0.08    | 0.42      | 0.00              |          |                 |
| 178.35    | 0.54               | 0.08    | 0.46      | 0.00              |          |                 |
| 178.55    | 0.58               | 0.08    | 0.49      | 0.00              |          |                 |
| 178.75    | 0.61               | 0.08    | 0.53      | 0.00              |          |                 |
| 178.95    | 0.65               | 0.09    | 0.56      | 0.00              |          |                 |
| 179.15    | 0.68               | 0.09    | 0.59      | 0.00              |          |                 |
| 179.35    | 0.71               | 0.09    | 0.62      | 0.00              |          |                 |
| 179.55    | 0.74               | 0.09    | 0.65      | 0.00              |          |                 |
| 179.75    | 0.77               | 0.09    | 0.68      | 0.00              |          |                 |
| 179.95    | 4.47               | 0.09    | 4.38      | 0.00              |          |                 |
| 180.15    | 12.64              | 0.10    | 11.12     | 1.42              |          |                 |
| 180.35    | 19.75              | 0.10    | 14.44     | 5.21              |          |                 |
|           |                    |         |           |                   |          |                 |



# INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name: Infiltration Pond #203 (203P)

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable.

| Yes           | Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?                   | ← yes                      |
|---------------|-----------------------------------------------------------------------------------------------|----------------------------|
| 0.37 ac       | A = Area draining to the practice                                                             |                            |
| - ac          | A <sub>I</sub> = Impervious area draining to the practice                                     |                            |
| - decimal     | I = Percent impervious area draining to the practice, in decimal form                         |                            |
| 0.05 unitless | Rv = Runoff coefficient = 0.05 + (0.9 x I)                                                    |                            |
| 0.02 ac-in    | WQV= 1" x Rv x A                                                                              |                            |
| 67 cf         | WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")                                               |                            |
| 17 cf         | 25% x WQV (check calc for sediment forebay volume)                                            |                            |
|               | Method of pretreatment? (not required for clean or roof runoff)                               |                            |
| cf            | V <sub>SED</sub> = Sediment forebay volume, if used for pretreatment                          | ≥ 25%WQV                   |
| 4,586 cf      | V = Volume <sup>1</sup> (attach a stage-storage table)                                        | > WQV                      |
| 1,574 sf      | A <sub>SA</sub> = Surface area of the bottom of the pond                                      |                            |
| 3.00 iph      | Ksat <sub>DESIGN</sub> = Design infiltration rate <sup>4</sup>                                |                            |
| 0.2 hours     | I <sub>DRAIN</sub> = Drain time = V / (A <sub>SA</sub> * I <sub>DESIGN</sub> )                | < 72-hrs                   |
| 172.50 feet   | E <sub>BTM</sub> = Elevation of the bottom of the basin                                       | _                          |
| 170.21 feet   | $E_{SHWT}$ = Elevation of SHWT (if none found, enter the lowest elevation of the test         | pit)                       |
| 168.17 feet   | E <sub>ROCK</sub> = Elevation of bedrock (if none found, enter the lowest elevation of the te | st pit)                    |
| 2.29 feet     | D <sub>SHWT</sub> = Separation from SHWT                                                      | <u>&gt;</u> * <sup>3</sup> |
| 4.3 feet      | D <sub>ROCK</sub> = Separation from bedrock                                                   | <u>&gt;</u> * <sup>3</sup> |
| ft            | D <sub>amend</sub> = Depth of amended soil, if applicable due high infiltation rate           | > 24"                      |
| ft            | $D_T$ = Depth of trench, if trench proposed                                                   | 4 - 10 ft                  |
| Yes/No        | If a trench or underground system is proposed, has observation well been provi                | ded? <b>←yes</b>           |
| _             | If a trench is proposed, does materialmeet Env-Wq 1508.06(k)(2) requirements.                 | <sup>4</sup> ← yes         |
| Yes Yes/No    | If a basin is proposed, Is the perimeter curvilinear, and basin floor flat?                   | ← yes                      |
| 3.0 :1        | If a basin is proposed, pond side slopes.                                                     | <u>≥</u> 3:1               |
| 174.56 ft     | Peak elevation of the 10-year storm event (infiltration can be used in analysis)              |                            |
| 174.61 ft     | Peak elevation of the 50-year storm event (infiltration can be used in analysis)              |                            |
| 175.00 ft     | _ Elevation of the top of the practice (if a basin, this is the elevation of the berm)        |                            |
| YES           | 10 peak elevation $\leq$ Elevation of the top of the trench? <sup>5</sup>                     | ← yes                      |
| YES           | If a basin is proposed, 50-year peak elevation ≤ Elevation of berm?                           | ← yes                      |

- 1. Volume below the lowest invert of the outlet structure and excludes forebay volume
- 2. Ksat<sub>DESIGN</sub> includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate
- 3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.
- 4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.
- 5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

**Designer's Notes:** Only land area contributing runoff directly to Pond #203 is considered for WQV calculation.

Runoff treated by Pond #202 is not considered.

NHDES Alteration of Terrain Last Revised: March 2019

Type III 24-hr 10YR-24HR Rainfall=4.65" Printed 4/17/2024

Prepared by Berry Surveying & Engineering

HydroCAD® 10.00-25 s/n 10221 © 2019 HydroCAD Software Solutions LLC

## **Summary for Pond 203P: Infiltration Pond #203**

Inflow Area = 2.722 ac, 40.23% Impervious, Inflow Depth > 1.87" for 10YR-24HR event

Inflow = 0.68 cfs @ 12.33 hrs, Volume= 0.425 af

Outflow = 0.53 cfs @ 15.54 hrs, Volume= 0.326 af, Atten= 22%, Lag= 192.8 min

Discarded = 0.21 cfs @ 15.54 hrs, Volume= 0.221 af Primary = 0.32 cfs @ 15.54 hrs, Volume= 0.105 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 174.56' @ 15.54 hrs Surf.Area= 3,042 sf Storage= 4,756 cf

Flood Elev= 175.00' Surf.Area= 3,385 sf Storage= 6,181 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 67.4 min (1,045.0 - 977.6)

| Volume           | Inve      | rt Avail             | .Storage          | Storage Description       | on                          |                         |
|------------------|-----------|----------------------|-------------------|---------------------------|-----------------------------|-------------------------|
| #1               | 172.5     | 0'                   | 6,181 cf          | Open Water Stor           | <b>age (Irregular)</b> List | ed below (Recalc)       |
| Elevatio<br>(fee |           | Surf.Area<br>(sq-ft) | Perim.<br>(feet)  | Inc.Store<br>(cubic-feet) | Cum.Store<br>(cubic-feet)   | Wet.Area<br>(sq-ft)     |
| 172.5            | 0         | 1,574                | 204.2             | 0                         | 0                           | 1,574                   |
| 173.0            | 0         | 1,967                | 225.0             | 883                       | 883                         | 2,292                   |
| 174.0            | 0         | 2,638                | 239.5             | 2,294                     | 3,178                       | 2,877                   |
| 175.0            | 0         | 3,385                | 258.5             | 3,004                     | 6,181                       | 3,670                   |
| Device           | Routing   | Inv                  | ert Outle         | et Devices                |                             |                         |
| #1               | Discarded | d 172.               | 50' <b>3.00</b>   | 0 in/hr Infiltration      | over Surface area           | 1                       |
| #2               | Primary   | 174.                 | 50' <b>10.0</b> ' | long x 7.0' bread         | lth Spillway                |                         |
|                  |           |                      | Head              | d (feet) 0.20 0.40        | 0.60 0.80 1.00 1            | .20 1.40 1.60 1.80 2.00 |
|                  |           |                      | 2.50              | 3.00 3.50 4.00 4          | 1.50 5.00 5.50              |                         |
|                  |           |                      | Coef              | . (English) 2.40 2.       | .52 2.70 2.68 2.6           | 8 2.67 2.66 2.65 2.65   |
|                  |           |                      | 2.65              | 2.66 2.65 2.66 2          | 2.68 2.70 2.73 2.7          | 78                      |

**Discarded OutFlow** Max=0.21 cfs @ 15.54 hrs HW=174.56' (Free Discharge) **1=Infiltration** (Exfiltration Controls 0.21 cfs)

Primary OutFlow Max=0.32 cfs @ 15.54 hrs HW=174.56' TW=0.00' (Dynamic Tailwater) 2=Spillway (Weir Controls 0.32 cfs @ 0.57 fps)

Prepared by Berry Surveying & Engineering

HydroCAD® 10.00-25 s/n 10221 © 2019 HydroCAD Software Solutions LLC

# **Summary for Pond 203P: Infiltration Pond #203**

Inflow Area = 2.722 ac, 40.23% Impervious, Inflow Depth > 3.45" for 50YR-24HR event

Inflow = 1.46 cfs @ 12.17 hrs, Volume= 0.783 af

Outflow = 1.12 cfs @ 13.42 hrs, Volume= 0.674 af, Atten= 24%, Lag= 74.9 min

Discarded = 0.21 cfs @ 13.42 hrs, Volume= 0.241 af Primary = 0.90 cfs @ 13.42 hrs, Volume= 0.433 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 174.61' @ 13.42 hrs Surf.Area= 3,084 sf Storage= 4,928 cf

Flood Elev= 175.00' Surf.Area= 3,385 sf Storage= 6,181 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 41.9 min (1,042.2 - 1,000.3)

| Volume   | Invert    | Avail               | .Storage          | Storage Description       | on                         |                          |
|----------|-----------|---------------------|-------------------|---------------------------|----------------------------|--------------------------|
| #1       | 172.50'   |                     | 6,181 cf          | Open Water Stor           | <b>age (Irregular)</b> Lis | ted below (Recalc)       |
| Elevatio |           | urf.Area<br>(sq-ft) | Perim.<br>(feet)  | Inc.Store<br>(cubic-feet) | Cum.Store<br>(cubic-feet)  | Wet.Area<br>(sq-ft)      |
| 172.50   | )         | 1,574               | 204.2             | 0                         | 0                          | 1,574                    |
| 173.00   | )         | 1,967               | 225.0             | 883                       | 883                        | 2,292                    |
| 174.00   | )         | 2,638               | 239.5             | 2,294                     | 3,178                      | 2,877                    |
| 175.00   | )         | 3,385               | 258.5             | 3,004                     | 6,181                      | 3,670                    |
| Device   | Routing   | Inv                 | ert Outle         | et Devices                |                            |                          |
| #1       | Discarded | 172.                | 50' <b>3.00</b>   | 0 in/hr Infiltration      | over Surface are           | a                        |
| #2       | Primary   | 174.                | 50' <b>10.0</b> ' | long x 7.0' bread         | lth Spillway               |                          |
|          |           |                     | Head              | d (feet) 0.20 0.40        | 0.60 0.80 1.00             | 1.20 1.40 1.60 1.80 2.00 |
|          |           |                     | 2.50              | 3.00 3.50 4.00 4          | 1.50 5.00 5.50             |                          |
|          |           |                     | Coef              | f. (English) 2.40 2       | .52 2.70 2.68 2.6          | 68 2.67 2.66 2.65 2.65   |
|          |           |                     | 2.65              | 2.66 2.65 2.66 2          | 2.68 2.70 2.73 2.          | .78                      |

**Discarded OutFlow** Max=0.21 cfs @ 13.42 hrs HW=174.61' (Free Discharge) **1=Infiltration** (Exfiltration Controls 0.21 cfs)

Primary OutFlow Max=0.90 cfs @ 13.42 hrs HW=174.61' TW=0.00' (Dynamic Tailwater) 2=Spillway (Weir Controls 0.90 cfs @ 0.80 fps)

Prepared by Berry Surveying & Engineering
HydroCAD® 10.00-25 s/n 10221 © 2019 HydroCAD Software Solutions LLC

# Stage-Area-Storage for Pond 203P: Infiltration Pond #203

| Elevation        | Surface        | Storage        |                                   |
|------------------|----------------|----------------|-----------------------------------|
| (feet)           | (sq-ft)        | (cubic-feet)   |                                   |
| 172.50           | 1,574          | 0              |                                   |
| 172.55           | 1,611          | 80             |                                   |
| 172.60           | 1,649          | 161            |                                   |
| 172.65           | 1,687          | 245            |                                   |
| 172.70           | 1,726          | 330            |                                   |
| 172.75           | 1,765          | 417<br>506     |                                   |
| 172.80<br>172.85 | 1,805<br>1,845 | 506<br>598     |                                   |
| 172.03           | 1,885          | 691            |                                   |
| 172.95           | 1,926          | 786            |                                   |
| 173.00           | 1,967          | 883            |                                   |
| 173.05           | 1,998          | 983            |                                   |
| 173.10           | 2,030          | 1,083          |                                   |
| 173.15           | 2,061          | 1,186          |                                   |
| 173.20           | 2,093          | 1,289          |                                   |
| 173.25           | 2,126          | 1,395          |                                   |
| 173.30           | 2,158          | 1,502          |                                   |
| 173.35           | 2,191          | 1,611          |                                   |
| 173.40<br>173.45 | 2,224<br>2,257 | 1,721<br>1,833 |                                   |
| 173.43           | 2,290          | 1,947          |                                   |
| 173.55           | 2,324          | 2,062          |                                   |
| 173.60           | 2,358          | 2,179          |                                   |
| 173.65           | 2,392          | 2,298          |                                   |
| 173.70           | 2,426          | 2,418          |                                   |
| 173.75           | 2,461          | 2,540          |                                   |
| 173.80           | 2,496          | 2,664          |                                   |
| 173.85           | 2,531          | 2,790          |                                   |
| 173.90           | 2,566          | 2,918          |                                   |
| 173.95           | 2,602          | 3,047          |                                   |
| 174.00<br>174.05 | 2,638<br>2,673 | 3,178<br>3,311 |                                   |
| 174.05           | 2,073<br>2,709 | 3,445          |                                   |
| 174.15           | 2,744          | 3,581          |                                   |
| 174.20           | 2,780          | 3,719          |                                   |
| 174.25           | 2,816          | 3,859          |                                   |
| 174.30           | 2,852          | 4,001          |                                   |
| 174.35           | 2,889          | 4,145          |                                   |
| 174.40           | 2,926          | 4,290          |                                   |
| 174.45           | 2.963          | 4.437          | T + 10+ 0 '' 4500 05              |
| 174.50           | 3,000          | 4,586          | Total Storage Capacity = 4,586 CF |
| 174.55<br>174.60 | 3,037<br>3,075 | 4,737<br>4,890 |                                   |
| 174.65           | 3,113          | 5,045          |                                   |
| 174.70           | 3,151          | 5,201          |                                   |
| 174.75           | 3,190          | 5,360          |                                   |
| 174.80           | 3,228          | 5,520          |                                   |
| 174.85           | 3,267          | 5,683          |                                   |
| 174.90           | 3,306          | 5,847          |                                   |
| 174.95           | 3,345          | 6,013          |                                   |
| 175.00           | 3,385          | 6,181          |                                   |



**VRCS** 

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

# Custom Soil Resource Report for Strafford County, New Hampshire



# **Preface**

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

# **Contents**

| Preface                                         | 2  |
|-------------------------------------------------|----|
| How Soil Surveys Are Made                       | 5  |
| Soil Map                                        | 8  |
| Soil Map                                        | 9  |
| Legend                                          | 10 |
| Map Unit Legend                                 | 11 |
| Map Unit Descriptions                           |    |
| Strafford County, New Hampshire                 |    |
| Gv—Gravel and borrow pits                       | 13 |
| HaA—Hinckley loamy sand, 0 to 3 percent slopes  |    |
| HaB—Hinckley loamy sand, 3 to 8 percent slopes  | 15 |
| HaC—Hinckley loamy sand, 8 to 15 percent slopes | 16 |
| Sb—Saugatuck loamy sand                         | 18 |
| WdA—Windsor loamy sand, 0 to 3 percent slopes   |    |
| References                                      |    |

# **How Soil Surveys Are Made**

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

#### Custom Soil Resource Report

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

# Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

# Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.



#### MAP LEGEND

#### Area of Interest (AOI)

Area of Interest (AOI)

#### Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

#### Special Point Features

(o)

Blowout

Borrow Pit

Clay Spot

**Closed Depression** 

Gravel Pit

Gravelly Spot

Landfill

Lava Flow Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Slide or Slip

Sinkhole

Sodic Spot

Spoil Area



Stony Spot Very Stony Spot



Wet Spot Other



Special Line Features

#### Water Features

Streams and Canals

#### Transportation

---

Rails

Interstate Highways

**US Routes** 

Major Roads

00

Local Roads

#### Background

Aerial Photography

#### MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Strafford County, New Hampshire Survey Area Data: Version 24, Aug 22, 2023

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Jun 19, 2020—Sep 20. 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

# Map Unit Legend

| Map Unit Symbol             | Map Unit Name                               | Acres in AOI | Percent of AOI |
|-----------------------------|---------------------------------------------|--------------|----------------|
| Gv                          | Gravel and borrow pits                      | 0.1          | 0.1%           |
| НаА                         | Hinckley loamy sand, 0 to 3 percent slopes  | 45.4         | 33.1%          |
| НаВ                         | Hinckley loamy sand, 3 to 8 percent slopes  | 10.3         | 7.5%           |
| HaC                         | Hinckley loamy sand, 8 to 15 percent slopes | 3.8          | 2.8%           |
| Sb                          | Saugatuck loamy sand                        | 7.6          | 5.6%           |
| WdA                         | Windsor loamy sand, 0 to 3 percent slopes   | 69.9         | 51.0%          |
| Totals for Area of Interest |                                             | 137.2        | 100.0%         |

# **Map Unit Descriptions**

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it

#### Custom Soil Resource Report

was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

## Strafford County, New Hampshire

#### Gv—Gravel and borrow pits

#### **Map Unit Setting**

National map unit symbol: 9d7c

Mean annual precipitation: 36 to 71 inches
Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 140 to 240 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Gravel and borrow pits: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Gravel And Borrow Pits**

#### **Typical profile**

H1 - 0 to 6 inches: extremely gravelly sand H2 - 6 to 60 inches: extremely gravelly sand

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8s

Hydric soil rating: Unranked

#### HaA—Hinckley loamy sand, 0 to 3 percent slopes

#### Map Unit Setting

National map unit symbol: 2svm7

Elevation: 0 to 1,420 feet

Mean annual precipitation: 36 to 71 inches
Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 140 to 240 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Hinckley and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Hinckley**

#### Setting

Landform: Outwash deltas, kame terraces, outwash plains, outwash terraces

Landform position (three-dimensional): Tread Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave

Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss

and/or granite and/or schist

#### Custom Soil Resource Report

#### Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 8 inches: loamy sand

Bw1 - 8 to 11 inches: gravelly loamy sand Bw2 - 11 to 16 inches: gravelly loamy sand BC - 16 to 19 inches: very gravelly loamy sand C - 19 to 65 inches: very gravelly sand

#### **Properties and qualities**

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Excessively drained

Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very

high (1.42 to 99.90 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 3.1 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3s

Hydrologic Soil Group: A

Ecological site: F144AY022MA - Dry Outwash

Hydric soil rating: No

## **Minor Components**

#### Windsor

Percent of map unit: 5 percent

Landform: Outwash terraces, kame terraces, outwash deltas

Landform position (three-dimensional): Tread Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave

Hydric soil rating: No

#### Sudbury

Percent of map unit: 5 percent

Landform: Kame terraces, outwash terraces, outwash deltas

Landform position (three-dimensional): Tread Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave

Hydric soil rating: No

#### Merrimac

Percent of map unit: 5 percent

Landform: Kame terraces, outwash terraces, outwash deltas

Landform position (three-dimensional): Tread Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave

Hydric soil rating: No

#### HaB—Hinckley loamy sand, 3 to 8 percent slopes

#### **Map Unit Setting**

National map unit symbol: 2svm8

Elevation: 0 to 1,430 feet

Mean annual precipitation: 36 to 53 inches Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 140 to 250 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Hinckley and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Hinckley**

#### Setting

Landform: Outwash plains, eskers, moraines, kame terraces, kames, outwash

terraces, outwash deltas

Landform position (two-dimensional): Summit, shoulder, backslope, footslope Landform position (three-dimensional): Nose slope, side slope, base slope, crest, riser, tread

Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave

Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

#### **Typical profile**

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 8 inches: loamy sand

Bw1 - 8 to 11 inches: gravelly loamy sand Bw2 - 11 to 16 inches: gravelly loamy sand BC - 16 to 19 inches: very gravelly loamy sand

C - 19 to 65 inches: very gravelly sand

#### **Properties and qualities**

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very

high (1.42 to 99.90 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)

Available water supply, 0 to 60 inches: Very low (about 3.0 inches)

#### Custom Soil Resource Report

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3s

Hydrologic Soil Group: A

Ecological site: F144AY022MA - Dry Outwash

Hydric soil rating: No

#### **Minor Components**

#### Windsor

Percent of map unit: 8 percent

Landform: Kame terraces, outwash plains, kames, eskers, moraines, outwash terraces, outwash deltas

Landform position (two-dimensional): Summit, shoulder, backslope, footslope Landform position (three-dimensional): Nose slope, side slope, base slope, crest, riser, tread

Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave

Hydric soil rating: No

#### Sudbury

Percent of map unit: 5 percent

Landform: Kame terraces, outwash plains, moraines, outwash terraces, outwash deltas

Landform position (two-dimensional): Backslope, footslope

Landform position (three-dimensional): Head slope, side slope, base slope, tread

Down-slope shape: Concave, linear Across-slope shape: Concave, linear

Hydric soil rating: No

#### **Agawam**

Percent of map unit: 2 percent

Landform: Kame terraces, outwash plains, kames, eskers, moraines, outwash terraces, outwash deltas

Landform position (two-dimensional): Summit, shoulder, backslope, footslope Landform position (three-dimensional): Nose slope, side slope, base slope, crest, riser, tread

Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave

Hydric soil rating: No

## HaC—Hinckley loamy sand, 8 to 15 percent slopes

#### Map Unit Setting

National map unit symbol: 2svm9

Elevation: 0 to 1,480 feet

Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 140 to 240 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Hinckley and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Hinckley**

#### Setting

Landform: Kame terraces, outwash plains, kames, eskers, moraines, outwash terraces, outwash deltas

Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Head slope, nose slope, side slope, crest, riser

Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave

Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

#### Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 8 inches: loamy sand

Bw1 - 8 to 11 inches: gravelly loamy sand Bw2 - 11 to 16 inches: gravelly loamy sand BC - 16 to 19 inches: very gravelly loamy sand

C - 19 to 65 inches: very gravelly sand

#### **Properties and qualities**

Slope: 8 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very

high (1.42 to 99.90 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 3.1 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: A

Ecological site: F144AY022MA - Dry Outwash

Hydric soil rating: No

#### **Minor Components**

#### Merrimac

Percent of map unit: 5 percent

Landform: Eskers, moraines, outwash terraces, outwash plains, kames
Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope
Landform position (three-dimensional): Head slope, nose slope, side slope, crest,
riser

Down-slope shape: Convex Across-slope shape: Convex

#### Custom Soil Resource Report

Hydric soil rating: No

#### **Sudbury**

Percent of map unit: 5 percent

Landform: Outwash terraces, kame terraces, outwash plains, moraines, outwash

deltas

Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Base slope, tread

Down-slope shape: Concave, linear Across-slope shape: Concave, linear

Hydric soil rating: No

#### Windsor

Percent of map unit: 5 percent

Landform: Kame terraces, outwash plains, outwash terraces, outwash deltas,

kames, eskers, moraines

Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Head slope, nose slope, side slope, crest,

riser

Down-slope shape: Concave, convex, linear Across-slope shape: Convex, linear, concave

Hydric soil rating: No

## Sb—Saugatuck loamy sand

#### Map Unit Setting

National map unit symbol: 9d8r Elevation: 300 to 1,000 feet

Mean annual precipitation: 27 to 71 inches
Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 125 to 240 days

Farmland classification: Not prime farmland

#### **Map Unit Composition**

Saugatuck and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Saugatuck**

#### Setting

Landform: Outwash terraces Parent material: Outwash

#### Typical profile

H1 - 0 to 4 inches: loamy sand H2 - 4 to 7 inches: sand

H3 - 7 to 26 inches: loamy sand H4 - 26 to 42 inches: sand

#### Custom Soil Resource Report

#### **Properties and qualities**

Slope: 0 to 3 percent

Depth to restrictive feature: 10 to 16 inches to undefined

Drainage class: Poorly drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 1.1 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: B/D

Ecological site: F144AY028MA - Wet Outwash

Hydric soil rating: Yes

#### **Minor Components**

#### Not named wet

Percent of map unit: 15 percent Landform: Outwash terraces Hydric soil rating: Yes

## WdA—Windsor loamy sand, 0 to 3 percent slopes

#### Map Unit Setting

National map unit symbol: 2svkg

Elevation: 0 to 990 feet

Mean annual precipitation: 36 to 71 inches
Mean annual air temperature: 39 to 55 degrees F

Frost-free period: 140 to 240 days

Farmland classification: Farmland of local importance

#### **Map Unit Composition**

Windsor, loamy sand, and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Windsor, Loamy Sand**

#### Setting

Landform: Dunes, deltas, outwash terraces, outwash plains

Landform position (three-dimensional): Tread, riser

Down-slope shape: Convex, linear Across-slope shape: Convex, linear

#### Custom Soil Resource Report

Parent material: Loose sandy glaciofluvial deposits derived from granite and/or loose sandy glaciofluvial deposits derived from schist and/or loose sandy glaciofluvial deposits derived from gneiss

## **Typical profile**

O - 0 to 1 inches: moderately decomposed plant material

A - 1 to 3 inches: loamy sand Bw - 3 to 25 inches: loamy sand C - 25 to 65 inches: sand

#### **Properties and qualities**

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Excessively drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very

high (1.42 to 99.90 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 3.6 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2s

Hydrologic Soil Group: A

Ecological site: F144AY022MA - Dry Outwash

Hydric soil rating: No

## **Minor Components**

#### Deerfield, loamy sand

Percent of map unit: 10 percent

Landform: Outwash plains, terraces, deltas
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Tread, talf

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

#### Hinckley, loamy sand

Percent of map unit: 5 percent

Landform: Outwash plains, eskers, kames, deltas

Landform position (two-dimensional): Summit, shoulder, backslope

Landform position (three-dimensional): Head slope, nose slope, side slope, crest,

rise

Down-slope shape: Convex

Across-slope shape: Linear, convex

Hydric soil rating: No

# References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

#### Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2\_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/nrcs142p2\_052290.pdf

1/24/24 Christopher Berry Berry Surveying and Engineering 335 Second Crown Point Road Barrington NH 03825

Job # 23-006

Site Specific Soil Survey 1/24/23 Map 238 Lot 44 Calef Highway Barrington, NH

Dear Chris.

This letter report presents the findings of a Site Specific Soil Survey conducted on the referenced properties by John P. Hayes III on January 23, 2024. The soil survey was conducted in accordance with the New Hampshire Supplement of the Site-Specific Soil Mapping Standard For New Hampshire and Vermont, Special Publication # 3, Version 7.0 July 2021, published by the Society of Soil Scientist of Northern New England. Soil series information was also taken from the Soil Survey of Strafford County New Hampshire issued March 1973.

The parcel is located on the southeast side of Route 125, northeast of Providence road, and northwest of Mallego Brook, in Barrington, NH. Lot 44 is approximately 28 acres in size. Only a portion of Lot 44, in the northeast section, around the present structure, was mapped. The plans used for these soil maps are a 40 scale plan, where 1 inch equals 40 feet, with two foot contours.

The purpose of the soil survey is to provide the client with soils information for urban and suburban or rural land planning. Soil characteristics on the property were evaluated through observation of numerous test pits, and hand auger probes conducted throughout the property. Slope phases were determined with the use of the topography provided on the plan. The Site-specific Soil Map Units identified are taken from the New Hampshire State-Wide Numerical Soils Legend, Issue #10 January 2011, and are briefly described below. Official Series Descriptions (OSD) for each of these soil series are enclosed with this report. The soil map units comply with the Range In Characteristics described in the OSD. Any limiting inclusions on the site, do not exceed 15 percent of any of the soil map units. Dissimilar inclusions, if any, will be noted in the report. Limits of the Site Specific mapping units are highlighted on the plan. The Hydrological Soil Groups for each of the soil series was determined using SSSNNE Publication No. 5 Ksat Values for New Hampshire Soils September 2009. Limits of the Site Specific mapping units are highlighted on the plan.

The Hydrological Soil Groups for each of the soil series was determined using SSSNNE Publication No. 5 Ksat Values for New Hampshire Soils September 2009. Limits of the Site Specific mapping units are highlighted on the plan.

Portions of the soil map with the map unit denominator of P and VP contain poorly drained soils, and very poorly drained soils respectively. Portions of the soil map with the map unit 400, and 299, contain disturbed soils that have been excavated and/or regraded. They are well drained, to moderately well drained, and are sandy in texture. Portions of the soil map with the map unit 900, contain disturbed soils that have been excavated down to, or near the water table, and are poorly drained. These soils are also sandy in texture. A Disturbed Soil Mapping Unit Supplement for New Hampshire DES AoT Site Specific Soil Maps is also included. This supplement explains the additional information given about each disturbed soil map units that are present on the site.

| MAP<br>UNIT#   | SOIL<br>TAXANOMI<br>C NAME | SLOPES | HYDRO<br>LOGIC<br>SOIL<br>GROUP | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------|----------------------------|--------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26             | Windsor                    | C      | A                               | The Windsor series consists of very deep, excessively drained soils formed in sandy outwash or eolian deposits. These soils are located in the northeastern portion of the property. The soil texture is loamy sand over sand. These soils are deep to bedrock. Saturated hydraulic conductivity is high or very high. Some inclusions of moderately drained Deerfield soils may be present, but are less than 10 percent of the mapped area. Estimated seasonal high water tables in these soils range from 38 to 60 inches.                                                                                                                                                                                             |
| 34<br>P        | Wareham                    | В      | С                               | The Wareham series consists of very deep, poorly and drained sandy soils formed in outwash on plains, deltas, and terraces. These soils are located in the wetland areas in the southwestern portion of the property. The soil texture is loamy coarse sand over coarse sand. These soils are deep to bedrock. Permeability is rapid throughout these soils. Some inclusions of somewhat poorly drained Deerfield Variant soils may be present, but are less than 10 percent of the mapped area. Estimated seasonal high water tables in these soils range from 0 to 10 inches.                                                                                                                                           |
| 299<br>(cbadb) | Udorthents<br>(smoothed)   | A      | В                               | The Udorthents smoothed map unit represents soils that have been cut and filled and made into level areas. The soil material typacally comes from the soils in the immediate surrounding areas. These soils are located in the southeastern portion of the property. These disturbed soils are mostly derived from the Windsor and/or Deerfield soil series, but also some fill material and concrete was found in the soil profile. The soil textures include loamy sand over coarse sand, and over stratified sand and fine sand. These soils are well drained, and are deep to bedrock. Saturated hydraulic conductivity is high or very high. Estimated seasonal high water tables in these soils are over 40 inches. |

| MAP<br>UNIT#     | SOIL<br>TAXANOMI<br>C NAME                                           | SLOPES    | HYDRO<br>LOGIC<br>SOIL<br>GROUP |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|------------------|----------------------------------------------------------------------|-----------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 313              | Deerfield                                                            | ABCD<br>E | В                               | The Deerfield series consists of very deep, moderately well drained soils formed in glaciofluvial deposits. These soils are located throughout the property. The soil texture is loamy sand over sand. These soils are deep to bedrock. Saturated hydraulic conductivity is high or very high. Some inclusions of excessively well drained Windsor, and somewhat poorly drained Deerfield Variant, soils may be present, but are less than 10 percent of the mapped area. Estimated seasonal high water tables in these soils range from 15 to 38 inches.                                                                                                                                                    |  |
| 400<br>(c/dbadb) | Udorthents<br>(sandy or<br>gravelly)<br>(moderately<br>well drained) | ACDE      | В                               | Udorthents are disturbed soils that have been excavated and/or regraded, and are sandy or gravelly in texture. These soils are located mostly in the northeast portion of the property. There is also an area of this disturbed map unit in the central portion of the lot. These disturbed soils are mostly derived from the Windsor and/or Deerfield soil series. The soil textures ore loamy sand over stratified sand. These soils are moderately well drained, and are deep to bedrock. Saturated hydraulic conductivity is high or very high. Estimated seasonal high water tables in these soils range from 15 to 50 inches.                                                                          |  |
| 546<br>P         | Walpole                                                              | A         | C                               | The Walpole Series consists of very deep, poorly drained sandy soils formed in outwash and stratified drift. A small area of these soils are located in the wetland, in the south central portion of the property. The soil texture is loamy sand over sandy loam over gravelly sand. Saturated hydraulic conductivity is moderately high or high in the surface layer and subsoil, and high or very high in the substratum. Some inclusions of the very poorly drained Scarbord soil series, and the somewhat poorly drained component of the Sudbury soils may be present, but are less than 10 percent of the mapped area. Estimated seasonal high water tables in these soils range from 0 to 10 inches. |  |

| MAP<br>UNIT #       | SOIL<br>TAXANOMIC<br>NAME             | SLOPES | HYDRO<br>LOGIC<br>SOIL<br>GROUP | DESCRIPTION ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------|---------------------------------------|--------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 900<br>P<br>(fbadd) | Endoaquents<br>(sandy or<br>gravelly) | A      | D                               | Endoaquents represents areas of disturbed soils where the soil material was excavated down to, or near, the water table, and are sandy or gravelly in texture. These soils are located in the northeastern portion of the property in a manmade detention basin.  These disturbed soils appear to be the lower horizons of the Windsor or Deerfield soil series. These soils are deep to bedrock. Saturated hydraulic conductivity is mineral portion is high or very high. Estimated seasonal high water tables in these soils range from 0 to 10 inches |

## **Slope Phases**

| Alpha Slope Symbol | Range    |
|--------------------|----------|
| A                  | 0 - 3%   |
| В                  | 3 - 8%   |
| $\mathbf{C}$       | 8 - 15%  |
| D                  | 15 - 25% |
| ${f E}$            | 25 - 50% |
| F                  | > 50%    |

I trust that this Soil Survey and report meet your current planning needs. Please do not hesitate to contact me if you have any questions.

HAYES III

No. 087

Sincerely:

John P. Hayes III CSS, CWS

John P. Haya II

## Disturbed Soil Mapping Unit Supplement for New Hampshire DES AoT Site Specific Soil Maps

## Introduction

The NRCS NH State-Wide Legend, as amended, contains a number of distinct map units used for identifying areas of soils altered or disturbed by human influence. However, in preparing the required Site Specific Soils Maps for compliance with NH Department of Environmental Services Alteration of Terrain (AoT) rules, additional information is often needed and desired. This supplement provides a means to supply the user a more detailed soil mapping unit description to meet this need.

## Purpose

To provide soil scientists with additional soil mapping tools for disturbed sites and miscellaneous areas to enhance site specific soil maps and interpretations to reflect new requirements under the revised NH Alteration of Terrain regulations. This supplement is intended to allow the creation of soil maps with mapping units that can be expanded beyond those of the NRCS NH State-Wide Numerical Legend and the standards of the National Cooperative Soil Survey for disturbed units in order to provide specific information useful in preparation of site specific soils maps and reports to comply with NHDES Env-Wq 1500-Alteration of Terrain.

Note that the disturbed soil supplement has been created by SSSNNE and is not a product of the NRCS or the National Cooperative Soil Survey. Additionally, the supplemental legend can only be used in conjunction with the Site Specific Soil Mapping standards and cannot be used to create a stand-alone soils map.

For the purposes of this supplement, the definition of disturbed land, including excavate and fill, is as defined by RSA 485-A: 6, VIII; RSA 485-A: 17, and NHDES Env-Wq 1500.

## **Map Notation**

Notation on the Site Specific Soil Map completed to comply with the NH AoT rules should include the following disclaimer:

#### Site-Specific Soil Map

- This detailed Site-Specific Soil Map conforms to the standards of SSSNNE Publication No. 3, as amended, "Site-Specific Soil Mapping Standards for NH and VT".
- This map has been prepared to comply with soil mapping requirements of RSA 485 A: 17and NHDES Env-Wq 1500, Alteration of Terrain.
- 3. See accompanying narrative report for methodology, map symbol legend, and interpretations.

## Map Symbol Denominators for Disturbed Unit Supplements

The map symbols for Site-Specific Soil Mapping of disturbed soils in New Hampshire is a two part symbol with parts separated by a forward slash (/).

The first part consists of the USDA-NRCS Disturbed Map Unit symbol from the NH State-Wide Numerical Soil Legend. The map symbol is composed of 1 to 3 digits followed by a capital letter designating slope.

The second part consists of symbols of the SSSNNE NH Disturbed Soil Supplement to the Site Specific Soil Survey Standards, as detailed below. The disturbed map symbol is composed of 5 lower case letters.

Thus a Site Specific map symbol for a map prepared for an AoT application would be formatted as follows:

#### 400A/aaaaa

These SSSNNE NH Disturbed Soil Supplemental symbols can only be used in conjunction with the USDA-NRCS Disturbed Map Unit symbols for the NH Statewide Numerical Soil Legend.

## Supplemental Symbols

The five components of the Disturbed Soil Mapping Unit Supplement are as follows:

#### Symbol 1: Drainage Class

a-Excessively Drained

b-Somewhat Excessively Drained

c-Well Drained

d-Moderately Well Drained

e-Somewhat Poorly Drained

f-Poorly Drained

g-Very Poorly Drained

h-Not Determined

## Symbol 2: Parent Material (of naturally formed soil only, if present)

a-No natural soil within 60"

b-Glaciofluvial Deposits (outwash/terraces of sand or sand and gravel)

c-Glacial Till Material (active ice)

d-Glaciolacustrine very fine sand and silt deposits (glacial lakes)

e-Loamy/sandy over Silt/Clay deposits

f-Marine Silt and Clay deposits (ocean waters)

g-Alluvial Deposits (floodplains)

h-Organic Materials-Fresh water Bogs, etc

i- Organic Materials-Tidal Marsh

## Symbol 3: Restrictive/Impervious Layers

a-None

b-Bouldery surface with more than 15% of the surface covered with boulders

c-Mineral restrictive layer(s) are present in the soil profile less than 40 inches below the soil surface such as hard pan, platy structure or clayey texture with consistence of at least firm (i.e. more than 20 newtons). For other examples of soil characteristics that qualify for restrictive layers, see "Soil Manual for Site evaluations in NH" 2<sup>nd</sup> Ed., (page 3-17, figure 3-14)

d-Bedrock in the soil profile; 0-20 inches

e-Bedrock in the soil profile; 20-60 inches

f-Areas where depth to bedrock is so variable that a single soil type cannot be applied, will be mapped as a complex of soil types

g-Subject to Flooding

h-Man-made impervious surface including pavement, concrete, or built-up surfaces (i.e. buildings) with no morphological restrictive layer within control section

# Symbol 4: Estimated Ksat\* (most limiting layer excluding symbol 3h above).

a- High.

b-Moderate

c-Low

d-Not determined

\*See "Guidelines for Ksat Class Placement" in Chapter 3 of the Soil Survey Manual, USDA

# Symbol 5: Hydrologic Soil Group\*

a-Group A

b-Group B

c-Group C

d-Group D

e-Not determined

<sup>\*</sup>excluding man-made surface impervious/restrictive layers

## **Disturbed Map Units**

This edition of the New Hampshire State-Wide Numerical Soil Legend contains eleven distinct map units used for identifying areas of soils altered or disturbed by human influence and the addition of one naturally formed map unit. These map units were designed for the Order 2 and Order 3 levels of mapping intensity, but can be used in Order 1 mapping if appropriate.

The definition of disturbed map units is intentionally brief and vague. Classification at the Great Group level allows for a wide range in soil properties and behavioral characteristics. The variability in soil properties typically requires on-site investigations before any interpretation can be developed. The map unit descriptions are intended to provide guidance in differentiating map units. The author of the soil map is expected to provide additional information to reflect the nature of the disturbed areas within the survey area.

#### I. Excavated land

#### 300 Udipsamments

This map unit is characterized by soil textures of loamy fine sand to sand and gravel throughout the entire particle-size class control section (25 - 100 cm or 10 - 40 inches). Saturated hydraulic conductivity (K<sub>sat</sub>) is high or very high. Drainage class ranges from excessively drained to well drained. The Hydrologic Soil Group (HSG) is A. Typical sand pit.

## 350 Udipsamments, wet substratum

This map unit is characterized by soil textures of loamy fine sand to sand and gravel throughout the entire particle-size class control section (25 - 100 cm or 10 - 40 inches). Saturated hydraulic conductivity (K<sub>sat</sub>) is high or very high. Drainage class ranges from moderately well drained to somewhat poorly drained.

#### 400 Udorthents, sandy or gravelly

This map unit typically includes the following concepts: 1) very gravelly (> 35%) sand or very gravelly loamy sand; Or 2) sand or loamy sand textures that may have lenses of loamy very fine sand or finer somewhere in the particle-size class control section (25 - 100 cm or 10 - 40"). Saturated hydraulic conductivity ( $K_{sat}$ ) is high or very high. Drainage class ranges from excessively drained to somewhat poorly drained. Typical gravel pit.

## Disturbed Map Units (continued)

#### 500 Udorthents, loamy

This map unit is characterized typically by soil textures that are sandy loam, loam, or silt loam within the particle size control section (25-100cm or 10-40°). Saturated hydraulic conductivity ( $K_{sat}$ ) is low through high. Drainage class ranges from well drained to somewhat poorly drained. These areas typically represent excavated glacial till or perhaps areas where sand and gravel was excavated down to the loamy underlying material.

#### 550 Udorthents, Bedrock substratum

This map unit is characterized by soil textures of sandy loam, loam, or silt loam within the particle-size class control section (25 - 100 cm or 10 - 40 inches). These areas typically represent excavated soil materials where the range in depth to bedrock is 10 - 60 inches (25 - 152 cm). Saturated hydraulic conductivity (K<sub>sat</sub>) is low through high. Drainage class ranges from somewhat excessively drained to somewhat poorly drained.

## 600 Endoaquents, loamy

This map unit represents areas where soil material was excavated down to, or near the water table. Soil material is typically sandy loam, loam or silt loam within the particle-size class control section (25-100 cm or 10-40 inches). Saturated hydraulic conductivity ( $K_{sat}$ ) is low through high. Drainage class is poorly or very poorly drained. The Hydrologic Soil Group (HSG) is D.

#### 900 Endoaguents, sandy or gravelly

This map unit represents areas where soil material was excavated down to / near the water table. This map unit is characterized typically by soil textures of: 1) very gravelly (> 35% gravel) sand or very gravelly loamy sand or; 2) sand or loamy sand textures that may have lenses of loamy very fine sand or finer somewhere in the particle-size class control section (25 - 100 cm or 10 - 40"). Saturated hydraulic conductivity ( $K_{sat}$ ) is high or very high. Drainage class is poorly or very poorly drained. The Hydrologic Soil Group (HSG) is D. Typical gravel pit dug down to or close to the water table.

## Disturbed Map Units (continued)

## II. Filled land

#### 100 Udorthents, wet substratum

This map unit represents areas that have been filled and leveled over what were originally hydric soils.

## 199 Dumps, bark chips, and organic material

This map unit consists of man-made deposits of bark, wood chips, sawdust, paper mill sludge, cinders, waste paper, ashes, and other similar refuse from the operation of paper mills and sawmills.

#### 200 Udorthents, refuse substratum

This map unit represents alternating layers of soil and refuse such as in sanitary landfills. Closed landfills typically have 2 feet of loamy material capping the area.

## 299 Udorthents, smoothed

This map unit represents areas that have been cut and filled to create a large level or nearly level area. Soil material making up the map units typically came from the immediate area. School athletic fields are an example (unless they were created on hydric soils – see Map Unit 100).

#### III. Bottom Land

## 7 Fluvaguents

This map unit represents areas of various kinds of soil materials on the bottom lands of streams and rivers. The soil material ranges in texture from silt loam to sand and gravel within the particle-size class control section (25 - 100 cm or 10 - 40 inches). Drainage class is poorly or very poorly drained. The Hydrologic Soil Group (HSG) is D.

Job# 23-006

## Test Pit Logs 1/22/24 Map 238 Lot 44-1 607 Calef Highway Barrington NH

Test Pit 206

|                   | - 1                            | 31 111 200                                              |                   |                     |
|-------------------|--------------------------------|---------------------------------------------------------|-------------------|---------------------|
| Depth<br>(inches) | Color                          | Textural<br>Classification                              | Soil<br>Structure | Soil<br>Consistance |
| 0-4               | 10YR 3/2 Dark Grayish Brown    | Loamy Sand                                              | Granular          | Friable             |
| 4-14              | 10YR 5/6 Yellowish Brown       | Loamy Sand                                              | Granular          | Friable             |
| 14-20             | 2.5Y 6/4 Light Yellowish Brown | Loamy Sand                                              | Granular          | Friable             |
| 20-28             | 2.5Y 6/3 Light Yellowish Brown | Sand with<br>Redoximorphic<br>features present          | Single Grain      | Loose               |
| 28-62             | 2.5YR 4/4 Reddish Brown        | Gravelly Sand with<br>Redoximorphic<br>features present | Single Grain      | Loose               |

ESHWT: 20 in. Restrictive Layer: None Observed H2O: 32 in. Refusal: None

## Test Pit 207

| Depth<br>(inches) | Color                          | Textural<br>Classification                     | Soil<br>Structure | Soil<br>Consistance |
|-------------------|--------------------------------|------------------------------------------------|-------------------|---------------------|
| 0-4               | 10YR 3/2 Dark Grayish Brown    | Loamy Sand                                     | Granular          | Friable             |
| 4-16              | 7.5YR 5/6 Strong Brown         | Loamy Sand                                     | Granular          | Friable             |
| 16-30             | 10YR 5/6 Yellowish Brown       | Loamy Sand                                     | Granular          | Friable             |
| 30-40             | 10YR 6/4 Light Yellowish Brown | Sand                                           | Single Grain      | Loose               |
| 40-65             | 2.5Y 6/3 Light Yellowish Brown | Sand with<br>Redoximorphic<br>features present | Single Grain      | Loose               |

ESHWT: 40 in. Restrictive Layer: None Observed H2O: None Refusal: None

Job# 23-006

## Test Pit Logs 1/22/24 Map 238 Lot 44-1 607 Calef Highway Barrington NH

Test Pit 208

|                   | 10                             | cst 1 it 200                                            |                   |                     |
|-------------------|--------------------------------|---------------------------------------------------------|-------------------|---------------------|
| Depth<br>(inches) | Color                          | Textural<br>Classification                              | Soil<br>Structure | Soil<br>Consistance |
| 0-10              | 10YR 3/2 Dark Grayish Brown    | Loamy Sand                                              | Granular          | Friable             |
| 10-18             | 10YR 5/6 Yellowish Brown       | Loamy Sand                                              | Granular          | Friable             |
| 18-36             | 2.5Y 6/4 Light Yellowish Brown | Loamy Sand                                              | Granular          | Friable             |
| 36-65             | 2.5YR 4/4 Reddish Brown        | Gravelly Sand with<br>Redoximorphic<br>features present | Single Grain      | Loose               |

ESHWT: 36 in. Restrictive Layer: None Observed H2O: None Refusal: None

Test Pit 209

|                   | Test I it 200                  |                                                         |                   |                     |  |  |
|-------------------|--------------------------------|---------------------------------------------------------|-------------------|---------------------|--|--|
| Depth<br>(inches) | Color                          | Textural<br>Classification                              | Soil<br>Structure | Soil<br>Consistance |  |  |
| 0-10              | 10YR 3/2 Dark Grayish Brown    | Loamy Sand                                              | Granular          | Friable             |  |  |
| 10-18             | 10YR 5/6 Yellowish Brown       | Loamy Sand                                              | Granular          | Friable             |  |  |
| 18-34             | 2.5Y 6/4 Light Yellowish Brown | Loamy Sand                                              | Granular          | Friable             |  |  |
| 34-65             | 2.5YR 4/4 Reddish Brown        | Gravelly Sand with<br>Redoximorphic<br>features present | Single Grain      | Loose               |  |  |

ESHWT: 34 in. Restrictive Layer: None Observed H2O: None Refusal: None

Job# 23-006

## Test Pit Logs 1/22/24 Map 238 Lot 44-1 607 Calef Highway Barrington NH

Test Pit 210

| Depth<br>(inches) | Color                          | Textural<br>Classification                              | Soil<br>Structure | Soil<br>Consistance |
|-------------------|--------------------------------|---------------------------------------------------------|-------------------|---------------------|
| 0-8               | 10YR 3/2 Dark Grayish Brown    | Loamy Sand                                              | Granular          | Friable             |
| 8-14              | 7.5YR 5/6 Strong Brown         | Loamy Sand                                              | Granular          | Friable             |
| 14-24             | 10YR 5/6 Yellowish Brown       | Loamy Sand                                              | Granular          | Friable             |
| 24-32             | 10YR 6/4 Light Yellowish Brown | Sand                                                    | Single Grain      | Loose               |
| 32-64             | 2.5Y 6/3 Light Yellowish Brown | Gravelly Sand with<br>Redoximorphic<br>features present | Single Grain      | Loose               |

ESHWT: 32 in. Restrictive Layer: None Observed H2O: None Refusal: None

## Test Pit 211

| Depth<br>(inches) | Color                          | Textural<br>Classification                     | Soil<br>Structure | Soil<br>Consistance |
|-------------------|--------------------------------|------------------------------------------------|-------------------|---------------------|
| 0-8               | 10YR 3/2 Dark Grayish Brown    | Loamy Sand                                     | Granular          | Friable             |
| 8-14              | 10YR 5/6 Yellowish Brown       | Loamy Sand                                     | Granular          | Friable             |
| 14-22             | 10YR 6/4 Light Yellowish Brown | Loamy Sand                                     | Granular          | Friable             |
| 22-60             | 2.5Y 6/3 Light Yellowish Brown | Sand with<br>Redoximorphic<br>features present | Single Grain      | Loose               |

ESHWT: 22 in. Restrictive Layer: None Observed H2O: 32 in. Refusal: None

Job# 23-006

## Test Pit Logs 1/22/24 Map 238 Lot 44-1 607 Calef Highway Barrington NH

Test Pit 212

|                   | Test I II 212                  |                                                         |                   |                     |  |  |
|-------------------|--------------------------------|---------------------------------------------------------|-------------------|---------------------|--|--|
| Depth<br>(inches) | Color                          | Textural<br>Classification                              | Soil<br>Structure | Soil<br>Consistance |  |  |
| 0-8               | 10YR 3/2 Dark Grayish Brown    | Loamy Sand                                              | Granular          | Friable             |  |  |
| 8-16              | 7.5YR 5/6 Strong Brown         | Loamy Sand                                              | Granular          | Friable             |  |  |
| 16-28             | 10YR 5/6 Yellowish Brown       | Loamy Sand                                              | Granular          | Friable             |  |  |
| 26-38             | 10YR 6/4 Light Yellowish Brown | Sand                                                    | Single Grain      | Loose               |  |  |
| 38-60             | 2.5Y 6/3 Light Yellowish Brown | Gravelly Sand with<br>Redoximorphic<br>features present | Single Grain      | Loose               |  |  |

ESHWT: 38 in. Restrictive Layer: None Observed H2O: None Refusal: None

#### Test Pit 213

|                   |                                | Still MID                                               |                   |                     |
|-------------------|--------------------------------|---------------------------------------------------------|-------------------|---------------------|
| Depth<br>(inches) | Color                          | Textural<br>Classification                              | Soil<br>Structure | Soil<br>Consistance |
| 0-10              | 10YR 3/2 Dark Grayish Brown    | Loamy Sand                                              | Granular          | Friable             |
| 10-24             | 10 YR 5/4 Yellowish Brown      | Gravelly Sand                                           | Single Grain      | Loose               |
| 24-42             | 10YR 3/1 Very Dark Gray        | Loamy Fine Sand                                         | Massive           | Friable             |
| 42-52             | 2.5Y 6/3 Light Yellowish Brown | Gravelly Sand with<br>Redoximorphic<br>features present | Single Grain      | Loose               |

ESHWT: None to 52 in. Restrictive Layer: None Observed H2O: None Refusal: None

Note: 0 to 24 inches is fill material. Some concrete in fill material 10 to 24 in.

Job# 23-006

## Test Pit Logs 1/22/24 Map 238 Lot 44-1

Test Pit 214

| Depth<br>(inches) | Color                          | Textural<br>Classification                                   | Soil<br>Structure | Soil<br>Consistance |
|-------------------|--------------------------------|--------------------------------------------------------------|-------------------|---------------------|
| 0-8               | 10YR 3/2 Dark Grayish Brown    | Loamy Sand                                                   | Granular          | Friable             |
| 8-28              | 10YR 6/4 Light Yellowish Brown | Loamy Sand                                                   | Granular          | Friable             |
| 28-36             | 10YR 3/1 Very Dark Gray        | Loamy Fine Sand                                              | Granular          | Friable             |
| 36-50             | 2.5Y 6/3 Light Yellowish Brown | Sand and Fine Sand<br>with Redoximorphic<br>features present | Massive           | Friable             |

ESHWT: None to 36 in. Restrictive Layer: None Observed H2O: None Refusal: None

Job# 23-006

Test Pit Logs 3/7/24 Map 238 Lot 44-1

Test Pit 301

|                   | 10                             | 31111501                                                |                   |                     |
|-------------------|--------------------------------|---------------------------------------------------------|-------------------|---------------------|
| Depth<br>(inches) | Color                          | Textural<br>Classification                              | Soil<br>Structure | Soil<br>Consistance |
| 0-8               | 10YR 3/2 Dark Grayish Brown    | Loamy Sand                                              | Granular          | Friable             |
| 8-18              | 10YR 5/6 Yellowish Brown       | Gravelly Loamy<br>Sand                                  | Granular          | Friable             |
| 18-30             | 10YR 6/4 Light Yellowish Brown | Gravelly Loamy<br>Sand                                  | Granular          | Friable             |
| 30-44             | 10YR 6/4 Light Yellowish Brown | Sand                                                    | Single Grain      | Loose               |
| 44-52             | 2.5Y 5/3 Light Yellowish Brown | Gravelly Sand with<br>Redoximorphic<br>features present | Single Grain      | Loose               |

ESHWT: 44 in. Restrictive Layer: None Observed H2O: None Refusal: None

## Test Pit 302

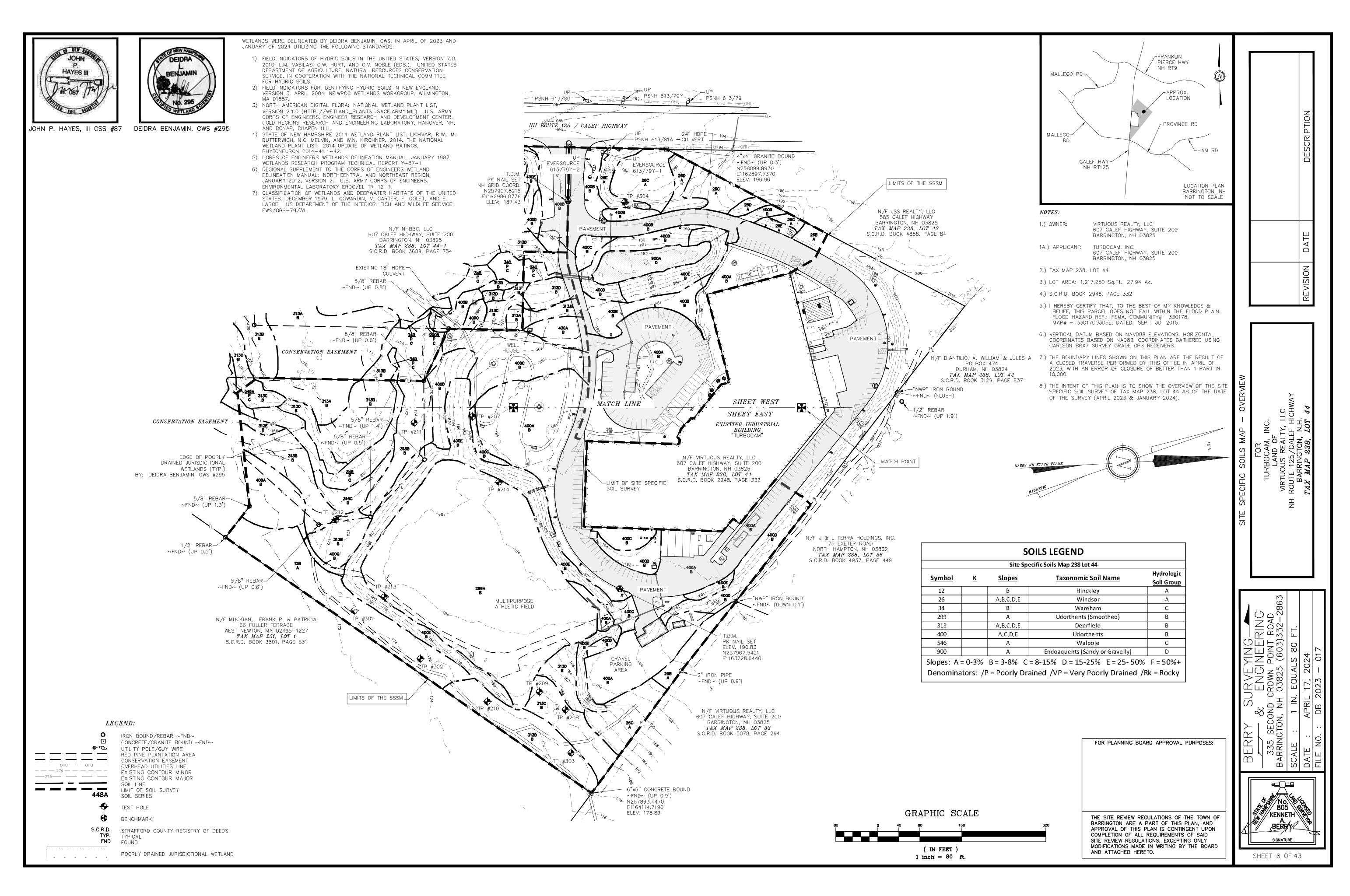
| Depth<br>(inches) | Color                          | Textural<br>Classification                              | Soil<br>Structure | Soil<br>Consistance |
|-------------------|--------------------------------|---------------------------------------------------------|-------------------|---------------------|
| 0-8               | 10YR 3/2 Dark Grayish Brown    | Loamy Sand                                              | Granular          | Friable             |
| 8-18              | 10YR 5/6 Yellowish Brown       | Gravelly Loamy<br>Sand                                  | Granular          | Friable             |
| 18-32             | 10YR 6/4 Light Yellowish Brown | Gravelly Loamy<br>Sand                                  | Granular          | Friable             |
| 32-46             | 10YR 6/4 Light Yellowish Brown | Sand                                                    | Single Grain      | Loose               |
| 46-52             | 2.5Y 5/3 Light Yellowish Brown | Gravelly Sand with<br>Redoximorphic<br>features present | Single Grain      | Loose               |

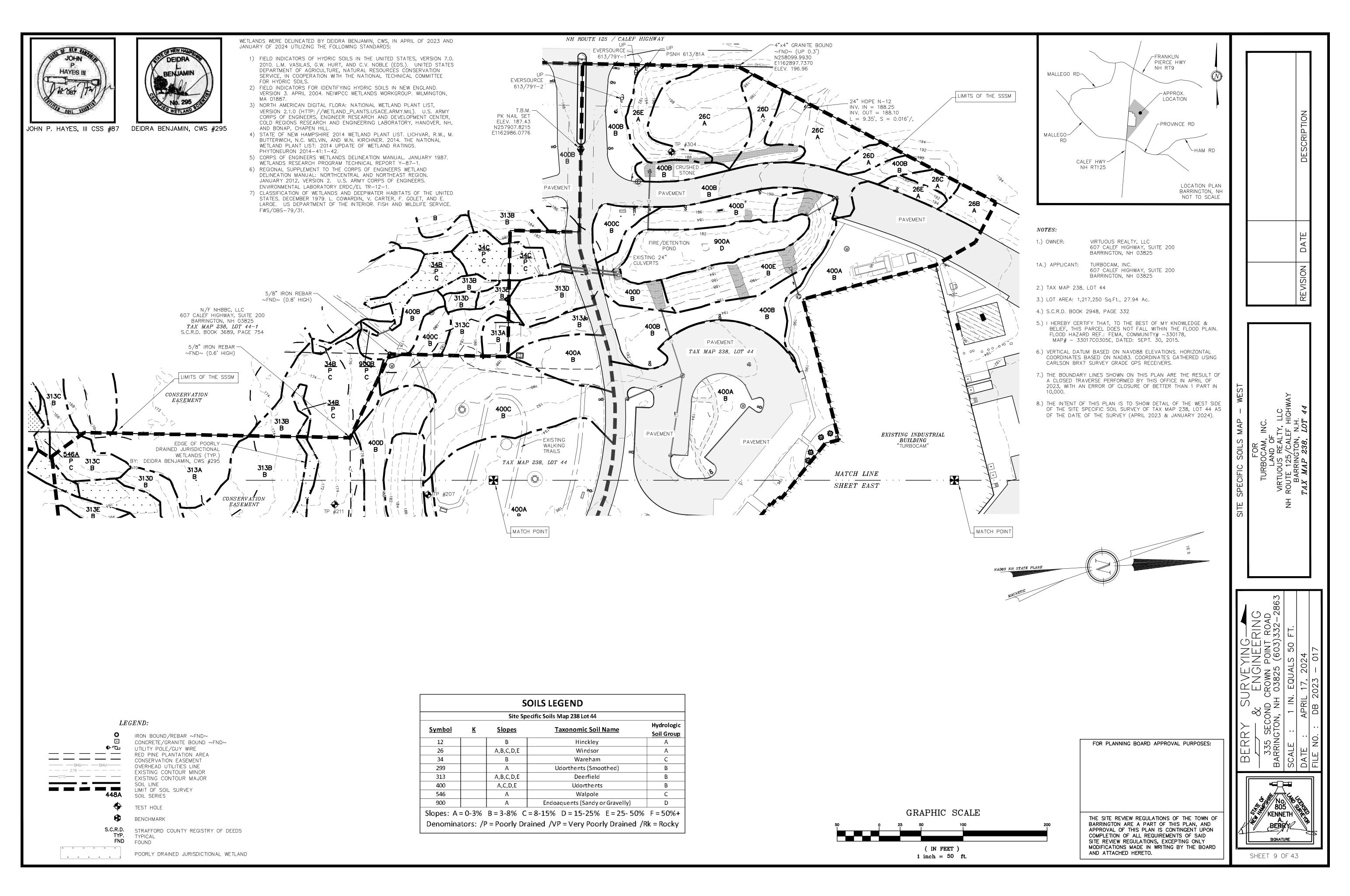
ESHWT: 46 in. Restrictive Layer: None Observed H2O: None Refusal: None

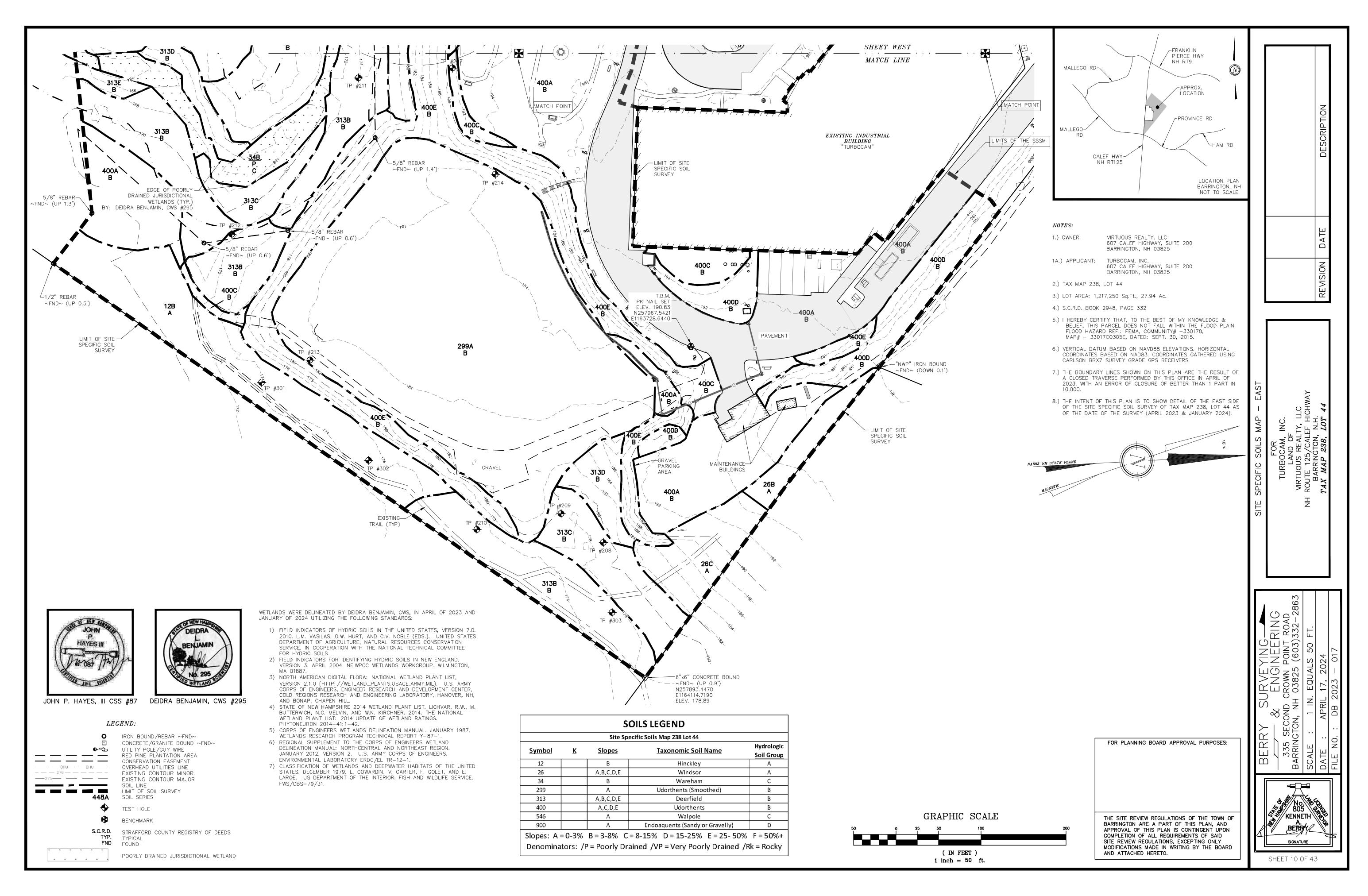
Job# 23-006

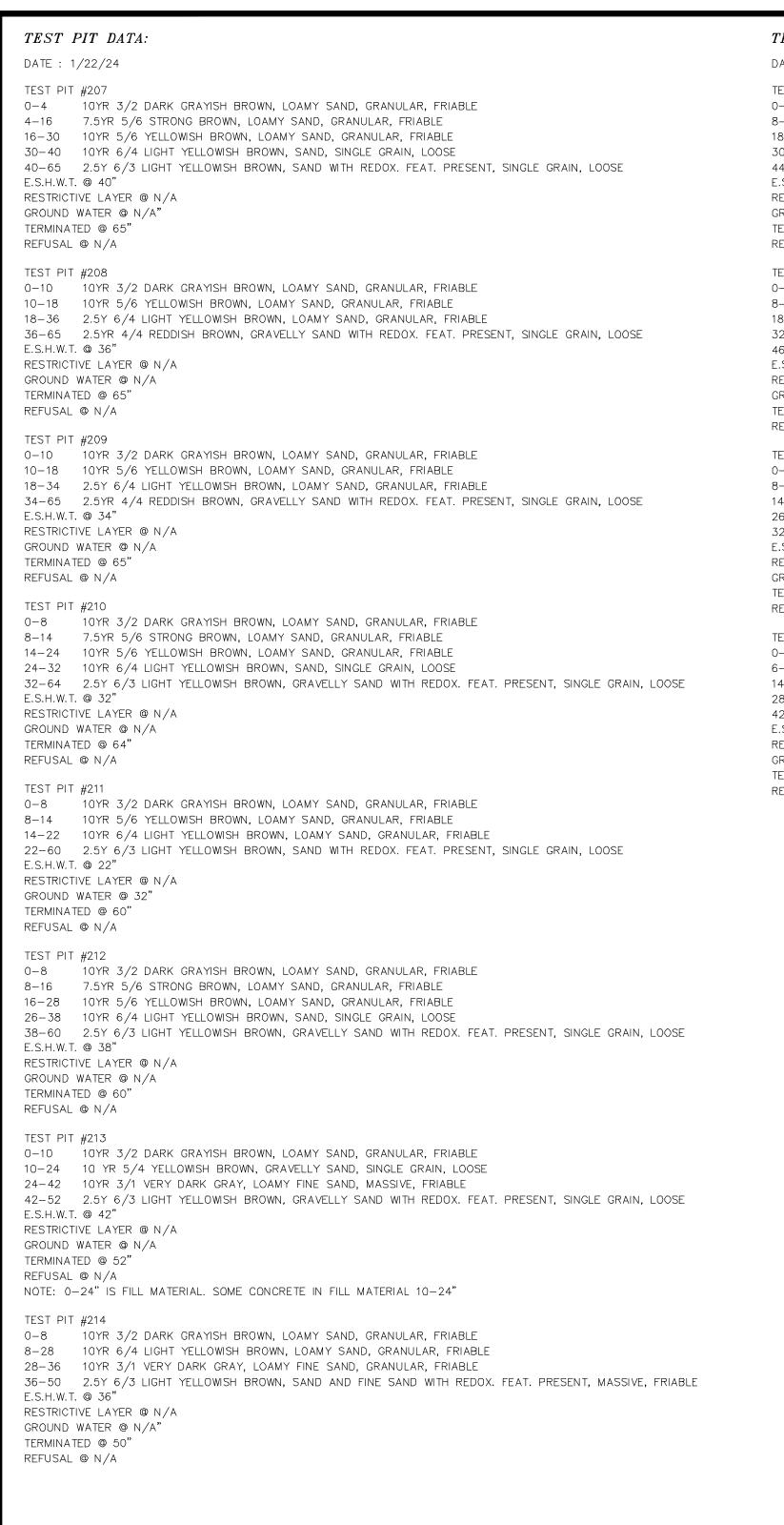
Test Pit Logs 3/7/24 Map 238 Lot 44-1

Test Pit 303

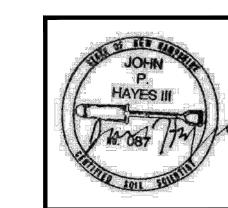

|                   | 1030                           | 111 303                                        |                   |                     |
|-------------------|--------------------------------|------------------------------------------------|-------------------|---------------------|
| Depth<br>(inches) | Color                          | Textural<br>Classification                     | Soil<br>Structure | Soil<br>Consistance |
| 0-8               | 10YR 3/2 Dark Grayish Brown    | Loamy Sand                                     | Granular          | Friable             |
| 8-14              | 7.5YR 5/6 Strong Brown         | Loamy Sand                                     | Granular          | Friable             |
| 14-26             | 10YR 5/6 Yellowish Brown       | Loamy Sand                                     | Granular          | Friable             |
| 26-32             | 10YR 6/4 Light Yellowish Brown | Sand                                           | Single Grain      | Loose               |
| 32-52             | 2.5Y 6/3 Light Yellowish Brown | Sand with<br>Redoximorphic<br>features present | Single Grain      | Loose               |


ESHWT: 32 in. Restrictive Layer: None Observed H2O: None Refusal: None


Test Pit 304


|                   | 100                            | 1111304                                                 |                   |                     |
|-------------------|--------------------------------|---------------------------------------------------------|-------------------|---------------------|
| Depth<br>(inches) | Color                          | Textural<br>Classification                              | Soil<br>Structure | Soil<br>Consistance |
| 0-6               | 10YR 3/2 Dark Grayish Brown    | Loamy Sand                                              | Granular          | Friable             |
| 6-14              | 7.5YR 5/6 Strong Brown         | Loamy Sand                                              | Granular          | Friable             |
| 14-28             | 10YR 5/6 Yellowish Brown       | Loamy Sand                                              | Granular          | Friable             |
| 28-42             | 10 YR 6/4 Yellowish Brown      | Sand                                                    | Single Grain      | Loose               |
| 42-52             | 2.5Y 6/3 Light Yellowish Brown | Gravelly Sand with<br>Redoximorphic<br>features present | Single Grain      | Loose               |

ESHWT: 42 in. Restrictive Layer: None Observed H2O: None Refusal: None










```
TEST PIT DATA:
DATE: 3/7/24
0-8 10YR 3/2 DARK GRAYISH BROWN, LOAMY SAND, GRANULAR, FRIABLE
8-18 10YR 5/6 YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE
18-30 10YR 6/4 LIGHT YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE
30-44 10YR 6/4 LIGHT YELLOWISH BROWN, SAND, SINGLE GRAIN, LOOSE
44-52 2.5YR 5/3 LIGHT YELLOWISH BROWN, GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE
E.S.H.W.T. @ 44"
RESTRICTIVE LAYER @ N/A
GROUND WATER @ N/A
TERMINATED @ 52"
REFUSAL @ N/A
TEST PIT #302
0-8 10YR 3/2 DARK GRAYISH BROWN, LOAMY SAND, GRANULAR, FRIABLE
8-18 10YR 5/6 YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE
18-32 10YR 6/4 LIGHT YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE
32-46 10YR 6/4 LIGHT YELLOWISH BROWN, SAND, SINGLE GRAIN, LOOSE
46-52 2.5YR 5/3 LIGHT YELLOWISH BROWN, GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE
E.S.H.W.T. @ 46"
RESTRICTIVE LAYER @ N/A
GROUND WATER @ N/A
TERMINATED ◎ 52"
REFUSAL @ N/A
TEST PIT #303
0-8 10YR 3/2 DARK GRAYISH BROWN, LOAMY SAND, GRANULAR, FRIABLE
8-14 7.5YR 5/6 STRONG BROWN, LOAMY SAND, GRANULAR, FRIABLE
14-26 10YR 5/6 YELLOWISH BROWN, LOAMY SAND, GRANULAR, FRIABLE
26-32 10YR 6/4 LIGHT YELLOWISH BROWN, SAND, SINGLE GRAIN, LOOSE
32-52 2.5YR 6/3 LIGHT YELLOWISH BROWN, SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE
E.S.H.W.T. @ 32"
RESTRICTIVE LAYER @ N/A
GROUND WATER @ N/A
TERMINATED @ 52"
REFUSAL @ N/A
0-6 10YR 3/2 DARK GRAYISH BROWN, LOAMY SAND, GRANULAR, FRIABLE
6-14 7.5YR 5/6 STRONG BROWN, LOAMY SAND, GRANULAR, FRIABLE
14-28 10YR 5/6 YELLOWISH BROWN, LOAMY SAND, GRANULAR, FRIABLE
28-42 10YR 6/4 LIGHT YELLOWISH BROWN, SAND, SINGLE GRAIN, LOOSE
42-52 2.5YR 6/3 LIGHT YELLOWISH BROWN, SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE
E.S.H.W.T. @ 42"
RESTRICTIVE LAYER @ N/A
GROUND WATER @ N/A
TERMINATED @ 52"
REFUSAL @ N/A
```



JOHN P. HAYES, III CSS #87

FOR PLANNING BOARD APPROVAL PURPOSES:

THE SITE REVIEW REGULATIONS OF THE TOWN OF BARRINGTON ARE A PART OF THIS PLAN, AND APPROVAL OF THIS PLAN IS CONTINGENT UPON COMPLETION OF ALL REQUIREMENTS OF SAID SITE REVIEW REGULATIONS, EXCEPTING ONLY MODIFICATIONS MADE IN WRITING BY THE BOARD AND ATTACHED HERETO.

BERRY SURV 335 SECOND CROV BARRINGTON, NH 038 SCALE: NONE DATE: APRIL 17,



## BERRY SURVEYING & ENGINEERING

335 Second Crown Point Road Barrington, NH 03825 Phone: (603) 332-2863 Fax: (603) 335-4623 www.BerrySurveying.Com

## **Stormwater System Management:**

# **Inspection and Maintenance Manual**

607 Calef Highway Barrington, NH Tax Map 238, Lot 44

Prepared for

TURBOCAM, INC. 607 Calef Highway Suite 200 Barrington, NH 03825

Land of

Virtuous Realty, LLC 607 Calef Highway Suite 200 Barrington, NH 03825

Prepared By

KENNETH A. BF Berry Surveying & Engineering 335 Second Crown Point Road Barrington, NH 03825 603-332-2863

File Number DB2023-017

February 5, 2024 Revised: April 17, 2024

## Table of Contents

| Introduction w/ Practice Inventory                       | Page 2             |
|----------------------------------------------------------|--------------------|
| Catch Basins                                             | Page 4             |
| Conveyance & Treatment Swales w/ Check Dams              | Page 4             |
| Sediment Forebays                                        | Page 5             |
| Bioretention W/ ISR                                      | Page 5             |
| Detention Basins                                         | Page 6             |
| Infiltration Basins                                      | Page 7             |
| Outlet Protection & Level Spreader                       | Page 8             |
| Stabilization for Long Term Cover                        | Page 8             |
| Control of Invasive Species                              | Page 10            |
| Snow Removal and Winter Maintenance                      | Page 10            |
| Annual Report                                            | Page 11            |
| Inspection & Maintenance Manual Checklist                | Page 12            |
| Inspection & Maintenance Log Sheet                       | Page 15            |
| Deicing Log Sheet                                        | Page 16            |
| Owner Certification                                      | Page 17            |
| Inspection & Maintenance Plan                            | Attached – 2 Pages |
| Stormwater Practice Design Plans                         | Attached – 6 Pages |
| Control of Invasive Plants, NH Department of Agriculture | Attached – 4 Pages |
| NHDES Green SnoPro Utilization Chart                     | Attached – 1 Page  |

## Introduction

The Best Management Practices (BMP) described in this manual are specified in more detail within the plan set giving design details and specifications. The <u>New Hampshire Stormwater Manual</u>, <u>Volume 2</u>, <u>Post-Construction Best Management Practices Selection & Design</u> (December 2008, NHDES & US EPA) is included by reference to this manual. Additional details, construction specifications, and example drawings are provided within this reference. (http://des.nh.gov/organization/divisions/water/stormwater/)

The BMP's are covered below in the general order in which the storm water flows. Each BMP has a description and maintenance consideration listed. A Check List table is provided after the narrative to summarize the maintenance responsibilities and schedule. A Log Form is also provided for the owners use.

For details regarding the design of the Storm Water System see also <u>Drainage Analysis & Sediment and Erosion Control Plan</u> also published by Berry Surveying & Engineering originally dated April 17, 2024, as revised. See also plan set completed for TURBOCAM, INC. originally dated April 17, 2024, as revised.

Andrew Knapp, Director of EHS, Facilities & Maintenance, or his successor, is responsible for the Stormwater System Operation and Maintenance. A significant step in this responsibility is the Inspection and Maintenance of each component of the system. Ongoing, semi-annual, and annual inspection and maintenance requirement are documented below and must be taken seriously. Failure of any component of the system can result in surface water run-off ponding and/or freezing in the roadway and parking lots, leaving the developed site untreated, and/or causing violations to issued permits. The owner must maintain, and have available, plans of the Stormwater System in order to properly inspect and maintain the system. (Reduced copies attached.) The Director of EHS, Facilities & Maintenance, Andrew Knapp, or his successor / operator, is responsible to ensure that any subsequent owner or subcontractor has copies of the Log Form and Annual Report records and fully understands the responsibilities of this plan. The grantor owner will ensure this document is provided to the grantee owner by duplicating the Ownership Responsibility Sheet which is found toward the back of this document, which will be maintained with the Inspection & Maintenance Logs, provided to the Town of Barrington, Planning Department, with the Annual Report.

The operator of Tax Map 238, Lot 44, TURBOCAM, INC., and owner of the property, Virtuous Realty, LLC, are proposing the improvement of the parcel with two parking areas and an outdoor function area. Surface water runoff is being managed and treated by two Bioretention W/ ISRs, an infiltration pond, and a detention pond.

The following drainage features will all require periodic inspections and maintenance based on this manual:

Catch Basins #41-#47 (Ponds #C41-#C47)

Drain Manholes #51-#53 (Ponds #D51-#D53)

Inlet Sump (Pond #50)

Conveyance Swales and Roadside Ditches

Bioretention W/ ISR #201 - P-201 w/ Outlet Structures and Matted Spillway

Bioretention W/ ISR #202 – P-202 w/ Outlet Structures and Matted Spillway

Infiltration Pond #203 – P-203 w/ Matted Spillway

Detention Pond #204 – P-204 w/ Outlet Structure and Matted Spillway

Outlet Protection and Level Spreaders

## Catch Basins (Without Sumps) & Drain Manholes

<u>Description:</u> Catch Basins are used throughout the site to capture and, along with culvert pipes and manhole, route surface water runoff to stormwater treatment and detention infrastructure. During construction the catch basins will be protected by inlet protection per the approved construction plans. The practice of street sweeping on a bi-annual basis will help reduce maintenance of these catch basins and culvert pipes.

Note: Deep sump catch basins are not allowed to be used on this proposed development due to wildlife concerns and any manufacturer sump resulting in a catch basin must be filled with washed crushed stone. Sediment should be trapped in the sediment forebays but is also a concern in earlier structures. See construction details for specifications of these conveyance practices.

Maintenance Considerations: Sediment must be removed from Catch Basins and Manholes on a regular basis, at least twice a year and more often if post-winter maintenance and street sweeping is not conducted. Inspections should be conducted periodically. At a minimum they should be cleaned after snow-melt and after leaf-drop. Disposal of all material, sediment, and debris must be done in accordance with state and federal regulations. Culvert pipes will be inspected to ensure that surface water runoff is capable of leaving the structures. Drain manholes will be inspected to make sure there is not sediment build-up or blockages.

## **Conveyance Swale**

<u>Description:</u> Conveyance swales are stabilized channels designed to convey runoff at non-erosive velocities. They may be stabilized using vegetation, riprap, or a combination, or with an alternative lining designed to accommodate design flows while protecting the integrity of the sides and bottom of the channel. Conveyance channels may provide incidental water quality benefits, but are not specifically designed to provide treatment. Conveyance swales are not considered a Treatment or Pretreatment Practice under the AoT regulations, unless they are also designed to meet the requirements of an acceptable Treatment/Pretreatment Practice as described elsewhere in this Chapter. See SWM Volume 2, 4-6.3 Conveyance Practices, Conveyance Swale, page 166.

<u>Maintenance Considerations</u>: Grassed channels should be inspected periodically (at least annually) for sediment accumulation, erosion, and condition of surface lining (vegetation or riprap). Repairs, including stone or vegetation replacement, should be made based on this inspection. Remove sediment and debris annually, or more frequently as warranted by inspection. Mow vegetated channels based on frequency specified by design. Mowing at least once per year is required to control establishment of woody vegetation. It is recommended to cut grass no shorter than 4 inches.

## **Sediment Forebay**

<u>Description:</u> A sediment forebay is an impoundment, basin, or other storage structure designed to dissipate the energy of incoming runoff and allow for initial settling of coarse sediments. Forebays are used for pretreatment of runoff prior to discharge into the primary water quality treatment BMP. In some cases, forebays may be constructed as separate structures but often, they are integrated into the design of larger stormwater management structures. See SWM Volume 2, 4-4.1 Pre-treatment Practices, Sediment Forebay, page 140.

Maintenance Considerations: Forebays help reduce the sediment load to downstream BMPs, and will therefore require more frequent cleaning. Inspect at least annually; Conduct periodic mowing of embankments (generally two times per year) to control growth of woody vegetation on embankments; Remove debris from outlet structures at least once annually; Remove and dispose of accumulated sediment based on inspection; Install and maintain a staff gage or other measuring device, to indicate depth of sediment accumulation and level at which clean-out is required. Preserving the drainage between the Sediment Forebay and the stormwater BMP by inspecting and maintaining the connecting drainage pipes and perforations should be completed semi annually or as required to ensure the forebay is dry.

## Bioretention W/ Internal Storage Reservoir (ISR)

<u>Description:</u> A practice that provides temporary storage of runoff for filtering through an engineered soil media, augmented for enhanced phosphorus removal, followed by detention and denitrification in a subsurface internal storage reservoir (ISR) comprised of gravel. Runoff flows are routed through filter media and directed to the underlying ISR via an impermeable membrane for temporary storage. An elevated outlet control at the top of the ISR is designed to provide a retention time of at least 24 hours in the system to allow for sufficient time for denitrification and nitrogen reduction to occur prior to discharge. The design storage capacity for using the cumulative performance curves is comprised of void spaces in the filter media, temporary ponding at the surface of the practice and the void spaces in the gravel ISR. The volume of the ISR will exceed 26% of the Water Quality Volume (WQV). Reference: <u>2017 NH Small MS4 General Permit</u>, Appendix F Attachment 3, and UNH Stormwater Center, "UNH Stormwater Center Hybrid Bioretention Template" (2020). *UNH Stormwater Center*. 73. https://scholars.unh.edu/stormwater/73

Maintenance Considerations: The outlet to the Internal Storage Reservoir consists of a 1.25" or 1.5" orifice in a threaded end-cap after the goose-neck pipe within the concrete outlet structure. The inlet manifold and threaded pipe outlet manifold system is designed so that the ISR, or anaerobic reservoir can be completely drained and the sump of the outlet structure pumped dry. The orifice requires periodic inspection, initially on a semi-annual basis. This time increment may need to be adjusted based on

the experience on the maintenance of the device. The draining of the ISR would only be accomplished if issues developed.

The enhanced bio-media will require additional material rototilled into the top 10-inches to foot of the rain garden after a period of approximately 20 years. The timing of this maintenance period is a factor of the methodology applied during construction and will need to be evaluated as the rain gardens age.

Rain Gardens should be inspected at least twice annually and following any rainfall event exceeding 2.5 inches in a twenty-four hour period. Maintenance rehabilitation will be conducted as warranted by each inspection. Trash and debris will be removed at each inspection.

On an annual basis the infiltration capabilities need to be confirmed by evaluation the drawdown time. If the bioretention system does not drain within 72-hours following a rainfall event, a qualified professional will assess the condition of the rain garden to determine measures required to restore the infiltration function. This is normally the direct result of sediment accumulation which will be removed to restore the filter media ratio.

Proposed side slopes of 2:1 will be maintained with a weedwhacker, with vegetation being removed from the BMP with each maintenance application.

#### **Detention Basins**

<u>Description:</u> A detention basin is an impoundment designed to temporarily store runoff and release it at a controlled rate, reducing the intensity of peak flows during storm events. Conventional detention basins are typically designed to control peak runoff rates under a range of storm conditions, and can be used to control discharges as required under the AoT Regulations and other requirements, including, but not necessarily limited to: Storage and peak rate control to meet Channel Protection Requirements (see Section 2-17); Storage and peak rate control to meet Peak Runoff Control Requirements (see Section 2-18) (10-year and 50-year frequency, 24-hour storm events); Storage and peak rate control to prevent flood impacts within the 100-year flood plain; Storage and peak rate control to meet other regulatory requirements, including local permitting standards.

Detention basins may consist of surface basins (pond-type structures) or subsurface basins (enclosed structures located below ground. Surface basins should be designed with an emergency spillway or bypass meeting applicable dam safety standards (Env-Wr 100 - 700: Dam Safety Rules). Subsurface basins should also be designed to safely bypass flows exceeding the engineered capacity of the structure. Detention basins may be combined with treatment BMPs discussed in this guidance document, to provide for other stormwater management objectives. For example, a stormwater pond may be

designed to provide treatment as well as detention. However, a detention basin is not by itself considered a "Treatment Practice" under the AoT Regulations. See SWM Volume 2, 4-6.1 Conveyance Practices, Detention Basins, page 156.

<u>Maintenance Considerations</u>: The bottoms, interior and exterior side slopes, and crest of earthen detention basins should be mowed, and the vegetation maintained in healthy condition, as appropriate to the function of the facility and type of vegetation. Vegetated embankments that serve as "berms" or "dams" that impound water should be mowed at least once annually to prevent the establishment of woody vegetation.

#### **In-Ground Infiltration Basin**

Description: Infiltration basins are impoundments designed to temporarily store runoff, allowing all or a portion of the water to infiltrate into the ground. An infiltration basin is designed to completely drain between storm events. An infiltration basin is specifically designed to retain and infiltrate the entire Water Quality Volume. Some infiltration basins may infiltrate additional volumes during larger storm events, but many will be designed to release stormwater exceeding the water quality volume from the larger storms. In a properly sited and designed infiltration basin, water quality treatment is provided by runoff pollutants binding to soil particles beneath the basin as water percolates into the subsurface. Biological and chemical processes occurring in the soil also contribute to the breakdown of pollutants. Infiltrated water is used by plants to support growth or it is recharged to the underlying groundwater. As with all impoundment BMPs, surface infiltration basins should be designed with an outlet structure to pass peak flows during a range of storm events, as well as with an emergency spillway to pass peak flows around the embankment during extreme storm events that exceed the combined infiltration capacity and outlet structure capacity of the facility. See SWM Volume 2, 4-3.3b, Treatment Practices, In-Ground Infiltration Basin, page 88.

Maintenance Considerations: Removal of debris from inlet and outlet structures. Removal of accumulated sediment. Inspection and repair of outlet structures and appurtenances. Inspection of infiltration components at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24 hour period, with maintenance or rehabilitation conducted as warranted by such inspection. Inspection of pretreatment measures at least twice annually, and removal of accumulated sediment as warranted by inspection, but no less than once annually. If an infiltration system does not drain within 72-hours following a rainfall event, then a qualified professional should assess the condition of the facility to determine measures required to restore infiltration function, including but not limited to removal of accumulated sediments or reconstruction of the infiltration trench.

## **Stone Berm Level Spreader**

<u>Description:</u> A stone berm level spreader is an outlet structure constructed at zero percent grade across a slope used to convert concentrated flow to "sheet flow." It disperses or "spreads" flow thinly over a receiving area, usually consisting of undisturbed, vegetated ground. The conversion of concentrated flow to shallow, sheet flow allows runoff to be discharged at non-erosive velocities onto natural ground. To stabilize the spreader outlet, a stone berm is provided to dissipate flow energy, and help disperse flows along the length of the spreader. Level spreaders are not designed to remove pollutants from stormwater; however, some suspended sediment and associated phosphorous, nitrogen, metals and hydrocarbons will settle out of the runoff through settlement, filtration, infiltration, absorption, decomposition and volatilization. See SWM Volume 2, 4-6.6 Conveyance Practices, Stone Berm Level Spreader, page 162.

Maintenance Considerations: Inspect at least once annually for accumulation of sediment and debris and for signs of erosion within approach channel, spreader channel or down-slope of the spreader. Remove debris whenever observed during inspection. Remove sediment when accumulation exceeds 25% of spreader channel depth. Mow as required by landscaping design. At a minimum, mow annually to control woody vegetation within the spreader. Snow should not be stored within or down-slope of the level spreader or its approach channel. Repair any erosion and re-grade or replace stone berm material, as warranted by inspection. Reconstruct the spreader if down-slope channelization indicates that the spreader is not level or that discharge has become concentrated, and corrections cannot be made through minor re-grading.

## Stabilization for Long Term Cover

Vegetated Stabilization - Original Planting

All areas that are disturbed during construction will be stabilized with vegetated material within 30 days of breaking ground. Construction will be managed in such a manner that erosion is prevented and that no abutter's property will be subjected to any siltation, unless otherwise permitted. All areas to be planted with grass for long-term cover will follow the specification and on Sheet E-102 using seeding mixture C, as follows:

| Mixture            | Pounds<br>per Acre | Pounds per<br>1,000 Sq. Ft. |  |
|--------------------|--------------------|-----------------------------|--|
| Tall Fescue        | 24                 | 0.55                        |  |
| Creeping Red Fescu | e 24               | 0.55                        |  |
| Total              | 48                 | 1.10                        |  |

## **Conservation Mix**

| Virginia Wild Rye   | Native | FACW- |
|---------------------|--------|-------|
| Little Bluestem     | Native | FACU  |
| Big Bluestem        | Native | FAC   |
| Red Fescue          | Native | FACU  |
| Switch Grass        | Native | FAC   |
| Partridge Pea       | Native | FACU  |
| Showy Tick Trefoil  | Native | FAC   |
| Butterfly Milkweed  | Native | NI    |
| Beggar Ticks        | Native | FACW  |
| Purple Joe Pye Weed | Native | FAC   |
| Black Eyed Susan    | Native | FACU- |
| Total               | 25     | 0.57  |

Conservation Mix to be provided by New England Wetland Plants, Inc., Amherst, MA as outline in their New England Conservation / Wildlife Mix or approved equal. Mix to be applied at a rate of 25 lbs. per acre or one-lb. per 1750 square feet. Ratio of seed is proprietary and substitutions are not allowed.

Conservation Mix will used to stabilize all 2:1 slopes and all land area disturbed within the wetland buffer.

<u>Stormwater BMP Mix:</u> The grass that is planted within a stormwater BMP will be a mix designed for both inundation and dry conditions such as Ernst Seeds, Retention Basin Floor Mix ERNMX-126.

<u>Maintenance Considerations:</u> Permanent seeded areas for long-term cover will be inspected on a periodic basis looking for signs of growth loss or erosion. Any areas found to be damaged will be repaired and replanted to reestablish the growth. The grass should be mowed at least twice per year and any dead material removed. Any woody growth that becomes established will need to be cut and removed.

Long-term maintenance of the land cover is critical and must be maintained at least 85% grass / vegetation coverage, must be inspected for concentrated flow, rills, and channels; and must be repaired as necessary to prevent erosion.

## **Control of Invasive Plants**

During maintenance activities, check for the presence of invasive plants and remove in a safe manner as described on the following pages. They should be controlled as described on the following pages.

Invasive plants are introduced, alien, or non-native plants, which have been moved by people from their native habitat to a new area. Some exotic plants are imported for human use such as landscaping, erosion control, or food crops. They also can arrive as "hitchhikers" among shipments of other plants, seeds, packing materials, or fresh produce. Some exotic plants become invasive and cause harm by:

- becoming weedy and overgrown;
- killing established shade trees;
- obstructing pipes and drainage systems;
- forming dense beds in water;
- lowering water levels in lakes, streams, and wetlands;
- destroying natural communities;
- promoting erosion on stream banks and hillsides; and
- resisting control except by hazardous chemical.

### **Snow Removal & Winter Maintenance**

<u>Description:</u> Drainage and stormwater systems need to be maintained during the winter months so that surface water runoff from a rain storm does not become a impounding and icing problem. Catch basins must remain viable and where sheet flow is a design factor, the edge of pavement and should need to be maintained so that runoff can leave the pavement area. Sand and salt should be used at the rate that prevents sedimentation problems or excess salt deposited but yet enough to allow for protection for pedestrians and vehicles.

Maintenance Considerations: Catch basins are required to be kept viable by removing snow that is block surface water runoff from entering the structure. The edge of pavement where surface water sheet flow is designed to leave the paved area, the edge of pavement and shoulder need to be plowed to allow runoff to leave the pavement. Snow is to piled in designated areas and removed from the site when the on-site storage locations have been exceeded. At the end of the winter season, sediment is to be swept from the paved surfaces and removed from the drainage system. (Sumps if provided, sediment forebays, swale lines.) (See catch basin and drainage pipe maintenance.) NHDES offers training (Green SnowPro Certification) for contractors and owners. <a href="https://www.des.nh.gov/land/roads/road-salt-reduction/green-snowpro-certification">https://www.des.nh.gov/land/roads/road-salt-reduction/green-snowpro-certification</a> Please find attached NHDES Green SnoPro Utilization Chart which is required to be used.

# **Annual Report**

Description: The owner is responsible to keep an **I & M Activity Log** that documents inspection, maintenance and repairs to the storm water management system, and a **Deicing Log** to track the amount and type of deicing material applied to the site. The original owner is responsible to ensure that any subsequent owner (s) have copies of the <u>Stormwater System Operation</u>: <u>Inspection & Maintenance Manual</u>, copies of past logs and check lists. This includes any owner association for potential condominium conversion of the property. The Annual Report will be prepared and submitted to the Town of Barrington, Planning Department with copies of both logs and check lists no later than December 15<sup>th</sup> of each year and made available to NHDES upon request. Upon an ownership change, the Annual Report will include the Transfer of Ownership Responsibility Forms duplicated from the form found below.

The plans that accompany this manual include a plan sheet, "Inspection & Maintenance Plan" and copies of the Stormwater Treatment Design Sheets. The owner will also maintain a complete set of the approved original design plans.

Respectfully

BERRY SURVEYING & ENGINEERING

Kenneth A. Berry, PE, LLS CPSWQ, CPESC, CESSWI

Principal, VP – Technical Operations

Christopher R. Berry, SIT Principal - President

Design Engineer

Kevin R. Poulin, PE Design Engineer

## STORMWATER SYSTEM OPERATIONS: INSPECTION & MAINTENANCE MANUAL

## **Inspection & Maintenance Manual Checklist**

Calef Highway, Barrington, NH, Tax Map 238, Lot 44 TURBOCAM, INC. 607 Calef Highway Suite 200 Barrington, NH 03825

| V | Date |                         | Minimum<br>Inspection   | Minimum<br>Inspection                                                             | Maintenance /                                                                              |  |  |  |
|---|------|-------------------------|-------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|
|   |      | BMP / System            | Frequency               | Requirements                                                                      | Cleanout Threshold                                                                         |  |  |  |
|   |      | Pavement<br>Sweeping    | Three Times<br>Per Year | Clean Pavement                                                                    | Pavement areas will<br>be swept and<br>sedimentation<br>removed so the<br>surface is clean |  |  |  |
|   |      |                         |                         |                                                                                   |                                                                                            |  |  |  |
|   |      | Litter/Trash<br>Removal | Routinely               | Inspect<br>dumpsters,<br>outdoor waste<br>receptacles<br>area, and yard<br>areas. | Parcel will be free of litter/trash.                                                       |  |  |  |
|   |      |                         |                         |                                                                                   | Llas acit ac the minera                                                                    |  |  |  |
|   |      | Deicing<br>Agents       | N/A                     | N/A                                                                               | Use salt as the primary agent for roadway safety during winter.                            |  |  |  |
|   |      | Invesive                | Two times a new         | In an a at fair                                                                   | Demove and dispess                                                                         |  |  |  |
|   |      | Invasive<br>Species     | Two times per year.     | Inspect for Invasive Species                                                      | Remove and dispose invasive species.                                                       |  |  |  |
|   |      | Closed Drainag          | ge System:              |                                                                                   |                                                                                            |  |  |  |
|   |      | Drainage<br>Pipes       | 1 time per 2<br>years   | Check for sediment accumulation & clogging.                                       | Less than 2" sediment depth                                                                |  |  |  |
|   |      | Catch Basins            | 2 times per             | Check for sediment accumulation &                                                 | Any accumulated                                                                            |  |  |  |
|   |      | Manholes                | 2 times per year        | clogging.                                                                         | Sediment or debris.                                                                        |  |  |  |
|   |      |                         |                         |                                                                                   |                                                                                            |  |  |  |

| Ø | Date | BMP / System                                         | Minimum<br>Inspection<br>Frequency                      | Minimum<br>Inspection<br>Requirements                                                                                                     | Maintenance /<br>Cleanout Threshold                                                                                                                                                                                                        |  |  |  |
|---|------|------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|   |      | Bioretention W/<br>ISRs, &<br>Infiltration<br>Ponds  | 2 times per year                                        | Check for sediment and debris accumulation buildup.                                                                                       | Remove sediment & debris when required. Remove Invasive Species                                                                                                                                                                            |  |  |  |
|   |      | Bioretention<br>W/ ISR and<br>system clean-<br>outs. | Annually                                                | 72-Hour drawdown time evaluation and vegetation evaluation. Underdrain flushing.                                                          | Remove dead & diseased vegetation along with all debris, take corrective measures of filtration media if required. Flush underdrain cleanouts with a hose. Weed whacker required for 2:1 slopes. All weed whacked vegetation to be removed |  |  |  |
|   |      | Infiltration<br>Ponds                                | Annually after a storm event of greater than 2.5-inches | Evaluate the drawdown of the Infiltration Basin systems to ensure that through infiltration the system is completely drained in 72 hours. | Ensure sediment is not entering the Infiltration Basin.                                                                                                                                                                                    |  |  |  |
|   |      | Riprap Outlet<br>Protection                          | Annually                                                | Check for sediment buildup and structure damage.                                                                                          | Remove excess<br>sediment and repair<br>damage.                                                                                                                                                                                            |  |  |  |
|   |      | Winter<br>Maintenance                                | Ongoing                                                 | Remove snow as directed.                                                                                                                  | Ongoing                                                                                                                                                                                                                                    |  |  |  |
|   |      | Post Winter<br>Maintenance                           | Annually                                                | Remove excess sand,<br>gross solids, and repair<br>vegetation and<br>plantings                                                            | Parcel will be free of excess sand, litter/trash.                                                                                                                                                                                          |  |  |  |
|   |      | Annual Report                                        | 1 time per year                                         | Submit Annual Report<br>to Barrington Planning<br>Dept. and kept on file<br>by the owner.                                                 | Report to be submitted on or before December 15th each year.                                                                                                                                                                               |  |  |  |

Inspection Check List: Page 3

Catch Basins #41-#47 (Ponds #C41-#C47)

Drain Manholes #51-#53 (Ponds #D51-#D53)

Inlet Sump (Pond #50)

Conveyance Swales and Roadside Ditches

Bioretention W/ ISR #201 – P-201 w/ Outlet Structures and Matted Spillway

Bioretention W/ ISR #202 - P-202 w/ Outlet Structures and Matted Spillway

Infiltration Pond #203 – P-203 w/ Matted Spillway

Detention Pond #204 – P-204 w/ Outlet Structure and Matted Spillway

**Outlet Protection and Level Spreaders** 

## STORMWATER SYSTEM OPERATIONS: INSPECTION & MAINTENANCE MANUAL

## **Inspection & Maintenance Manual Log Form**

607 Calef Highway, Barrington, NH, Tax Map 238, Lot 44 TURBOCAM, INC. / Virtuous Realty, LLC 607 Calef Highway Suite 200 Barrington, NH 03825

| BMP /<br>System | Date<br>Inspected | Inspector | Cleaning/Repair<br>(List Items &<br>Comments) | Repair<br>Date | Performed<br>By: |
|-----------------|-------------------|-----------|-----------------------------------------------|----------------|------------------|
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |
|                 |                   |           |                                               |                |                  |

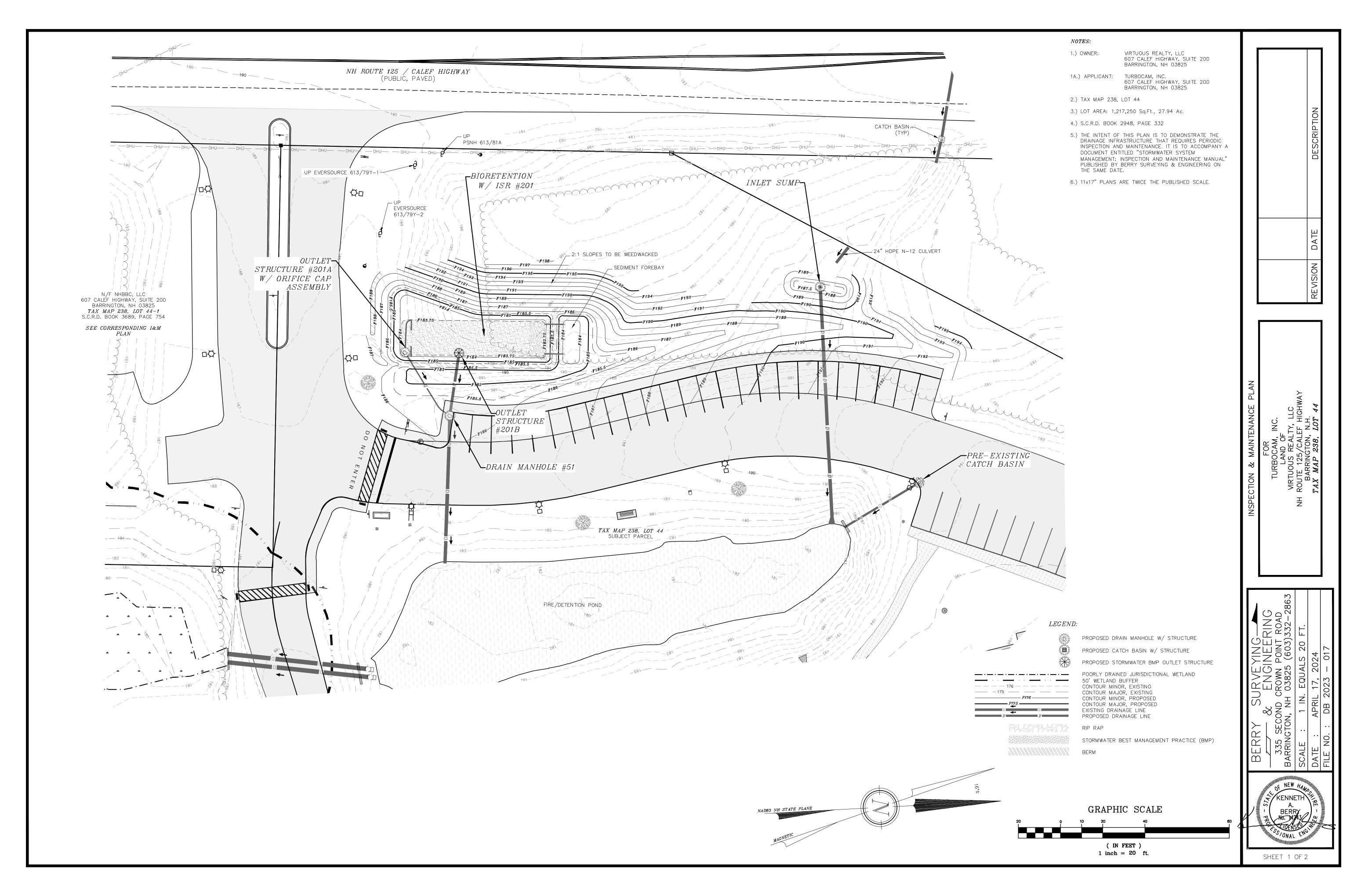
## STORMWATER SYSTEM OPERATIONS: INSPECTION & MAINTENANCE MANUAL

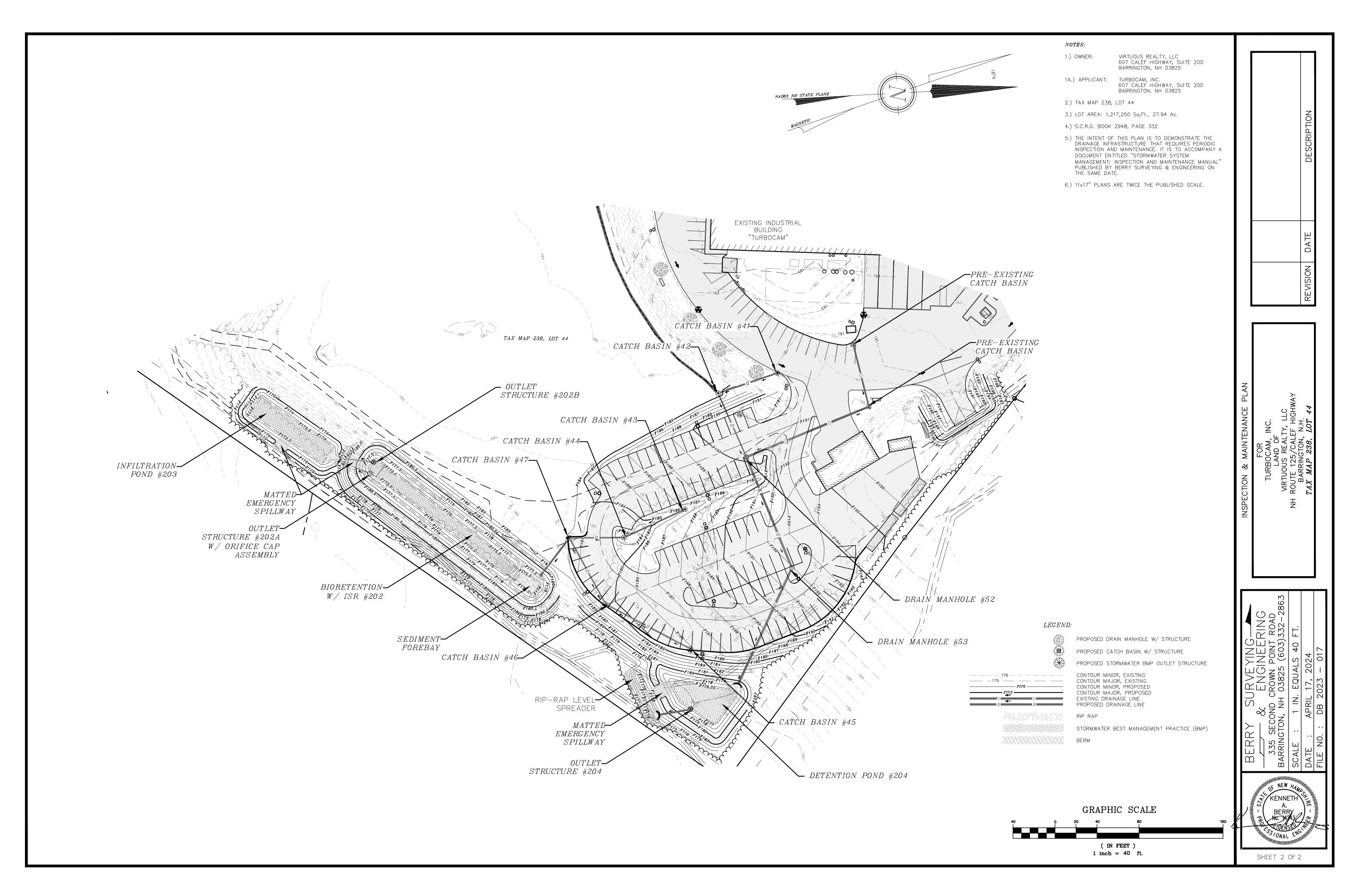
## **Deicing Log Form**

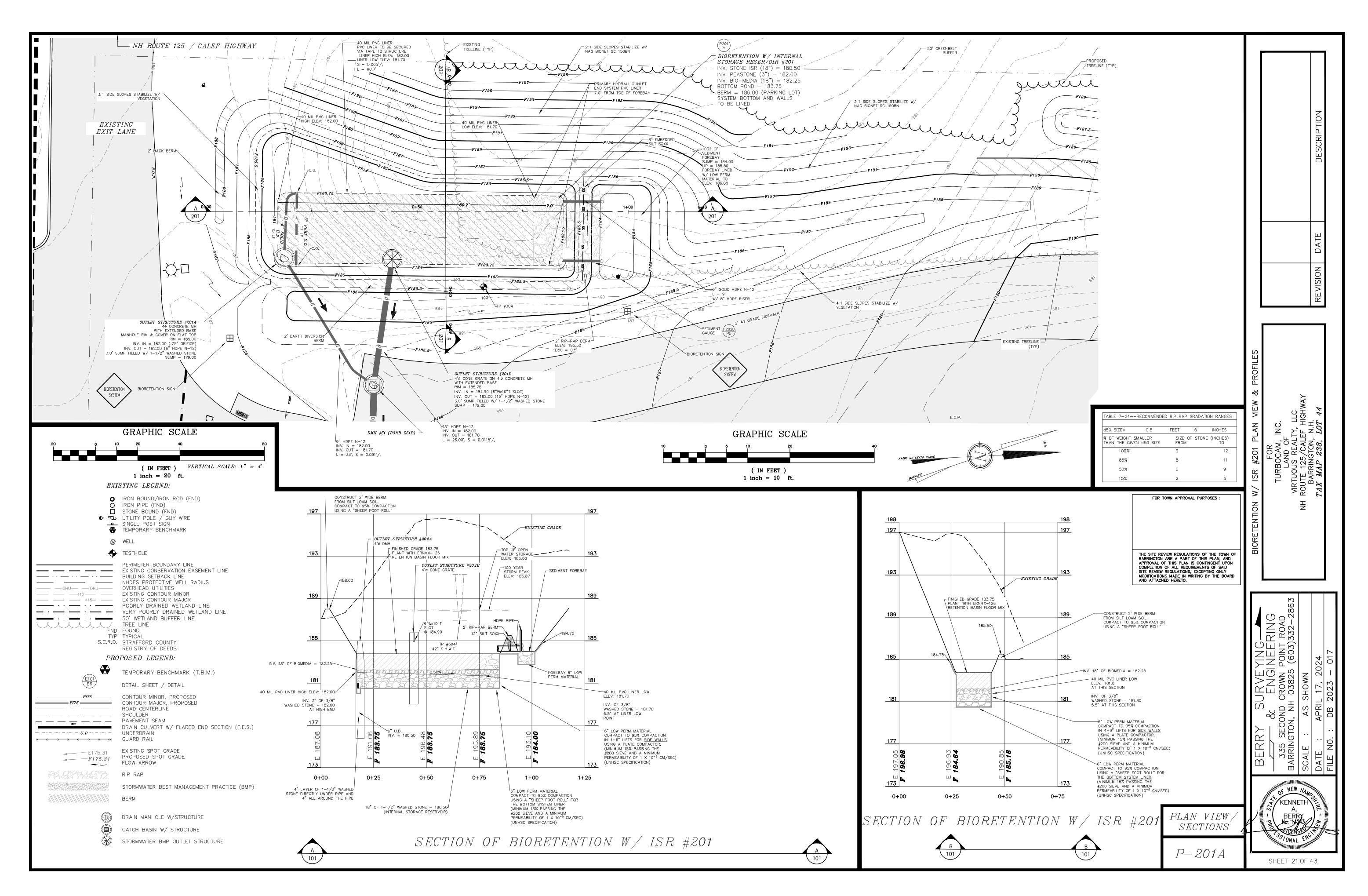
607 Calef Highway, Barrington, NH, Tax Map 238, Lot 44 TURBOCAM, INC. / Virtuous Realty, LLC 607 Calef Highway Suite 200 Barrington, NH 03825

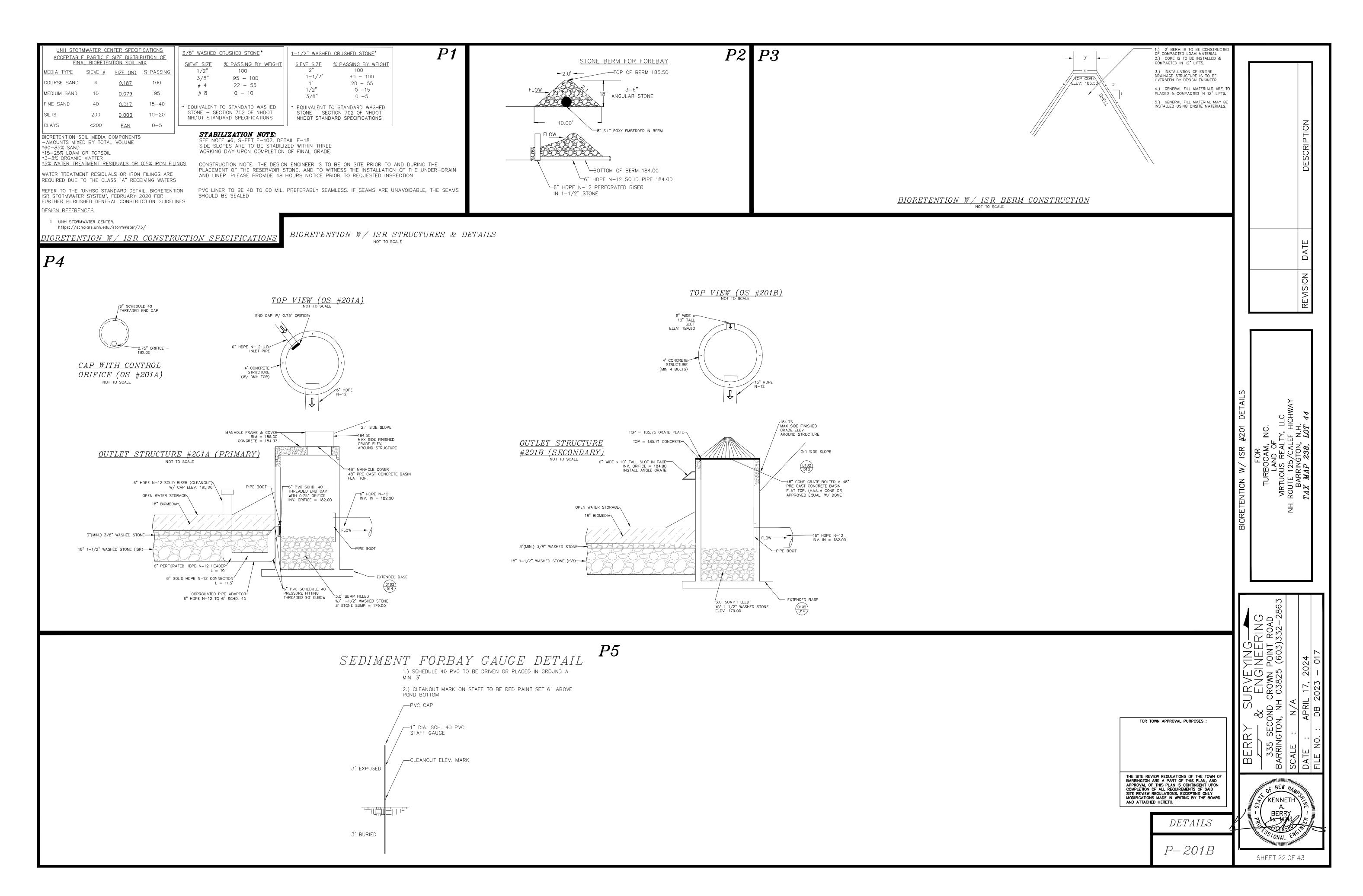
| Date | Amount<br>Applied | Performed By: | Date | Amount<br>Applied | Performed By: |
|------|-------------------|---------------|------|-------------------|---------------|
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |
|      |                   |               |      |                   |               |

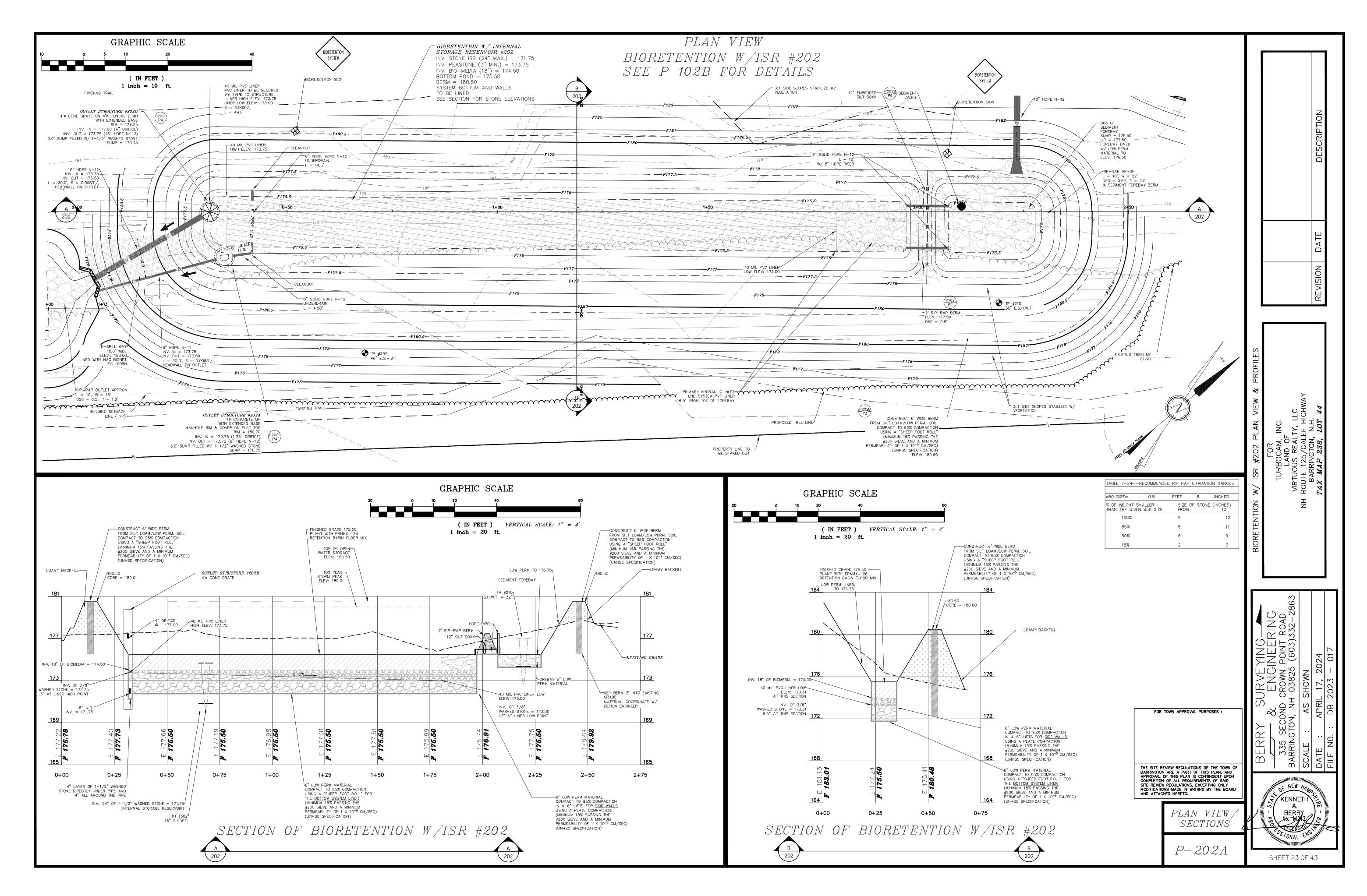
## STORMWATER SYSTEM OPERATION & MAINTENANCE PLAN CERTIFICATION

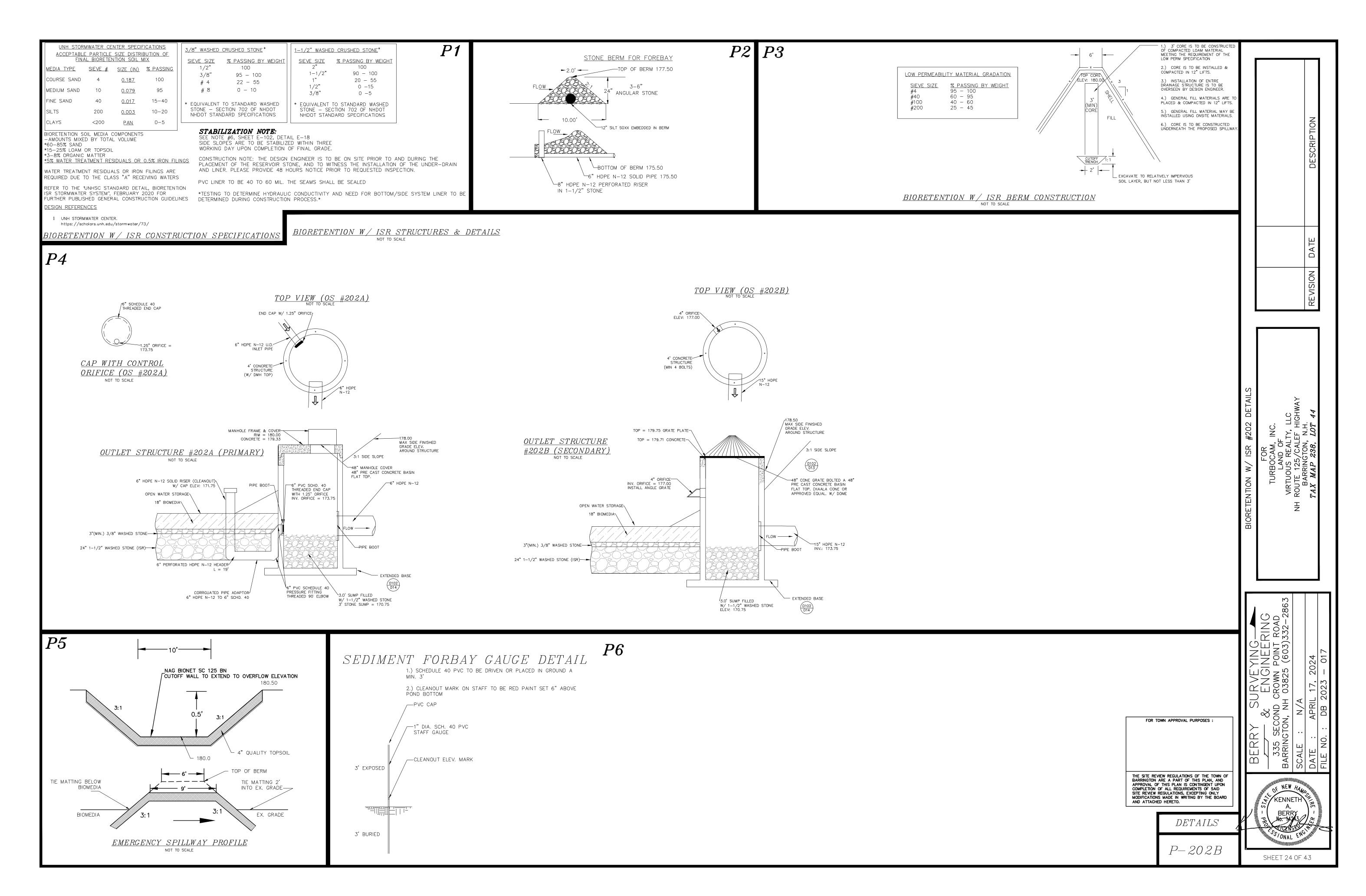

|                                                                                                                                  | The owner is responsible for the                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Director of EHS, Facilities & Maintenance  Address: 607 Calef Highway Suite 200  Barrington, NH 03825  Telephone: 1-603-905-0203 | conduct of all construction activities, and ultimate compliance with all the provisions of the Stormwater System Operation & Maintenance Plan and the implementation of the Inspection and Maintenance Manual. |

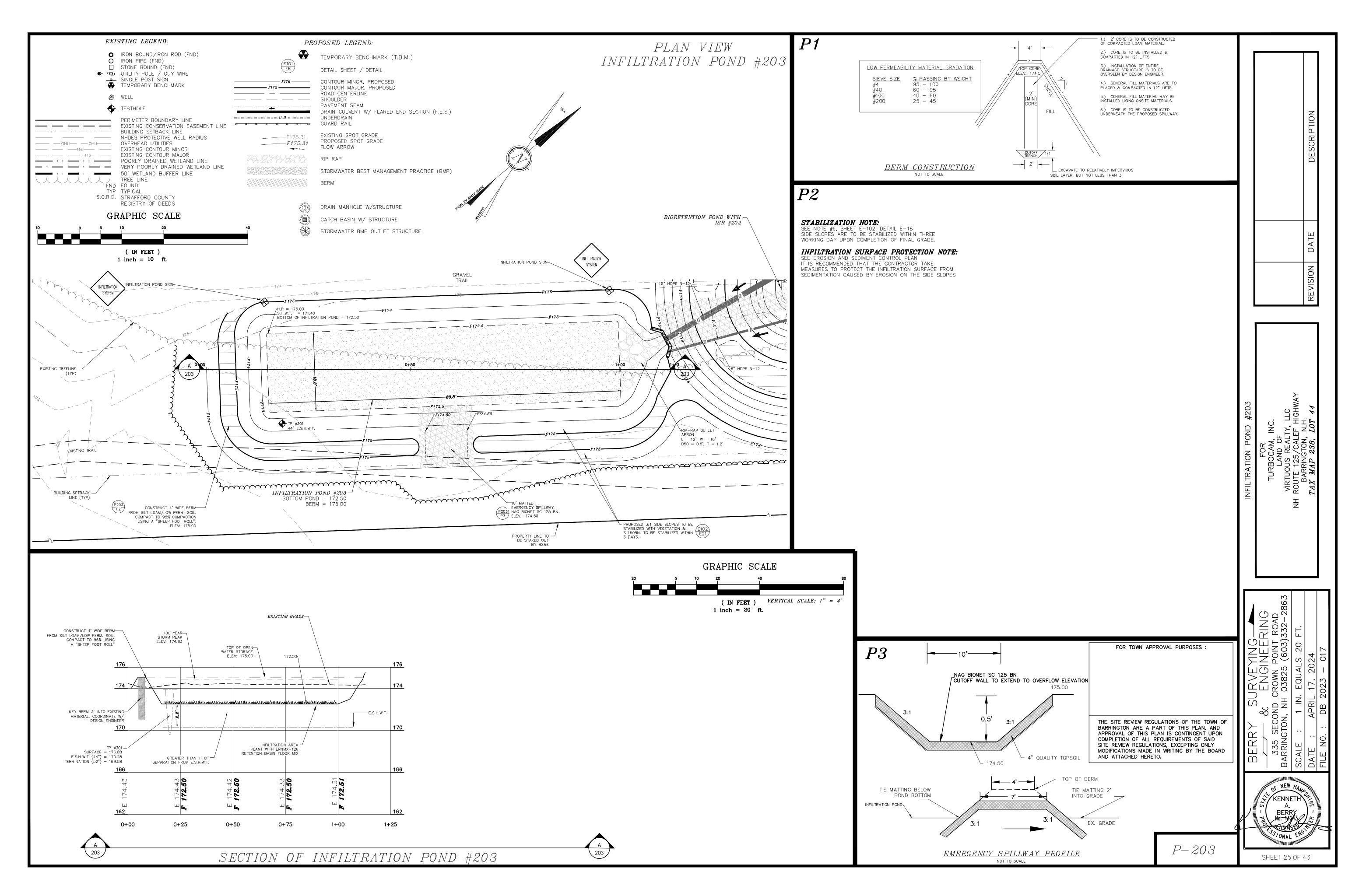

607 Calef Highway, Barrington, NH, Tax Map 238, Lot 44

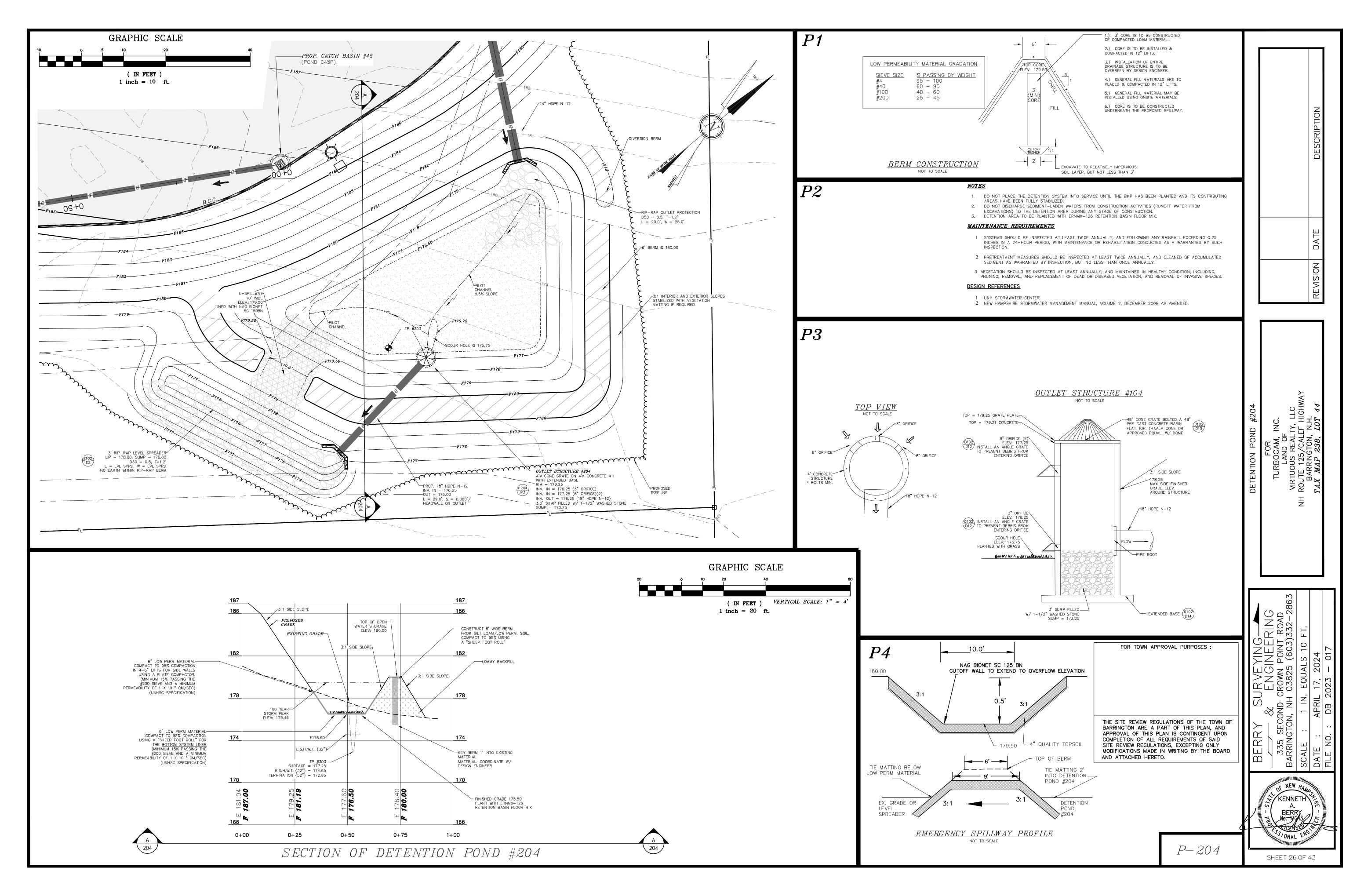

## **OWNER CERTIFICATION**


I certify under penalty of law that this document and all attachments were prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.


| Signed:       | Date: |  |
|---------------|-------|--|
| Printed Name: |       |  |
| Representing: |       |  |














# **Control of Invasive Plants**

New Hampshire
Department of Agriculture,
Markets & Food
Douglas Cygan
603-271-3488
doug.cygan@agr.nh.gov

This guide lists garden plants and weeds which are already causing significant changes to natural areas in the Mid-Atlantic. Measures for controlling each species are indicated by number, e.g., (3), in the text with a full explanation at the end of this article. Click on the word Control: to jump to that section. Then click your "back" button to return to the text. Following each section suggested alternative plants are given. These alternatives are native plants, well adapted and needing little care, attractive to birds and butterflies, and an important part of the food web for our indigenous species.

## **INVASIVE TREES**

NORWAY MAPLE (*Acer platanoides*) has large leaves similar to sugar maple. To easily confirm that the plant is Norway maple, break off a leaf and if it's truly Norway maple it will exude milky white sap. Fall foliage is yellow. (Exception: cultivars such as 'Crimson King,' which have red leaves in spring or summer, may have red autumn leaves.) The leaves turn color late, usually in late October after native trees have dropped their foliage. This tree suppresses growth of grass, garden plants, and forest understory beneath it, at least as far as the drip-line. Its wind-borne seeds can germinate and grow in deep shade. The presence of young Norway maples in our woodlands is increasing.

Control: (1); (7), (8), (9), or (10); (11) in mid-October to early November, before the leaves turn color.

TREE OF HEAVEN (*Ailanthus altissima*), is incredibly tough and can grow in the poorest conditions. It produces huge quantities of wind-borne seeds, grows rapidly, and secretes a toxin that kills other plants. Its long compound leaves, with 11-25 lance-shaped leaflets, smell like peanut butter or burnt coffee when crushed. Once established, this tree cannot be removed by mechanical means alone.

<u>Control:</u> (1) - seedlings only. Herbicide - use Garlon 3a (9) with no more than a 1" gap between cuts, or (10); plus (11) on re-growth. Or paint bottom 12" of bark with Garlon 4 Ultra (in February or March to protect surrounding plants). USE MAXIMUM STRENGTH SPECIFIED ON LABEL for all herbicide applications on Ailanthus. Glyphosate is not effective against Ailanthus.

## **INVASIVE SHRUBS**

AUTUMN OLIVE (*Eleagnus umbellata*): Formerly recommended for erosion control and wildlife value, these have proved highly invasive and diminish the overall quality of wildlife habitat.

*Control*: (1) - up to 4" diameter trunks; (7) or (10) or bury stump. Do not mow.

MULTIFLORA ROSE (*Rosa multiflora*), formerly recommended for erosion control, hedges, and wildlife habitat, becomes a huge shrub that chokes out all other vegetation and is too dense for many species of birds to nest in, though a few favor it. In shade, it grows up trees like a vine. It is covered with white flowers in June. (Our native roses have fewer flowers, mostly pink.) Distinguish multiflora by its size, and by the presence of very hard, curved thorns, and a fringed edge to the leaf stalk.

<u>Control:</u> (1) - pull seedlings, dig out larger plants at least 6" from the crown and 6" down; (4) on extensive infestations; (10) or (11). It may remain green in winter, so herbicide may applied when other plants are dormant. For foliar application, mix Rodeo with extra sticker-spreader, or use Roundup Sure Shot Foam on small plants.

BUSH HONEYSUCKLES (*Lonicera spp.*), including Belle, Amur, Morrow's, and Tatarian honeysuckle. (In our region, assume that any honeysuckle is exotic unless it is a scarlet-flowered vine). Bush honeysuckles create denser shade than native shrubs, reducing plant diversity and eliminating nest sites for many forest interior species.

<u>Control:</u> (2) on ornamentals; (1); on shady sites only, brush cut in early spring and again in early fall (3); (4) during the growing season; (7); or (10) late in the growing season.

BLUNT-LEAVED PRIVET (Ligustrum obtusifolium). Control: (1); (7) or (10); or trim off all flowers. Do not cut back or mow.

BURNING BUSH, WINGED EUONYMUS (*Euonymus alatus*), identified by wide, corky wings on the branches. *Control*: (1); (7) or (10); or trim off all flowers.

JAPANESE BARBERRY (*Berberis thunbergii*), and all cultivars and varieties. *Control*: (1); (7) or (10); or trim off all flowers.

## **INVASIVE WOODY VINES**

All of these vines shade out the shrubs and young trees of the forest understory, eventually killing them, and changing the open structure of the forest into a dense tangle. DO NOT PLANT NEXT TO OPEN SPACE.

JAPANESE HONEYSUCKLE (*Lonicera japonica*), including Hall's honeysuckle, has gold-and-white flowers with a heavenly scent and sweet nectar in June. This is probably the familiar honeysuckle of your childhood. It is a rampant grower that spirals around trees, often strangling them.

Control: (1); (3); (10); (11) in fall or early spring when native vegetation is dormant. Plan to re-treat repeatedly.

ORIENTAL BITTERSWEET (*Celastrus orbiculatus*) has almost completely displaced American bittersweet (*C. scandens*). The Asian plant has its flowers and bright orange seed capsules in clusters all along the stem, while the native species bears them only at the branch tips.

<u>Control:</u> (1); keep ornamental plants cut back, remove all fruits as soon as they open, and bag or burn fruits; to eradicate use Garlon 3a (10).

JAPANESE KNOTWEED, MEXICAN BAMBOO (*Polygonum cuspidatum*) can grow in shade. The stems have knotty joints, reminiscent of bamboo. It grows 6-10' tall and has large pointed oval or triangular leaves.

Control: Cut at least 3 times each growing season and/or treat with Rodeo (10) or (11). In gardens, heavy mulch or dense shade may kill it.

## **INVASIVE HERBACEOUS PLANTS**

GARLIC MUSTARD (*Alliaria petiolata*, *A. officinalis*), a white-flowered biennial with rough, scalloped leaves (kidney-, heart- or arrow-shaped), recognizable by the smell of garlic and taste of mustard when its leaves are crushed. (The odor fades by fall.)

<u>Control:</u> Pull before it flowers in spring (1), removing crown and roots. Tamp down soil afterwards. Once it has flowered, cut (2), being careful not to scatter seed, then bag and burn or send to the landfill. (11) may be appropriate in some settings.

JAPANESE STILT GRASS (*Microstegium vimineum*) can be identified by its lime-green color and a line of silvery hairs down the middle of the 2-3" long blade. It tolerates sun or dense shade and quickly invades areas left bare or disturbed by tilling or flooding. An annual grass, it builds up a large seed bank in the soil.

<u>Control:</u> Easily pulled in early to mid-summer (1) - be sure to pull before it goes to seed. If seeds have formed, bag and burn or send to landfill. Mowing weekly or when it has just begun to flower may prevent it from setting seed (3). Use glyphosate (11) or herbicidal soap (less effective) on large infestations. Follow up with (5) in spring.

MILE-A-MINUTE VINE, DEVIL'S TAIL TEARTHUMB (*Polygonum perfoliatum*), a rapidly growing annual vine with triangular leaves, barbed stems, and turquoise berries in August which are spread by birds. It quickly covers and shades out herbaceous plants. *Control*: same as for stilt grass.

SPOTTED KNAPWEED (Centaurea maculosa), a biennial with thistle-like flowers.

<u>Control:</u> Do NOT pull (1) unless the plant is young and the ground is very soft - the tap root will break off and produce several new plants. Wear sturdy gloves. (2); (6); (10) or (11).

## **CONTROL MEASURES**

- (1) PULL seedlings and small or shallow-rooted plants when soil is moist. Dig out larger plants, including the root systems. Use a forked spade or weed wrench for trees or shrubs.
- (2) DEADHEAD to prevent spread of seeds of invasive plants. Cut off seeds or fruits before they ripen. Bag, and burn or send to a landfill.
- (3) MOW or CUTTING at least 4 times a season to deplete plants' store of nutrients and carbohydrates, reduce seed formation, and kill or minimize spread of plants. If necessary, repeat each year.
- (4) CONTROLLED BURNING during the spring, repeated over several years, allows native vegetation to compete more effectively with the invasive species. This requires a permit. Spot treatment with glyphosate in late fall can be used to make this method more effective.
- (5) Use a CORN-BASED PRE-EMERGENCE HERBICIDE on annual weeds. This product is also an organic fertilizer, i.e., it can stimulate growth of existing plants, including weeds, so it is appropriate for lawns and gardens but may not be appropriate in woodlands.
- (6) In lawns, SPOT TREAT with BROAD-LEAF WEEDKILLER. Good lawn-care practices (test soil; use lime and fertilizer only when soil test shows a need; mow high and frequently; leave clippings on lawn) reduce weed infestations.
- (7) CUT DOWN the tree. Grind out the stump, or clip off re-growth.
- (8) GIRDLE tree: cut through the bark and growing layer (cambium) all around the trunk, about 6" above the ground. Girdling is most effective in spring when the sap is rising, and from middle to late summer when the tree is sending down food to the roots. Clip off sucker sprouts.
- (9) FRILL: Using a machete, hatchet or similar device, hack scars (several holes in larger trees) downward into the cambium layer, and squirt in glyphosate (or triclopyr if recommended in text above). Follow label directions for Injection and Frill Applications. This is most effective from middle to late summer. Clip off any sucker sprouts or treat with glyphosate.
- (10) CUT STEM / CUT STUMP WITH GLYPHOSATE (or triclopyr if specified above). Follow label directions for Cut Stump Application. Clip off sucker sprouts or paint with glyphosate. See Note on Herbicides.
- (ÎI) FOLIAR SPRAY WITH GLYPHOSATE herbicide (see Note on Herbicides). Use a backpack or garden sprayer or mist blower, following label directions. Avoid overspray and/or dripping onto non-target plants, because glyphosate kills most plants except moss. If it rolls off waxy or grass-like foliage, use additional sticker-spreader. Deciduous trees, shrubs, and perennials move nutrients down to the roots in late summer. Glyphosate is particularly effective at this time and when plants have just gone out of flowering. Several invasive species retain their foliage after native plants have lost theirs, and resume growth earlier in spring than most natives. This allows you to treat them without harming the natives. However, the plant must be actively growing for the herbicide to work. Retreatments may be necessary the following year if suckering occurs or the plant hasn't been entirely killed.

NOTE ON HERBICIDES: It is highly recommended that small populations try to be controlled using non-chemical methods wherever feasible. However, for large infestations, and for a few plants specified above, herbicide use is essential. Apply herbicides carefully to avoid non-target plants, glyphosate is the least environmentally damaging herbicide in most cases. Add food coloring for visibility, and a soap-based sticker such as Cide-Kick. Glyphosate is ineffective on some

| plants; for these, triclopyr (Garlon) may be indicated. When using herbicides, read the entire label and observe all precautions listed, including proper disposal. If in doubt, call your local Cooperative Extension Service. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                 |

| Pavement                  |                      |                                                     | Application Rate (lbs/per 1000 sq.ft.)     |                                                       |                    |                                  |  |  |
|---------------------------|----------------------|-----------------------------------------------------|--------------------------------------------|-------------------------------------------------------|--------------------|----------------------------------|--|--|
| Temp. (°F) and Trend (↑↓) | Weather<br>Condition | Maintenance<br>Actions                              | Salt Prewetted/Pre treated with salt brine | Salt<br>Prewetted/Pret<br>reated with<br>other blends | Dry salt           | Winter sand                      |  |  |
| >30 ↑                     | Snow                 | Plow, treat intersections only                      |                                            |                                                       |                    | Not<br>recommended               |  |  |
| 730                       | Frz. Rain            | Apply chemical                                      |                                            |                                                       |                    | Not recommended                  |  |  |
| 30 ↓                      | Snow                 | Plow and apply<br>chemical                          |                                            |                                                       |                    | Not recommended                  |  |  |
| 30 🍑                      | Frz. Rain            | Apply chemical                                      |                                            |                                                       |                    | Not recommended                  |  |  |
| 25 - 30 个                 | Snow                 | Plow and apply<br>chemical                          |                                            |                                                       |                    | Not recommended                  |  |  |
| 23 - 30                   | Frz. Rain            | Apply chemical                                      |                                            |                                                       |                    | Not recommended                  |  |  |
| 25 - 30 ↓                 | Snow                 | Plow and apply<br>chemical                          |                                            |                                                       |                    | Not recommended                  |  |  |
|                           | Frz. Rain            | Apply chemical                                      |                                            |                                                       |                    | 3.25                             |  |  |
| 20 - 25 个                 | Snow or frz.<br>Rain | Plow and Apply<br>chemical                          |                                            |                                                       |                    | 3.25 for frz.<br>Rain            |  |  |
| 20 - 25 ↓                 | Snow                 | Plow and apply<br>chemical                          |                                            |                                                       |                    | Not<br>recommended               |  |  |
|                           | Frz. Rain            | Apply chemical                                      |                                            |                                                       |                    | 3.25                             |  |  |
| 15 - 20 个                 | Snow                 | Plow and apply<br>chemical                          |                                            |                                                       |                    | Not recommended                  |  |  |
|                           | Frz. Rain            | Apply chemical                                      |                                            |                                                       |                    | 3.25                             |  |  |
| 15 - 20 ↓                 | Snow or Frz.<br>Rain | Plow and apply chemical                             |                                            |                                                       |                    | 3.25 for frz.<br>Rain            |  |  |
| 0 to 15 ↑↓                | Snow                 | Plow, treat with<br>blends, sand<br>hazardous areas | Not<br>recommended                         |                                                       | Not recommended    | 5.0 and spot-<br>treat as needed |  |  |
| < 0                       | Snow                 | Plow, treat with<br>blends, sand<br>hazardous areas | Not<br>recommended                         |                                                       | Not<br>recommended | 5.0 and spot-<br>treat as needed |  |  |

**Table 19. Application Rates for Deicing** 

These rates & table format are based on road application guidelines (Mn Snow & Ice Control Field Handbook, Manual 2005-1). Develop your own application rates by adjusting your current rates incrementally downward toward these guidelines. Where temperature categories overlap, select the rate most applicable to your situation.

# **Infiltration Feasibility Report**

# 607 Calef Highway Barrington, NH Tax Map 238, Lot 44

Prepared for

TURBOCAM, INC. 607 Calef Highway Suite 200 Barrington, NH 03825

Land of

Virtuous Realty LLC 607 Calef Highway Suite 200 Barrington, NH 03825

Prepared By

Berry Surveying & Engineering
335 Second Crown Point Road
Barrington, NH 03825
603-332-2863

File Number DB2023-017

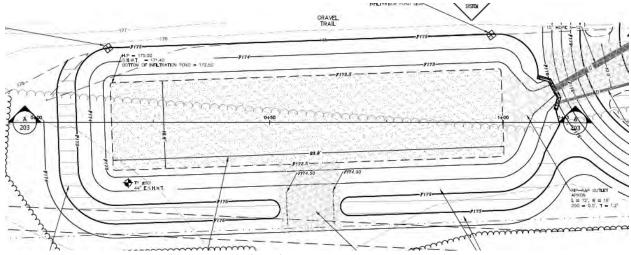
February 5, 2024 Revised: April 17, 2024

# **Table of Contents**

| 1.0 | Location of Practice                             | Page 2 |
|-----|--------------------------------------------------|--------|
| 2.0 | Existing Topography at Location of Practice      | Page 2 |
| 3.0 | Test Pit Location                                | Page 2 |
| 4.0 | Seasonal High Water Table and Bedrock Elevations | Page 3 |
| 5.0 | Profile Descriptions                             | Page 3 |
| 6.0 | Soil Plan                                        | Page 4 |
| 7.0 | Summary of Infiltration Rates                    | Page 5 |

## 1.0 Location of Practices:

The project proposes one location of infiltration for ground water recharge as well as channel flow protection purposes via Infiltration Pond #203.


Infiltration Pond #203 (Pond #203) – This Infiltration Pond is on the easterly side of the parcel along the southeastern property line adjacent to the existing rec field to the northwest and Bioretention Pond w/ ISR #202 to the northeast. Treated flow is received from Bioretention W/ ISR #202 as well as overflow runoff during larger storms.

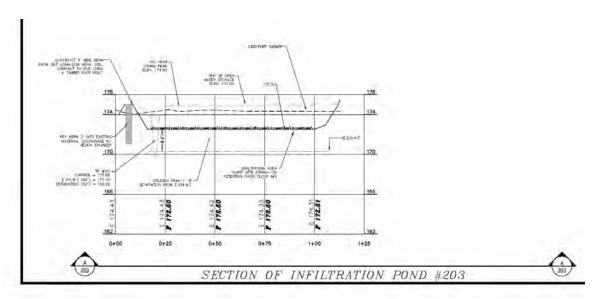
# 2.0 Existing Topography at the Location of the Practice

Infiltration Pond #203 (Pond #103) – The existing topography within the area is at a 2-3% slope. The area is currently vacant, unmaintained land with walking trails in the area.

## 3.0 Test Pit Locations

Infiltration Pond #203 (Pond #203) – The practice has a surface area of 1,575 SF at the lowest point. The practice is located over test pit #301. See test pit profile below. See test pit locations on Sheet P-203, Infiltration Pond #203 Plan. The test holes were completed in January & March 2024, (See Site Specific Soil Reports by John P Hayes III). The soils in the vicinity of this practice are Hinckley (12B) considered to be HSG A soil and Udorthents (400E) (Derived from Windsor and Deerfield soils) considered to be HSG B soil. The most restrictive published Ksat for both soils is 6 inches per hour. This practice was designed using 3 in. / hr.




Infiltration Pond #203 (Pond #203) - (Reference Sheet P-203)

# 4.0 Seasonal High Water Table (SHWT) and Bedrock Elevations

| TP #301: | Existing Surface Elevation of TP =  | 173.88′  |
|----------|-------------------------------------|----------|
|          | SHWT = 44 Inches                    | 170.21′  |
|          | Bedrock > 52 Inches                 | <169.55′ |
|          | Ground Water > 52 Inches            | <169.55′ |
|          | Deepest Elevation of TP = 52 Inches | 169.55′  |

Infiltration Pond #203 (Pond #203): Inv. Pond Bottom 172.50'

See cross section below.



# 5.0 Profile descriptions

The following test pit data was collected, see profiles below.

TEST PIT #301

0-8 10YR 3/2 DARK GRAYISH BROWN, LOAMY SAND, GRANULAR, FRIABLE

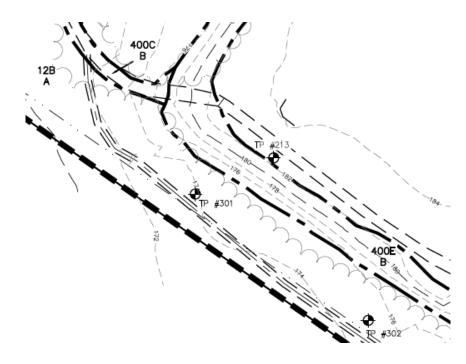
8-18 10YR 5/6 YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE

18-30 10YR 6/4 LIGHT YELLOWISH BROWN, GRAVELLY LOAMY SAND, GRANULAR, FRIABLE

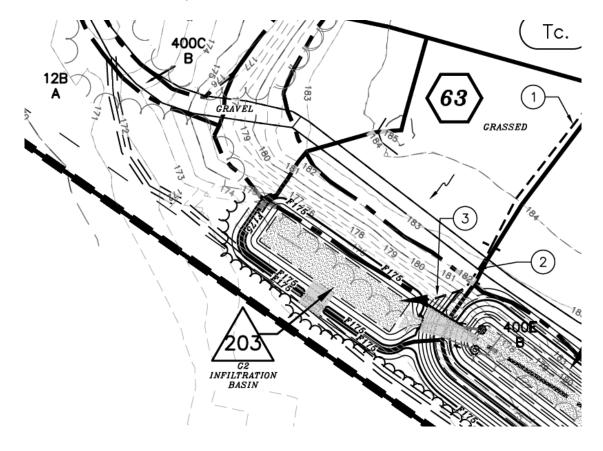
30-44 10YR 6/4 LIGHT YELLOWISH BROWN, SAND, SINGLE GRAIN, LOOSE

44-52 2.5YR 5/3 LIGHT YELLOWISH BROWN, GRAVELLY SAND WITH REDOX. FEAT. PRESENT, SINGLE GRAIN, LOOSE

E.S.H.W.T. @ 44"


RESTRICTIVE LAYER @ N/A

GROUND WATER @ N/A


TERMINATED @ 52"

REFUSAL @ N/A

# 6.0 Soil Plan in the Area of the Constructed Practice



Infiltration Pond #203 (Pond #203) is located over Hinckley and Udorthents (Derived from Windsor and Deerfield) soil. See Test Pits #301.



Infiltration Pond #203 (Pond #203)

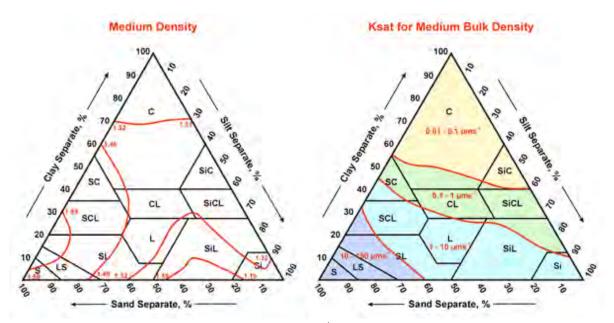
#### **Summary of Infiltration Rate** 7.0

Infiltration Pond #203 is located in Hinckley (12B) which is considered to be HSG A and Udorthents (400E) (Derived from Windsor and Deerfield) which is considered to be HSG B, soil area as mapped by Site Specific Soil Survey by John P. Hayes III, CSS, with a documented Ksat of 6 inches per hour. The design exfiltration rate for the infiltration practices is 3 inches per hour.

Amoozemeter testing was not conducted on site and the alternate method of using the USDA / NRCS published values was employed. Reference is made to K Sat Values for New Hampshire Soils (Including Hydrologic and DES Soil Lot Sizing Groups, sponsored by the Society of Soil Scientists of Northern New England, Publication #5 dated September 2009.

Respectfully submitted:

BERRY SURVEYING & ENGINEERING


Kevin R. Poulin, PE **Project Engineer** 

Kenneth A. Berry, PE, LLS CPSWQ, CPESC, CESSWI Principal, VP – Technical

**Operations** 

# K<sub>sat</sub> VALUES FOR NEW HAMPSHIRE SOILS

(Including Hydrologic and DES Soil Lot Sizing Groups)



From: Guide for Estimating Ksat from Soil Properties (Exhibit 618-9). (http://soils.usda.gov/technical/handbook/contents/part618ex.html)

Sponsored by the Society of Soil Scientists of Northern New England SSSNNE Special Publication No. 5
September, 2009

# K<sub>sat</sub> VALUES FOR NEW HAMPSHIRE SOILS

## ABOUT THE SOCIETY OF SOIL SCIENTISTS OF NORTHERN NEW ENGLAND

The Society of Soil Scientists of Northern New England (SSSNNE) is a non-profit professional organization of soil scientists, both in the private and public sectors, which is dedicated to the advancement of soil science. The Society fosters the profession of soil classification, mapping and interpretation, and encourages the dissemination of information concerning soil science. With the intent of contributing to the general human welfare, the Society seeks to educate the public on the wise use of soils and the associated natural resources.

## INTRODUCTION

The publication " $K_{sat}$  Values for New Hampshire Soils" is designed to assist soil scientists, engineers, and other professionals by assembling tables of existing data for all soil series currently on the state soil legend with regard to  $K_{sat}$  values and hydrologic groupings (Hyd.Grp.). The need for this information has become more important since the adoption by the New Hampshire Department of Environmental Services of the revised Alteration of Terrain rules for stormwater management. Additional information has been provided for each soil series with regard to landform, temperature regime (Temp.), soil textures, NHDES Soil Lot Size Groupings (Group), whether the soil is a Spodosol (Spodosol?) and other information which will be valuable to a variety of soil information users.

The data for each soil series has been sorted 3 ways for ease of searching:

Table A-Sorted by Numerical Legend
Table B-Sorted by Soil Series Name
Table C-Sorted by NHDES Soil Group for Establishing Lot Size

The report represents cumulative efforts by private soil scientists and NHDES staff with assistance from the USDA Natural Resource Conservation Service.

Comments or inquires on the information in this publication may be directed to the Board of Directors at the following address:

Society of Soil Scientists of Northern New England PO Box 76 Durham, NH 03824

## SATURATED HYDRAULIC CONDUCTIVITY (K<sub>SAT</sub>)

 $K_{sat}$  refers to the ease with which pores in a saturated soil transmit water. The estimates presented here are expressed in terms of inches per hour (NRCS official data presents  $K_{sat}$  in both micrometers per second and inches per hour).  $K_{sat}$  values are based on soil characteristics observed in the field, particularly structure, consistence, porosity, and texture. (USDA NRCS, Web Soil Survey)

Saturated flow occurs when the soil water pressure is positive; that is, when the soil matric potential is zero (satiated wet condition). In most soils this situation takes place when about 95 percent of the total pore space is filled with water. The remaining 5 percent is filled with entrapped air. Saturated hydraulic conductivity cannot be used to describe water movement under unsaturated conditions. (Soil Survey Manual, 1993)

It is commonly known that soil features (and thus data) for a certain soil series name may be slightly different from one county soil survey to the next and the range in characteristics (via the Typical Pedon) may be slightly different. For example – a Marlow soil (series) in Carroll County may have a higher sand content in its B horizon as opposed to a Marlow soil (series) in Coos County; resulting in a slightly different Ksat range for the B horizon.

The  $K_{sat}$  data for this publication was obtained from the USDA-NRCS Soil Data Mart using the Typical Pedon from the county that best reflected the soil and/or had the most acres of that soil. This data is presented in B and C horizons only as it is assumed that the topsoil (A or  $A_p$  horizon) will be removed in typical construction practices.

### References:

Web Soil Survey. Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/.

Soil Data Mart. http://soildatamart.nrcs.usda.gov/.

Soil Survey Manual. Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.

## HYDROLOGIC SOIL GROUPS

Hydrologic group is a group of soils having the same runoff potential under similar storm and cover conditions.

Hydrologic groups are used in equations that estimate runoff from rainfall. These estimates are needed for solving hydrologic problems that arise in planning stormwater management, watershed protection, and flood-prevention projects and for planning or designing structures for the use, control, and disposal of water.

Classifications assigned to soils were based on the use of rainfall-runoff data from small watersheds and infiltrometer plots. From these data, relationships between soil properties and hydrologic groups were established. Assignment of soils to hydrologic groups is based on the relationship between soil properties and hydrologic groups. Wetness characteristics, permeability after prolonged wetting, and depth to very slowly permeable layers are properties that assist in estimating hydrologic groups. Minimum annual steady ponded infiltration rate for a bare ground surface determines the hydrologic soil groups.

Soil properties that influence runoff potential are those that influence the minimum rate of infiltration for a bare soil after prolonged wetting and when not frozen. These properties are depth to a seasonally high water table, intake rate and permeability after prolonged wetting, and depth to a very slowly permeable layer. (The influence of ground cover is treated independently, not in hydrologic soil groups.).

The soils in the United States are placed into four groups, A, B, C, and D, and three dual classes, A/D, B/D, and C/D. In the definitions of the classes, infiltration rate is the rate at which water enters the soil at the surface and is controlled by the surface conditions. Transmission rate is the rate at which water moves in the soil and is controlled by soil properties. Definitions of the classes are as follows:

Group A- Saturated hydraulic conductivity is very high or in the upper half of high and internal free water occurrence is very deep. Soils in this group have low runoff potential when thoroughly wet. Water is transmitted freely through the soil. Group A soils typically have less than 10 percent clay and more than 90 percent sand or gravel and have gravel or sand textures. Some soils having loamy sand, sandy loam, loam or silt loam textures may be placed in this group if they are well aggregated, of low bulk density, or contain greater than 35 percent rock fragments. The limits on the diagnostic physical characteristics of group A are as follows. The saturated hydraulic conductivity of all soil layers exceeds 40.0 micrometers per second (5.67 inches per hour). The depth to any water impermeable layer is greater than 50 centimeters [20 inches]. The depth to the water table is greater than 60 centimeters [24 inches]. Soils that are deeper than 100 centimeters [40 inches] to a water impermeable layer are in group A if the saturated hydraulic conductivity of all soil layers within 100 centimeters [40 inches] of the surface exceeds 10 micrometers per second (1.42 inches per hour).

**Group B**- Saturated hydraulic conductivity is in the lower half of high or in the upper half of moderately high and free water occurrence is deep or very deep. Soils in this group have moderately low runoff potential when thoroughly wet. Water transmission through the soil is unimpeded. Group B soils typically have between 10 percent and 20 percent clay and 50 percent to 90 percent sand and have loamy sand or sandy loam textures. Some soils having loam, silt loam, silt, or sandy clay loam textures may be placed in this group if they are well aggregated, of low bulk density, or contain greater than 35 percent rock fragments. The limits on the diagnostic physical characteristics of group B are as follows. The saturated hydraulic conductivity in the least transmissive layer between the surface and 50 centimeters [20 inches] ranges from 10.0 micrometers per second (1.42 inches per hour) to 40.0 micrometers per second (5.67 inches per hour). The depth to any water impermeable layer is greater than 50 centimeters [20 inches]. The depth to the water table is greater than 60 centimeters [24 inches]. Soils that are deeper than 100 centimeters [40 inches] to a water impermeable layer or water table are in group B if the saturated hydraulic conductivity of all soil layers within 100 centimeters [40 inches] of the surface exceeds 4.0 micrometers per second (0.57 inches per hour) but is less than 10.0 micrometers per second (1.42 inches per hour).

**Group C**- Saturated hydraulic conductivity is in the lower half of moderately high or in the upper half of moderately low and internal free water occurrence is deeper than shallow. Soils in this group have moderately high runoff potential when thoroughly wet. Water transmission through the soil is somewhat restricted. Group C soils typically have between 20 percent and 40 percent clay and less than 50 percent sand and have loam, silt loam, sandy clay loam, clay loam, and silty clay loam textures. Some soils having clay, silty clay, or sandy clay textures may be placed in this group if they are well aggregated, of low bulk density, or contain greater than 35 percent rock fragments. The limits on the diagnostic physical characteristics of group C are as follows. The saturated hydraulic conductivity in the least transmissive layer between the surface and 50 centimeters [20 inches] is between 1.0 micrometers per second (0.14 inches per hour) and 10.0 micrometers per second (1.42 inches per hour). The depth to any water impermeable layer is greater than 50 centimeters [20 inches]. The depth to the water table is greater than 60 centimeters [24 inches]. Soils that are deeper than 100 centimeters [40 inches] to a restriction or water table are in group C if the saturated hydraulic conductivity of all soil layers within 100 centimeters [40 inches] of the surface exceeds 0.40 micrometers per second (0.06 inches per hour) but is less than 4.0 micrometers per second (0.57 inches per hour).

**Group D**- Saturated hydraulic conductivity is below the upper half of moderately low, and/or internal free water occurrence is shallow or very shallow and transitory through permanent. Soils in this group have high runoff potential when thoroughly wet. Water movement through the soil is restricted or very restricted. Group D soils typically have greater than 40 percent clay, less than 50 percent sand, and have clayey textures. In some areas, they also have high shrink-swell potential. All soils with a depth to a water impermeable layer less than 50 centimeters [20 inches] and all soils with a water table within 60 centimeters [24 inches] of the surface are in this group, although some may have a dual classification, as described in the next section, if they can be adequately drained. The limits on the physical diagnostic characteristics of group D are as follows. For soils with a water impermeable layer at a depth between 50 centimeters and 100 centimeters [20 and 40 inches], the saturated hydraulic conductivity in the least transmissive soil layer is less than or equal to 1.0 micrometers per second (0.14 inches per hour). For soils that are deeper than 100 centimeters [40 inches] to a restriction or water table, the saturated hydraulic

conductivity of all soil layers within 100 centimeters [40 inches] of the surface is less than or equal to 0.40 micrometers per second (0.06 inches per hour).

**Dual hydrologic soil groups**-Certain wet soils are placed in group D based solely on the presence of a water table within 60 centimeters [24 inches] of the surface even though the saturated hydraulic conductivity may be favorable for water transmission. If these soils can be adequately drained, then they are assigned to dual hydrologic soil groups (*A/D*, *B/D*, and *C/D*) based on their saturated hydraulic conductivity and the water table depth when drained. The first letter applies to the drained condition and the second to the undrained condition. For the purpose of hydrologic soil group, adequately drained means that the seasonal high water table is kept at least 60 centimeters [24 inches] below the surface in a soil where it would be higher in a natural state.

### References:

National Engineering Handbook, Natural Resource Conservation Service, U.S. Department of Agriculture.

Soil Data Mart. <a href="http://soildatamart.nrcs.usda.gov/">http://soildatamart.nrcs.usda.gov/</a>.

Soil Survey Manual. Soil Survey Division Staff. 1993. Soil survey manual. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 18.

# TABLE A NUMERICAL LEGEND

| Soil Series         | legend<br>number | Ksat low - B<br>in/hr | Ksat high - B<br>in/hr | Ksat low - C | Ksat high - C | Hyd.<br>Grp. | Group | Land Form                              | Temp.  | Soil Textures     | Spodosol ? | Other                     |
|---------------------|------------------|-----------------------|------------------------|--------------|---------------|--------------|-------|----------------------------------------|--------|-------------------|------------|---------------------------|
| Occum               | 1                | 0.6                   | 2.0                    | 6.00         | 20.0          | В            | 2     | Flood Plain (Bottom Land)              | mesic  | loamy             | no         | loamy over loamy sand     |
| Suncook             | 2                | 6.0                   | 20.0                   | 6.00         | 20.0          | Α            | 1     | Flood Plain (Bottomland)               | mesic  | sandy             | no         | occasionally flooded      |
| Lim                 | 3                | 0.6                   | 2.0                    | 6.00         | 20.0          | С            | 5     | Flood Plain (Bottom Land)              | mesic  | loamy             | no         | •                         |
| Pootatuck           | 4                | 0.6                   | 6.0                    | 6.00         | 20.0          | В            | 3     | Flood Plain (Bottom Land)              | mesic  | loamy             | no         | single grain in C         |
| Rippowam            | 5                | 0.6                   | 6.0                    | 6.00         | 20.0          | С            | 5     | Flood Plain (Bottom Land)              | mesic  | loamy             | no         |                           |
| Saco                | 6                | 0.6                   | 2.0                    | 6.00         | 20.0          | D            | 6     | Flood Plain (Bottom Land)              | mesic  | silty             | no         | strata                    |
| Hadley              | 8                | 0.6                   | 2.0                    | 0.60         | 6.0           | В            | 2     | Flood Plain (Bottom Land)              | mesic  | silty             | no         | strata of fine sand       |
| Winooski            | 9                | 0.6                   | 6.0                    | 0.60         | 6.0           | В            |       | Flood Plain (Bottom Land)              | mesic  | silty over loamy  | no         |                           |
| Merrimac            | 10               | 2.0                   | 20.0                   | 6.00         | 20.0          | Α            | 1     | Outwash and Stream Terraces            | mesic  | gravelly sand     | no         | loamy cap                 |
| Gloucester          | 11               | 6.0                   | 20.0                   | 6.00         | 20.0          | Α            | 1     | Sandy Till                             | mesic  | sandy-skeletal    | no         | loamy cap                 |
| Hinckley            | 12               | 6.0                   | 20.0                   | 20.00        | 100.0         | Α            | 1     | Outwash and Stream Terraces            | mesic  | sandy-skeletal    | no         |                           |
| Sheepscot           | 14               | 6.0                   | 20.0                   | 6.00         | 20.0          | В            | 3     | Outwash and Stream Terraces            | frigid | sandy-skeletal    | yes        | gravelly coarse sand      |
| Searsport           | 15               | 6.0                   | 20.0                   | 6.00         | 20.0          | D            | 6     | Outwash and Stream Terraces            | frigid | sandy             | no         | organic over sand         |
| Saugatuck           | 16               | 0.06                  | 0.2                    | 6.00         | 20.0          | С            | 5     | Outwash and Stream Terraces            | mesic  | sandy             | yes        | ortstein                  |
| Colton, gravelly    | 21               | 6.0                   | 20.0                   | 20.00        | 100.0         | Α            | 1     | Outwash and Stream Terraces            | frigid | sandy-skeletal    | yes        | gravelly surface          |
| Colton              | 22               | 6.0                   | 20.0                   | 20.00        | 100.0         | Α            | 1     | Outwash and Stream Terraces            | frigid | sandy-skeletal    | yes        |                           |
| Masardis            | 23               | 6.0                   | 20.0                   | 6.00         | 20.0          | Α            | 1     | Outwash and Stream Terraces            | frigid | sandy-skeletal    | yes        | slate, loamy cap          |
| Agawam              | 24               | 6.0                   | 20.0                   | 20.00        | 100.0         | В            | 2     | Outwash and Stream Terraces            | mesic  | loamy over sandy  | no         | loamy over sand/gravel    |
| Windsor             | 26               | 6.0                   | 20.0                   | 6.00         | 20.0          | Α            | 1     | Outwash and Stream Terraces            | mesic  | sandy             | no         |                           |
| Groveton            | 27               | 0.6                   | 2.0                    | 0.60         | 6.0           | В            | 2     | Outwash and Stream Terraces            | frigid | loamy             | yes        | loamy over sandy          |
| Madawaska           | 28               | 0.6                   | 2.0                    | 6.00         | 20.0          | В            | 3     | Outwash and Stream Terraces            | frigid | loamy over sandy  | yes        | sandy or sandy-skeletal   |
| Woodbridge          | 29               | 0.6                   | 2.0                    | 0.00         | 0.6           | С            | 3     | Firm, platy, loamy till                | mesic  | loamy             | no         | sandy loam in Cd          |
| Unadilla            | 30               | 0.6                   | 2.0                    | 2.00         | 20.0          | В            | 2     | Terraces and glacial lake plains       | mesic  | silty             | no         | silty over gravelly       |
| Hartland            | 31               | 0.6                   | 2.0                    | 0.20         | 2.0           | В            | 2     | Terraces and glacial lake plains       | mesic  | silty             | no         | very fine sandy loam      |
| Boxford             | 32               | 0.1                   | 0.2                    | 0.00         | 0.2           | С            | 3     | Silt and Clay Deposits                 | mesic  | fine              | no         | silty clay loam           |
| Scitico             | 33               | 0.0                   | 0.2                    | 0.00         | 0.2           | С            | 5     | Silt and Clay Deposits                 | mesic  | fine              | no         |                           |
| Wareham             | 34               | 6.0                   | 20.0                   | 6.00         | 20.0          | С            | 5     | Outwash and Stream Terraces            | mesic  | sandy             | no         |                           |
| Champlain           | 35               | 6.0                   | 20.0                   | 20.00        | 100.0         | Α            | 1     | Outwash and Stream Terraces            | frigid | gravelly sand     | no         |                           |
| Adams               | 36               | 6.0                   | 20.0                   | 20.00        | 99.0          | Α            | 1     | Outwash and Stream Terraces            | frigid | sandy             | yes        |                           |
| Melrose             | 37               | 2.0                   | 6.0                    | 0.00         | 0.2           | С            | 3     | Sandy/loamy over silt/clay             | frigid | loamy over clayey | no         | silty clay loam in C      |
| Eldridge            | 38               | 6.0                   | 20.0                   | 0.06         | 0.6           | С            | 3     | Sandy/loamy over silt/clay             | mesic  | sandy over loamy  | no         |                           |
| Millis              | 39               |                       |                        |              |               | С            | 3     | Firm, platy, sandy till                | frigid | loamy             | yes        | loamy sand in Cd          |
| Canton              | 42               | 2.0                   | 6.0                    | 6.00         | 20.0          | В            | 2     | Loose till, sandy textures             | mesic  | loamy over sandy  | no         | loamy over loamy sand     |
| Montauk             | 44               | 0.6                   | 6.0                    | 0.06         | 0.6           | С            | 3     | Firm, platy, sandy till                | mesic  | loamy             | no         | loamy sand in Cd          |
| Henniker            | 46               | 0.6                   | 2.0                    | 0.06         | 0.6           | С            | 3     | Firm, platy, sandy till                | frigid | loamy             | no         | loamy sand in Cd          |
| Madawaska, aquentic | 48               | 0.6                   | 2.0                    | 6.00         | 20.0          | В            | 3     | Outwash and Stream Terraces            | frigid | loamy over sandy  | yes        | sandy or sandy-skeletal   |
| Whitman             | 49               | 0.0                   | 0.2                    | 0.00         | 0.2           | D            | 6     | Firm, platy, loamy till                | mesic  | loamy             | no         | mucky loam                |
| Hermon              | 55               | 2.0                   | 20.0                   | 6.00         | 20.0          | Α            | 1     | Sandy Till                             | frigid | sandy-skeletal    | yes        | loamy cap                 |
| Becket              | 56               | 0.6                   | 2.0                    | 0.06         | 0.6           | С            | 3     | Firm, platy, sandy till                | frigid | loamy             | yes        | gravelly sandy loam in Cd |
| Waumbeck            | 58               | 2.0                   | 20.0                   | 6.00         | 20.0          | В            | 3     | Loose till, sandy textures             | frigid | sandy-skeletal    | yes        | very cobbly loamy sand    |
| Charlton            | 62               | 0.6                   | 6.0                    | 0.60         | 6.0           | В            | 2     | Loose till, loamy textures             | mesic  | loamy             | no         | fine sandy loam           |
| Paxton              | 66               | 0.6                   | 2.0                    | 0.00         | 0.2           | С            | 3     | Firm, platy, loamy till                | mesic  | loamy             | no         |                           |
| Sutton              | 68               | 0.6                   | 6.0                    | 0.60         | 6.0           | В            | 3     | Loose till, loamy textures             | mesic  | loamy             | no         |                           |
| Berkshire           | 72               | 0.6                   | 6.0                    | 0.60         | 6.0           | В            | 2     | Loose till, loamy textures             | frigid | loamy             | yes        | fine sandy loam           |
| Marlow              | 76               | 0.6                   | 2.0                    | 0.06         | 0.6           | С            | 3     | Firm, platy, loamy till                | frigid | loamy             | yes        | fine sandy loam in Cd     |
| Peru                | 78               | 0.6                   | 2.0                    | 0.06         | 0.6           | С            | 3     | Firm, platy, loamy till                | frigid | loamy             | yes        |                           |
| Thorndike           | 84               | 0.6                   | 2.0                    | 0.60         | 2.0           | C/D          | 4     | Friable till, silty, schist & phyllite | frigid | loamy-skeletal    | yes        | less than 20 in. deep     |
| Hollis              | 86               | 0.6                   | 6.0                    | 0.60         | 6.0           | C/D          | 4     | Loose till, bedrock                    | mesic  | loamy             | no         | less than 20 in. deep     |
| Winnecook           | 88               | 0.6                   | 2.0                    | 0.60         | 2.0           | С            | 4     | Friable till, silty, schist & phyllite | frigid | loamy-skeletal    | yes        | 20 to 40 in. deep         |
| Chatfield           | 89               | 0.6                   | 6.0                    | 0.60         | 6.0           | В            | 4     | Loose till, bedrock                    | mesic  | loamy             | no         | 20 to 40 in. deep         |
| Hogback             | 91               | 2.0                   | 6.0                    | 2.00         | 6.0           | С            | 4     | Loose till, bedrock                    | frigid | loamy             | yes        | less than 20 in. deep     |
| Lyman               | 92               | 2.0                   | 6.0                    | 2.00         | 6.0           | A/D          | 4     | Loose till, bedrock                    | frigid | loamy             | yes        | less than 20 in. deep     |
| Woodstock           | 93               | 2.0                   | 6.0                    | 2.00         | 6.0           | C/D          | 4     | Loose till, bedrock                    | frigid | loamy             | no         | less than 20 in. deep     |
| Rawsonville         | 98               | 0.6                   | 6.0                    | 0.60         | 6.0           | С            | 4     | Loose till, bedrock                    | frigid | loamy             | yes        | 20 to 40 in. deep         |
| Tunbridge           | 99               | 0.6                   | 6.0                    | 0.60         | 6.0           | С            | 4     | Loose till, bedrock                    | frigid | loamy             | yes        | 20 to 40 in. deep         |

| Soil Series    | legend<br>number | Ksat low - B<br>in/hr | Ksat high - B<br>in/hr | Ksat low - C in/hr | Ksat high - C in/hr | Hyd.<br>Grp. | Group | Land Form                                  | Temp.  | Soil Textures                    | Spodosol ? | Other                            |
|----------------|------------------|-----------------------|------------------------|--------------------|---------------------|--------------|-------|--------------------------------------------|--------|----------------------------------|------------|----------------------------------|
| Ondawa         | 101              | 0.6                   | 6.0                    | 6.00               | 20.0                | В            | 2     | Flood Plain (Bottom Land)                  | frigid | loamy                            | no         | loamy over loamy sand            |
| Sunday         | 102              | 6.0                   | 20.0                   | 6.00               | 20.0                | Α            | 1     | Flood Plain (Bottomland)                   | frigid | sandy                            | no         | occasionally flooded             |
| Winooski       | 103              | 0.6                   | 6.0                    | 0.60               | 6.0                 | В            | 3     | Flood Plain (Bottom Land)                  | mesic  | silty                            | no         | very fine sandy loam             |
| Podunk         | 104              | 0.6                   | 6.0                    | 6.00               | 20.0                | В            | 3     | Flood Plain (Bottom Land)                  | frigid | loamy                            | no         | loamy to coarse sand in C        |
| Rumney         | 105              | 0.6                   | 6.0                    | 6.00               | 20.0                | С            | 5     | Flood Plain (Bottom Land)                  | frigid | loamy                            | no         | •                                |
| Hadley         | 108              | 0.6                   | 2.0                    | 0.60               | 6.0                 | В            | 2     | Flood Plain (Bottom Land)                  | mesic  | silty                            | no         | strata of fine sand, occ flooded |
| Limerick       | 109              | 0.6                   | 2.0                    | 0.60               | 2.0                 | С            | 5     | Flood Plain (Bottom Land)                  | mesic  | silty                            | no         |                                  |
| Scarboro       | 115              | 6.0                   | 20.0                   | 6.00               | 20.0                | D            | 6     | Outwash and Stream Terraces                | mesic  | sandy                            | no         | organic over sand, non stony     |
| Finch          | 116              |                       |                        |                    |                     | С            | 3     | Outwash and Stream Terraces                | frigid | sandy                            | yes        | cemented (ortstein)              |
| Sudbury        | 118              | 2.0                   | 6.0                    | 2.00               | 20.0                | В            | 3     | Outwash and Stream Terraces                | mesic  | sandy                            | no         | loam over gravelly sand          |
| Telos          | 123              | 0.6                   | 2.0                    | 0.02               | 0.2                 | С            | 3     | Firm, platy, silty till, schist & phyllite | frigid | loamv                            | yes        | channery silt loam in Cd         |
| Chesuncook     | 126              | 0.6                   | 2.0                    | 0.02               | 0.2                 | C            | 3     | Firm, platy, silty till, schist & phyllite | frigid | loamy                            | yes        | channery silt loam in Cd         |
| Allagash       | 127              | 0.6                   | 2.0                    | 6.00               | 20.0                | В            | 2     | Outwash and Stream Terraces                | frigid | loamy over sandy                 | yes        | loamy over sandy                 |
| Elliottsville  | 128              | 0.6                   | 2.0                    | 0.60               | 2.0                 | В            | 4     | Friable till, silty, schist & phyllite     | frigid | loamy                            | yes        | 20 to 40 in. deep                |
| Hitchcock      | 130              | 0.6                   | 2.0                    | 0.06               | 0.6                 | В            | 3     | Terraces and glacial lake plains           | mesic  | silty                            | no         | silt loam to silt in C           |
| Burnham        | 131              | 0.2                   | 6.0                    | 0.02               | 0.2                 | D            | 6     | Firm, platy, silty till, schist & phylitte | frigid | loamy                            | no         | organic over silt                |
| Dartmouth      | 132              | 0.6                   | 2.0                    | 0.06               | 0.6                 | В            | 3     | Terraces and glacial lake plains           | mesic  | silty                            | no         | thin strata silty clay loam      |
| Monson         | 133              | 0.6                   | 2.0                    | 0.60               | 2.0                 | D            | 4     | Friable till, silty, schist & phyllite     | frigid | loamy                            | yes        | less than 20 in. deep            |
| Mavbid         | 134              | 0.0                   | 0.2                    | 0.00               | 0.2                 | D            | 6     | Silt and Clay Deposits                     | mesic  | fine                             | no         | silt over clav                   |
| Shapleigh      | 136              | 0.0                   | 0.2                    | 0.00               | 0.2                 | C/D          | 4     | Sandy Till                                 | mesic  | sandy                            | yes        | less than 20 in. deep            |
| Monadnock      | 142              | 0.6                   | 2.0                    | 2.00               | 6.0                 | В            | 2     | Loose till, sandy textures                 | frigid | loamy over sandy, sandy-skeletal | yes        | gravelly loamy sand in C         |
| Acton          | 146              | 2.0                   | 20.0                   | 2.00               | 20.0                | В            | 3     | Loose till, sandy textures                 | mesic  | sandy-skeletal                   | no         | cobbly loamy sand                |
| Vassalboro     | 150              | 2.0                   | 20.0                   | 2.00               | 20.0                | D            | 6     | Organic Materials - Freshwater             | frigid | peat                             | no         | deep organic                     |
| Success        | 154              | 2.0                   | 6.0                    | 6.00               | 20.0                | A            | 1     | Sandy Till                                 | frigid | sandy-skeletal                   | yes        | cemented                         |
| Canterbury     | 166              | 0.6                   | 2.0                    | 0.06               | 0.6                 | C            | 3     | Firm, platy, loamy till                    | frigid | loamy                            | no         | loam in Cd                       |
| Sunapee        | 168              | 0.6                   | 2.0                    | 0.60               | 6.0                 | В            | 3     | Loose till, loamy textures                 | frigid | loamy                            | yes        | Ioani in Cu                      |
| Waskish        | 195              | 0.0                   | 2.0                    | 0.00               | 0.0                 | D            | 6     | Organic Materials - Freshwater             | frigid | peat                             | no         | deep organic                     |
| Ondawa         | 201              | 0.6                   | 6.0                    | 6.00               | 20.0                | В            | 2     | Flood Plain (Bottom Land)                  | frigid | loamy                            | no         | occ flood, loamy over I. sand    |
| Sunday         | 202              | 6.0                   | 20.0                   | 6.00               | 20.0                | A            | 1     | Flood Plain (Bottomland)                   | frigid | sandy                            | no         | frequently flooded               |
|                | 202              | 0.6                   | 20.0                   | 2.00               | 6.0                 | B            | 2     | Flood Plain (Bottom Land)                  | frigid | sality                           |            |                                  |
| Fryeburg       |                  |                       |                        |                    | 100.0               | С            |       | 1 /                                        |        | ,                                | no         | very fine sandy loam             |
| Charles        | 209              | 0.6                   | 100.0                  | 0.60               | 100.0               |              | 5     | Flood Plain (Bottom Land)                  | frigid | silty                            | no         |                                  |
| Warwick        | 210              | 2.0                   | 6.0                    | 20.00              | 20.0                | A            | 1 -   | Outwash and Stream Terraces                | mesic  | loamy-skeletal                   | no         | loamy over slate gravel          |
| Naumburg       | 214              | 6.0                   | 20.0                   | 6.00               |                     | C            | 5     | Outwash and Stream Terraces                | frigid | sandy                            | yes        |                                  |
| Boscawen       | 220              | 6.0                   | 20.0                   | 20.00              | 100.0               | A            | 1     | Outwash and Stream Terraces                | frigid | sandy-skeletal                   | no         | loamy cap                        |
| Bemis          | 224              | 0.6                   | 0.2                    | 0.00               | 0.2                 | С            | 5     | Firm, platy, loamy till                    | cryic  | loamy                            | no         |                                  |
| Bice           | 226              | 0.6                   | 6.0                    | 0.60               | 6.0                 | В            | 2     | Loose till, loamy textures                 | frigid | loamy                            | no         | sandy loam                       |
| Lanesboro      | 228              | 0.6                   | 2.0                    | 0.06               | 0.2                 | С            | 3     | Firm, platy, silty till, schist & phyllite | frigid | loamy                            | no         | channery silt loam in Cd         |
| Poocham        | 230              | 0.6                   | 2.0                    | 0.20               | 2.0                 | В            | 3     | Terraces and glacial lake plains           | mesic  | silty                            | no         | silt loam in C                   |
| Buxton         | 232              | 0.1                   | 0.6                    | 0.00               | 0.2                 | C            | 3     | Silt and Clay Deposits                     | frigid | fine                             | no         | silty clay                       |
| Scantic        | 233              | 0.0                   | 0.2                    | 0.00               | 0.2                 | D            | 5     | Silt and Clay Deposits                     | frigid | fine                             | no         |                                  |
| Biddeford      | 234              | 0.0                   | 0.2                    | 0.00               | 0.2                 | D            | 6     | Silt and Clay Deposits                     | frigid | fine                             | no         | organic over clay                |
| Buckland       | 237              | 0.6                   | 2.0                    | 0.06               | 0.2                 | С            | 3     | Firm, platy, loamy till                    | frigid | loamy                            | no         | loam in Cd                       |
| Elmridge       | 238              | 2.0                   | 6.0                    | 0.00               | 0.2                 | С            | 3     | Sandy/loamy over silt/clay                 | mesic  | loamy over clayey                | no         |                                  |
| Brayton        | 240              | 0.6                   | 2.0                    | 0.06               | 0.6                 | С            | 5     | Firm, platy, silty till, schist & phyllite | frigid | loamy                            | no         |                                  |
| Lyme           | 246              | 0.6                   | 6.0                    | 0.60               | 6.0                 | С            | 5     | Loose till, sandy textures                 | frigid | loamy                            | no         |                                  |
| Millsite       | 251              | 0.6                   | 6.0                    | 0.60               | 6.0                 | С            | 4     | Loose till, bedrock                        | frigid | loamy                            | no         | 20 to 40 in. deep                |
| Macomber       | 252              | 0.6                   | 2.0                    | 0.60               | 2.0                 | С            | 4     | Friable till, silty, schist & phyllite     | frigid | loamy-skeletal                   | yes        | 20 to 40 in. deep                |
| Lombard        | 259              | 0.6                   | 6.0                    | 2.00               | 20.0                | C/D          | 2     | Weathered bedrock, phyllite                | frigid | loamy                            | no         | very channery                    |
| Sunapee var    | 269              | 0.6                   | 2.0                    | 0.60               | 6.0                 | В            | 3     | Loose till, loamy textures                 | frigid | loamy                            | yes        | frigid dystrudept                |
| Chatfield Var. | 289              | 0.6                   | 6.0                    | 0.60               | 6.0                 | В            | 3     | Loose till, bedrock                        | mesic  | loamy                            | no         | mwd to swpd                      |
| Greenwood      | 295              |                       |                        |                    |                     | A/D          | 6     | Organic Materials - Freshwater             | frigid | hemic                            | no         | deep organic                     |
| Catden         | 296              |                       |                        |                    |                     | A/D          | 6     | Organic Materials - Freshwater             | mesic  | sapric                           | no         | deep organic                     |
| Lovewell       | 307              | 0.6                   | 2.0                    | 0.60               | 2.0                 | В            | 3     | Flood Plain (Bottom Land)                  | frigid | silty                            | no         | very fine sandy loam             |
| Quonset        | 310              | 2.0                   | 20.0                   | 20.00              | 100.0               | Α            | 1     | Outwash and Stream Terraces                | mesic  | sandy-skeletal                   | no         | shale                            |
| Deerfield      | 313              | 6.0                   | 20.0                   | 20.00              | 100.0               | В            | 3     | Outwash and Stream Terraces                | mesic  | sandy                            | no         | single grain in C                |

| Paperborne   314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Soil Series  | legend<br>number | Ksat low - B<br>in/hr | Ksat high - B | Ksat low - C | Ksat high - C | Hyd.<br>Grp. | Group | Land Form                               | Temp.  | Soil Textures                   | Spodosol | Other                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|-----------------------|---------------|--------------|---------------|--------------|-------|-----------------------------------------|--------|---------------------------------|----------|--------------------------|
| Manages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dinastana    |                  | 111/111               | 111/111       | 111/111      | 111/111       |              | -     | Outure band Characa Tamasa              |        |                                 |          |                          |
| Bernedeten   350   0.6   2.0   0.66   0.2   C   3   Firm, play, sijh ki, schiel & Phylide   next                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                  | 6.0                   | 20.0          | 6.00         | 20.0          |              |       |                                         |        | ,                               | ,        |                          |
| Petitional   334   0.0   2.0   0.06   0.2   C   5   Ferraces and glacial lake plants   figst   stay   no   stations in the C   Petitional   Stay    |              |                  |                       |               |              |               |              |       |                                         |        | ,                               | ,        | shannani silt laam in Cd |
| Pittstoom   334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                  |                       |               |              |               |              |       |                                         |        |                                 |          |                          |
| Stasting   240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                  |                       |               |              |               |              |       | Ŭ İ                                     |        | •                               |          |                          |
| Straing   340   0.6   2.0   0.68   0.2   C   S   Firm, play, shipt s, chart & phylite   mesic   loamy   no   (20 to 40 in, deep   Loamy   no |              |                  |                       |               |              |               |              |       |                                         |        | ,                               |          | channery siit loam in Cu |
| Cartigin   S87   O.8   2.0   O.80   O |              |                  |                       |               |              |               |              |       |                                         |        | , ,,                            |          |                          |
| Rearrange   359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                  |                       |               |              |               |              | -     |                                         |        | ,                               |          | 20 to 40 in door         |
| Duckhelses   366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                  |                       |               |              |               |              |       |                                         |        | ,                               |          |                          |
| Defield   378   0.6   2.0   0.06   0.6   C   3   Firm, play, loamy tell   firty   firty   decay   yes   fires analy joan in Chocona   395   6.00   100.00   D   6   Organic Materials - Freshwater   firty   decay   cannyt-skeletal   no organic over sand   Chocona   395   6.00   20.00   D   6   Organic Materials - Freshwater   firty   decay   cannyt-skeletal   no organic over sand   cannyt   canny |              |                  |                       |               |              |               |              | -     |                                         |        |                                 |          |                          |
| Trialway   383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                  |                       |               |              |               |              | _     |                                         |        | ,                               |          |                          |
| Chocorus   395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                  | 0.6                   | 2.0           |              |               |              | -     |                                         |        | ,                               | ,        |                          |
| Survoice                 |                  |                       |               |              |               |              | -     |                                         |        |                                 |          |                          |
| Suncook   402   6.0   20.0   6.00   20.0   A   1   Flood Plain (Bottomland)   mesic   sandy   no   frequent flooding    |              |                  |                       |               | 6.00         | 20.0          |              | -     | <u> </u>                                |        | , ,                             |          |                          |
| Medaniak   404   6.0   100.0   6.00   100.0   8   3   Flood Plain (Bottom Land)   frigid   floarmy over sandry   no   sandry or sandry-skelet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |                       |               |              |               |              | 6     |                                         |        |                                 |          |                          |
| Medornak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                       |               |              |               |              | 1     |                                         |        | ,                               |          |                          |
| Haven                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                  |                       |               |              |               |              |       |                                         |        |                                 |          |                          |
| Duane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                  |                       |               |              |               |              |       | \ /                                     |        |                                 |          |                          |
| Monosibuke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                  |                       |               |              |               |              |       |                                         |        | , ,                             |          | , ,                      |
| Grange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                  |                       |               |              |               |              |       |                                         |        | ,                               | ,        | cemented (ortstein)      |
| Shaker   438   2.0   6.0   0.00   0.2   C   5   Sandyloamy over silt/clay   mesic   co. loamy over clayey   no   Chichester   442   0.6   2.0   2.00   6.0   8   Loose III, sandy fextures   frigid   loamy over sandy   no   loamy over clayey   no   Sandy or sandy-skelt   co. loamy over sandy   no   loamy   no   loamy sand in Cd   loamy   no   loamy   loamy |              |                  |                       |               |              |               |              |       |                                         |        | ,                               |          |                          |
| Shaker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •            |                  |                       |               |              |               |              |       |                                         |        | , , ,                           |          |                          |
| Chichester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                  |                       |               |              |               |              |       |                                         |        |                                 |          |                          |
| Newfields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                  |                       |               |              |               |              | 5     | , , , , , , , , , , , , , , , , , , , , |        | , , ,                           | no       |                          |
| Sciluate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                       |               |              |               |              |       |                                         |        |                                 |          | loamy over loamy sand    |
| Metacomet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                  |                       |               |              |               |              | -     |                                         |        | , ,                             |          | sandy or sandy-skeletal  |
| Pennichuck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                  |                       |               |              |               |              | -     | 11 21 2                                 |        | loamy                           | no       | ,                        |
| Gilmanton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                  |                       |               |              |               |              |       |                                         |        |                                 |          |                          |
| Ossipee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                  |                       |               |              |               |              | -     |                                         |        | ,                               |          |                          |
| Natchaug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  | 0.6                   | 2.0           |              |               |              |       |                                         |        | loamy                           | no       | fine sandy loam in Cd    |
| Pawcatuck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ossipee      |                  |                       |               |              |               |              | 6     |                                         | frigid | loamy                           | no       | organic over loam        |
| Abenaki   501   0.6   2.0   6.00   99.0   B   2   Outwash and Stream Terraces   frigid   loamy over sandy-skeletal   no   loamy over gravell   Cohas   505   0.6   2.0   0.60   100.0   C   5   Flood Plain (Bottom Land)   frigid   co. loamy over sandy (skeletal)   no   slate, loamy cap   Ninigret   513   0.6   6.0   6.00   20.0   B   3   Outwash and Stream Terraces   mesic   sandy-skeletal   no   slate, loamy cap   Ninigret   513   0.6   6.0   6.00   20.0   B   3   Outwash and Stream Terraces   mesic   loamy over sandy   no   sandy or sandy-skeletal   no   Slate, loamy cap   Ninigret   514   0.6   6.0   0.60   20.0   C   5   Loose till, loamy textures   mesic   loamy over sandy   no   sandy or sandy-skeletal   sandy   sandy-skeletal   sandy   sandy-skeletal   sandy   sandy-skeletal   sandy   sandy-skeletal   sandy   sandy-skeletal   sandy   sandy-skeletal    |              |                  |                       |               |              |               |              |       |                                         |        |                                 | no       | organic over loam        |
| Cohas   505   0.6   2.0   0.60   100.0   C   5   Flood Plain (Bottom Land)   frigid   co. loamy over sandy (skeletal)   no   slate, loamy cap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pawcatuck    |                  |                       |               |              |               |              | -     | Tidal Flat                              | mesic  | sandy or sandy-skeletal         | no       | organic over sand        |
| Hoosic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Abenaki      | 501              | 0.6                   | 2.0           | 6.00         |               |              | 2     | Outwash and Stream Terraces             | frigid | loamy over sandy-skeletal       | no       | loamy over gravelly      |
| Ninigret   513   0.6   6.0   6.00   20.0   B   3   Outwash and Stream Terraces   mesic   loamy over sandy   no   sandy or sandy skelet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cohas        | 505              | 0.6                   | 2.0           | 0.60         | 100.0         | С            | 5     | Flood Plain (Bottom Land)               | frigid | co. loamy over sandy (skeletal) | no       |                          |
| Leicester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hoosic       | 510              | 2.0                   | 20.0          | 20.00        | 100.0         | Α            | 1     | Outwash and Stream Terraces             | mesic  | sandy-skeletal                  | no       | slate, loamy cap         |
| Au Gres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ninigret     | 513              | 0.6                   | 6.0           | 6.00         | 20.0          | В            | 3     |                                         | mesic  | loamy over sandy                | no       | sandy or sandy-skeletal  |
| Machias         520         2.0         6.0         6.00         20.0         B         3         Outwash and Stream Terraces         frigid sandy or sandy-skeletal         yes         strata sand/gravel in Stetson           Stetson         523         0.6         6.0         6.00         20.0         B         2         Outwash and Stream Terraces         frigid sandy-skeletal         yes         loamy over gravelly sand in 20           Caesar         526         20.0         100.0         20.00         100.0         A         1         Outwash and Stream Terraces         mesic         coarse sand         no           Scio         531         0.6         2.0         0.60         2.0         B         3         Terraces and glacial take plains         mesic         silty         no         gravelly sand in 20           Belgrade         532         0.6         2.0         0.06         2.0         B         3         Terraces and glacial take plains         mesic         silty         no         strata of fine sand           Raynham         533         0.2         2.0         0.06         0.2         C         5         Terraces and glacial take plains         mesic         silty over claye         no         strata of fine sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Leicester    | 514              | 0.6                   | 6.0           | 0.60         | 20.0          | С            | 5     | Loose till, loamy textures              | mesic  | loamy                           | no       |                          |
| Stetson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Au Gres      | 516              |                       |               |              |               | В            | 5     | Outwash and Stream Terraces             | frigid | sandy                           | yes      | single grain, loose      |
| Caesar         526         20.0         100.0         20.00         100.0         A         1         Outwash and Stream Terraces         mesic         coarse sand         no           Scio         531         0.6         2.0         0.60         2.0         B         3         Terraces and glacial lake plains         mesic         silty         no         gravelly sand in 20           Belgrade         532         0.6         2.0         0.06         2.0         B         3         Terraces and glacial lake plains         mesic         silty         no         strata of fine sand           Raynham         533         0.2         2.0         0.06         0.2         C         5         Terraces and glacial lake plains         mesic         silty         no         strata of fine sand           Binghamville         534         0.2         2.0         0.06         0.2         D         5         Terraces and glacial lake plains         mesic         silty         no           Suffield         536         0.6         2.0         0.00         0.2         C         3         Sandyloamy over silt/clay         mesic         silty over clayey         no         deep to clay C           Squamscott         538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Machias      | 520              | 2.0                   | 6.0           | 6.00         | 20.0          | В            | 3     | Outwash and Stream Terraces             | frigid | sandy or sandy-skeletal         | yes      | strata sand/gravel in C  |
| Scio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stetson      |                  |                       | 6.0           | 6.00         | 20.0          | В            | 2     | Outwash and Stream Terraces             |        |                                 |          | loamy over gravelly      |
| Belgrade   532   0.6   2.0   0.06   2.0   B   3   Terraces and glacial lake plains   mesic   silty   no   strata of fine sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Caesar       | 526              | 20.0                  | 100.0         | 20.00        | 100.0         | Α            | 1     | Outwash and Stream Terraces             | mesic  | coarse sand                     | no       |                          |
| Raynham   533   0.2   2.0   0.06   0.2   C   5   Terraces and glacial lake plains   mesic   silfy   no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Scio         | 531              | 0.6                   | 2.0           | 0.60         | 2.0           | В            | 3     | Terraces and glacial lake plains        | mesic  | silty                           | no       | gravelly sand in 2C      |
| Raynham         533         0.2         2.0         0.06         0.2         C         5         Terraces and glacial lake plains         mesic         silty         no           Binghamville         534         0.2         2.0         0.06         0.2         D         5         Terraces and glacial lake plains         mesic         silty over clayey         no           Suffield         536         0.6         2.0         0.00         0.2         C         3         Sandy/loamy over silt/clay         mesic         sandy over clayey         no         deep to clay C           Squamscott         538         6.0         20.0         0.06         0.6         C         5         Sandy/loamy over silt/clay         mesic         sandy over loamy         yes           Raypol         540         0.6         2.0         6.00         100.0         D         5         Outwash and Stream Terraces         mesic         co. loamy over sandy (skeletal)         no           Walpole         546         2.0         6.0         6.00         20.0         C         5         Outwash and Stream Terraces         mesic         sandy over sandy (skeletal)         no           Peacham         549         0.6         2.0         0.00<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Belgrade     | 532              | 0.6                   | 2.0           | 0.06         | 2.0           | В            | 3     | Terraces and glacial lake plains        | mesic  | silty                           | no       | strata of fine sand      |
| Binghamville   534   0.2   2.0   0.06   0.2   D   5   Terraces and glacial lake plains   mesic   silfy   no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                  |                       |               |              |               |              |       |                                         |        | ,                               |          |                          |
| Suffield         536         0.6         2.0         0.00         0.2         C         3         Sandy/loamy over silt/clay         mesic         silty over clayey         no         deep to clay C           Squamscott         538         6.0         20.0         0.06         0.6         C         5         Sandy/loamy over silt/clay         mesic         sandy over loamy         yes           Raypol         540         0.6         2.0         6.00         100.0         D         5         Outwash and Stream Terraces         mesic         co. loamy over sandy (skeletal)         no           Walpole         546         2.0         6.0         6.00         20.0         C         5         Outwash and Stream Terraces         mesic         sandy over sandy (skeletal)         no           Peacham         549         0.6         2.0         0.00         0.2         D         6         Firm, platy, silty till, schist & phyllite         frigid         loamy         no         organic over loamy           Skerry         558         0.6         2.0         0.06         0.6         C         3         Firm, platy, silty till, schist & phyllite         frigid         loamy         yes         channy sand in Cd           Plaisted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Binghamville | 534              | 0.2                   | 2.0           | 0.06         | 0.2           | D            | 5     |                                         | mesic  |                                 | no       |                          |
| Squamscott         538         6.0         20.0         0.06         0.6         C         5         Sandy/loamy over silt/clay         mesic         sandy over loamy         yes           Raypol         540         0.6         2.0         6.00         100.0         D         5         Outwash and Stream Terraces         mesic         co. loamy over sandy (skeletal)         no           Walpole         546         2.0         6.0         6.00         20.0         C         5         Outwash and Stream Terraces         mesic         sandy         no           Peacham         549         0.6         2.0         0.00         0.2         D         6         Firm, platy, silty till, schist & phyllite         frigid         loamy         no         organic over loam           Skerry         558         0.6         2.0         0.06         0.6         C         3         Firm, platy, silty till, schist & phyllite         frigid         loamy         yes         loamy sand in Cd           Plaisted         563         0.6         2.0         0.06         0.6         C         3         Firm, platy, silty till, schist & phyllite         frigid         loamy         yes         channery silt loam in           Howland         566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                  |                       |               |              |               |              |       | Ŭ İ                                     |        |                                 | -        | deep to clav C           |
| Raypol         540         0.6         2.0         6.00         100.0         D         5         Outwash and Stream Terraces         mesic         co. loamy over sandy (skeletal)         no           Walpole         546         2.0         6.0         6.00         20.0         C         5         Outwash and Stream Terraces         mesic         sandy         no           Peacham         549         0.6         2.0         0.00         0.2         D         6         Firm, platy, silty till, schist & phylitte         frigid         loamy         no         organic over loam           Skerry         558         0.6         2.0         0.06         0.6         C         3         Firm, platy, sandy till         frigid         loamy         yes         loamy sand in Cd           Plaisted         563         0.6         2.0         0.06         0.6         C         3         Firm, platy, silty till, schist & phyllite         frigid         loamy         yes         channery silt loam in           Howland         566         0.6         2.0         0.06         0.2         C         3         Firm, platy, silty till, schist & phyllite         frigid         loamy         yes         silt loam, platy in C           Monard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                  |                       |               |              |               |              |       |                                         |        | , , ,                           |          | 1                        |
| Walpole         546         2.0         6.0         6.00         20.0         C         5         Outwash and Stream Terraces         mesic         sandy         no           Peacham         549         0.6         2.0         0.00         0.2         D         6         Firm, platy, silty till, schist & phylitte         frigid         loamy         no         organic over loam           Skerry         558         0.6         2.0         0.06         0.6         C         3         Firm, platy, sandy till         frigid         loamy         yes         loamy sand in Cd           Plaisted         563         0.6         2.0         0.06         0.6         C         3         Firm, platy, silty till, schist & phyllite         frigid         loamy         yes         channery silt loam in           Howland         566         0.6         2.0         0.06         0.2         C         3         Firm, platy, silty till, schist & phyllite         frigid         loamy         yes         silt loam, platy in C           Monarda         569         0.2         2.0         0.02         0.2         D         5         Firm, platy, silty till, schist & phyllite         frigid         loamy         no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                  |                       |               |              |               |              |       | <i>y</i> . <i>y</i> . , ,               |        |                                 | ,        |                          |
| Peacham         549         0.6         2.0         0.00         0.2         D         6         Firm, platy, silty till, schist & phylitte         frigid         loamy         no         organic over loam           Skerry         558         0.6         2.0         0.06         0.6         C         3         Firm, platy, sandy till         frigid         loamy         yes         loamy sand in Cd           Plaisted         563         0.6         2.0         0.06         0.6         C         3         Firm, platy, silty till, schist & phyllite         frigid         loamy         yes         channery silt loam in           Howland         566         0.6         2.0         0.06         0.2         C         3         Firm, platy, silty till, schist & phyllite         frigid         loamy         yes         silt loam, platy in C           Monarda         569         0.2         2.0         0.02         0.2         D         5         Firm, platy, silty till, schist & phyllite         frigid         loamy         no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                  |                       |               |              |               |              |       |                                         |        |                                 |          |                          |
| Skerry         558         0.6         2.0         0.06         0.6         C         3         Firm, platy, sandy till         frigid         loamy         yes         loamy sand in Cd           Plaisted         563         0.6         2.0         0.06         0.6         C         3         Firm, platy, silty till, schist & phyllite         frigid         loamy         yes         channery silt loam in           Howland         566         0.6         2.0         0.06         0.2         C         3         Firm, platy, silty till, schist & phyllite         frigid         loamy         yes         silt loam, platy in C           Monarda         569         0.2         2.0         0.02         0.2         D         5         Firm, platy, silty till, schist & phyllite         frigid         loamy         no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                  |                       |               |              |               |              |       |                                         |        | ,                               |          | organic over loam        |
| Plaisted 563 0.6 2.0 0.06 0.6 C 3 Firm, platy, silty till, schist & phyllite frigid loamy yes channery silt loam in Howland 566 0.6 2.0 0.06 0.2 C 3 Firm, platy, silty till, schist & phyllite frigid loamy yes silt loam, platy in C Monarda 569 0.2 2.0 0.02 0.2 D 5 Firm, platy, silty till, schist & phyllite frigid loamy no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                  |                       |               |              |               |              |       |                                         |        | ,                               |          |                          |
| Howland         566         0.6         2.0         0.06         0.2         C         3         Firm, platy, silty till, schist & phyllite         frigid         loamy         yes         silt loam, platy in C           Monarda         569         0.2         2.0         0.02         0.2         D         5         Firm, platy, silty till, schist & phyllite         frigid         loamy         no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,            |                  |                       |               |              |               |              |       | 11 21                                   |        | ,                               | ,        | ,                        |
| Monarda         569         0.2         2.0         0.02         0.2         D         5         Firm, platy, silty till, schist & phyllite         frigid         loamy         no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                  |                       |               |              |               |              |       |                                         |        | ,                               | ,        |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                  |                       |               |              |               |              |       |                                         |        | ,                               | ,        | Siit loain, platy iii Od |
| I Bandor I 572 I 116 I 20 I 1160 I 20 I B I 2 I Eriable till eiltviechiet Xinhvillite I tridid I Ioamv I voc I cilt Ioam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bangor       | 572              | 0.6                   | 2.0           | 0.60         | 2.0           | В            | 2     | Friable till, silty, schist & phyllite  | frigid | loamy                           | yes      | silt loam                |

| Soil Series   | legend | Ksat low - B | Ksat high - B | Ksat low - C | Ksat high - C | Hyd. | Group | Land Form                                  | Temp.  | Soil Textures           | Spodosol | Other                               |
|---------------|--------|--------------|---------------|--------------|---------------|------|-------|--------------------------------------------|--------|-------------------------|----------|-------------------------------------|
|               | number | in/hr        | in/hr         | in/hr        | in/hr         | Grp. | •     |                                            |        |                         | ?        |                                     |
| Dixmont       | 578    | 0.6          | 2.0           | 0.60         | 2.0           | С    | 3     | Friable till, silty, schist & phyllite     | frigid | loamy                   | yes      | silt loam, platy in C               |
| Cabot         | 589    | 0.6          | 2.0           | 0.06         | 0.2           | D    | 5     | Firm, platy, silty till, schist & phyllite | frigid | loamy                   | no       |                                     |
| Westbrook     | 597    |              |               | 0.00         | 2.0           | D    | 6     | Tidal Flat                                 | mesic  | loamy                   | no       | organic over loam                   |
| Mundal        | 610    | 0.6          | 2.0           | 0.06         | 0.6           | С    | 3     | Firm, platy, loamy till                    | frigid | loamy                   | yes      | gravelly sandy loam in Cd           |
| Croghan       | 613    | 20.0         | 100.0         | 20.00        | 100.0         | В    | 3     | Outwash and Stream Terraces                | frigid | sandy                   | yes      | single grain in C                   |
| Kinsman       | 614    | 6.0          | 20.0          | 6.00         | 20.0          | С    | 5     | Outwash and Stream Terraces                | frigid | sandy                   | yes      |                                     |
| Salmon        | 630    | 0.6          | 2.0           | 0.60         | 2.0           | В    | 2     | Terraces and glacial lake plains           | frigid | silty                   | yes      | very fine sandy loam                |
| Nicholville   | 632    | 0.6          | 2.0           | 0.60         | 2.0           | С    | 3     | Terraces and glacial lake plains           | frigid | silty                   | yes      | very fine sandy loam                |
| Pemi          | 633    | 0.6          | 2.0           | 0.06         | 0.6           | С    | 5     | Terraces and glacial lake plains           | frigid | silty                   | no       |                                     |
| Pillsbury     | 646    | 0.6          | 2.0           | 0.06         | 0.2           | С    | 5     | Firm, platy, loamy till                    | frigid | silty                   | no       |                                     |
| Ridgebury     | 656    | 0.6          | 6.0           | 0.00         | 0.2           | С    | 5     | Firm, platy, loamy till                    | mesic  | loamy                   | no       |                                     |
| Canaan        | 663    | 2.0          | 20.0          | 2.00         | 20.0          | С    | 4     | Weathered Bedrock Till                     | frigid | loamy-skeletal          | yes      | less than 20 in. deep               |
| Redstone      | 665    | 2.0          | 6.0           | 6.00         | 20.0          | Α    | 1     | Weathered Bedrock Till                     | frigid | fragmental              | yes      | loamy cap                           |
| Sisk          | 667    | 0.6          | 2.0           | 0.00         | 0.6           | С    | 3     | Firm, platy, loamy till                    | cryic  | loamy                   | yes      | sandy loam in Cd                    |
| Surplus       | 669    | 0.6          | 2.0           | 0.00         | 0.6           | С    | 3     | Firm, platy, loamy till                    | cryic  | loamy                   | yes      | mwd, sandy loam in Cd               |
| Glebe         | 671    | 2.0          | 6.0           | 2.00         | 6.0           | С    | 4     | Loose till, bedrock                        | cryic  | loamy                   | yes      | 20 to 40 in. deep                   |
| Saddleback    | 673    | 0.6          | 2.0           | 0.60         | 2.0           | C/D  | 4     | Loose till, bedrock                        | cryic  | loamy                   | yes      | less than 20 in. deep               |
| Ricker        | 674    | 2.0          | 6.0           | 2.00         | 6.0           | Α    | 4     | Organic over bedrock (up to 4" of mineral) | cryic  | fibric to hemic         | no       | well drained, less than 20 in. deep |
| Houghtonville | 795    | 0.6          | 6.0           | 0.60         | 6.0           | В    | 2     | Loose till, loamy textures                 | frigid | loamy                   | yes      | cobbly fine sandy loam              |
| Matunuck      | 797    |              |               | 20.00        | 100.0         | D    | 6     | Tidal Flat                                 | mesic  | sandy                   | no       | organic over sand                   |
| Meadowsedge   | 894    |              |               |              |               | D    | 6     | Organic Materials - Freshwater             | frigid | peat                    | no       | deep organic                        |
| Bucksport     | 895    |              |               |              |               | D    | 6     | Organic Materials - Freshwater             | frigid | sapric                  | no       | deep organic                        |
| Colonel       | 927    | 0.6          | 2.0           | 0.06         | 0.6           | С    | 3     | Firm, platy, loamy till                    | frigid | loamy                   | yes      | loam in Cd                          |
| Pondicherry   | 992    |              |               | 6.00         | 20.0          | D    | 6     | Organic Materials - Freshwater             | frigid | sandy or sandy-skeletal | no       | organic over sand                   |
| Wonsqueak     | 995    |              |               | 0.20         | 2.0           | D    | 6     | Organic Materials - Freshwater             | frigid | loamy                   | no       | organic over loam                   |
| Glover        | NA     | 0.6          | 2.0           | 0.60         | 2             | D    | 4     | Friable till, silty, schist & phyllite     | frigid | loamy                   | no       | less than 20 in. deep               |

no longer recognized organic materials

# TABLE B SOIL SERIES

| Soil Series        | legend     | Ksat low - B | Ksat high - B | Ksat low - C | Ksat high - C | Hyd.     | Group    | Land Form                                                          | Temp.            | Soil Textures                   | Spodosol | Other                             |
|--------------------|------------|--------------|---------------|--------------|---------------|----------|----------|--------------------------------------------------------------------|------------------|---------------------------------|----------|-----------------------------------|
| Join Jeries        | Ū          |              | •             |              |               | •        | Croup    | Land I offi                                                        | Temp.            | oon rextures                    |          | Other                             |
|                    | number     | in/hr        | in/hr         | in/hr        | in/hr         | Grp.     |          |                                                                    |                  |                                 | ?        |                                   |
| Abenaki            | 501        | 0.6          | 2.0           | 6.00         | 99.0          | В        | 2        | Outwash and Stream Terraces                                        | frigid           | loamy over sandy-skeletal       | no       | loamy over gravelly               |
| Acton              | 146        | 2.0          | 20.0          | 2.00         | 20.0          | В        | 3        | Loose till, sandy textures                                         | mesic            | sandy-skeletal                  | no       | cobbly loamy sand                 |
| Adams              | 36         | 6.0          | 20.0          | 20.00        | 99.0          | Α        | 1        | Outwash and Stream Terraces                                        | frigid           | sandy                           | yes      | , ,                               |
| Agawam             | 24         | 6.0          | 20.0          | 20.00        | 100.0         | В        | 2        | Outwash and Stream Terraces                                        | mesic            | loamy over sandy                | no       | loamy over sand/gravel            |
| Allagash           | 127        | 0.6          | 2.0           | 6.00         | 20.0          | В        | 2        | Outwash and Stream Terraces                                        | frigid           | loamy over sandy                | yes      | loamy over sandy                  |
| Au Gres            | 516        |              |               |              |               | В        | 5        | Outwash and Stream Terraces                                        | frigid           | sandy                           | yes      | single grain, loose               |
| Bangor             | 572        | 0.6          | 2.0           | 0.60         | 2.0           | В        | 2        | Friable till, silty, schist & phyllite                             | frigid           | loamy                           | yes      | silt loam                         |
| Becket             | 56         | 0.6          | 2.0           | 0.06         | 0.6           | С        | 3        | Firm, platy, sandy till                                            | frigid           | loamy                           | yes      | gravelly sandy loam in Cd         |
| Belgrade           | 532        | 0.6          | 2.0           | 0.06         | 2.0           | В        | 3        | Terraces and glacial lake plains                                   | mesic            | silty                           | no       | strata of fine sand               |
| Bemis              | 224        | 0.6          | 0.2           | 0.00         | 0.2           | С        | 5        | Firm, platy, loamy till                                            | cryic            | loamy                           | no       |                                   |
| Berkshire          | 72         | 0.6          | 6.0           | 0.60         | 6.0           | В        | 2        | Loose till, loamy textures                                         | frigid           | loamy                           | yes      | fine sandy loam                   |
| Bernardston        | 330        | 0.6          | 2.0           | 0.06         | 0.2           | С        | 3        | Firm, platy, silty till, schist & phyllite                         | mesic            | loamy                           | no       | channery silt loam in Cd          |
| Bice               | 226        | 0.6          | 6.0           | 0.60         | 6.0           | В        | 2        | Loose till, loamy textures                                         | frigid           | loamy                           | no       | sandy loam                        |
| Biddeford          | 234        | 0.0          | 0.2           | 0.00         | 0.2           | D        | 6        | Silt and Clay Deposits                                             | frigid           | fine                            | no       | organic over clay                 |
| Binghamville       | 534        | 0.2          | 2.0           | 0.06         | 0.2           | D        | 5        | Terraces and glacial lake plains                                   | mesic            | silty                           | no       | 1                                 |
| Boscawen           | 220        | 6.0          | 20.0          | 20.00        | 100.0         | A        | 1        | Outwash and Stream Terraces                                        | frigid           | sandy-skeletal                  | no       | loamy cap                         |
| Boxford<br>Brayton | 32<br>240  | 0.1<br>0.6   | 0.2<br>2.0    | 0.00         | 0.2<br>0.6    | C<br>C   | <u>3</u> | Silt and Clay Deposits                                             | mesic            | fine                            | no       | silty clay loam                   |
| Buckland           | 237        | 0.6          | 2.0           | 0.06         | 0.6           | C        | 3        | Firm, platy, silty till, schist & phyllite Firm, platy, loamy till | frigid           | loamy<br>loamv                  | no       | loom in Cd                        |
| Bucksport          | 895        | 0.0          | 2.0           | 0.00         | U.Z           | D        | 6        | Organic Materials - Freshwater                                     | frigid<br>frigid | sapric                          | no<br>no | loam in Cd                        |
| Burnham            | 131        | 0.2          | 6.0           | 0.02         | 0.2           | D D      | 6        | Firm, platy, silty till, schist & phylitte                         | frigid           | loamy                           | no       | deep organic<br>organic over silt |
| Buxton             | 232        | 0.2          | 0.6           | 0.02         | 0.2           | C        | 3        | Silt and Clay Deposits                                             | frigid           | fine                            | no       | silty clay                        |
| Cabot              | 589        | 0.6          | 2.0           | 0.06         | 0.2           | D        | 5        | Firm, platy, silty till, schist & phyllite                         | frigid           | loamy                           | no       | Sitty ciay                        |
| Caesar             | 526        | 20.0         | 100.0         | 20.00        | 100.0         | A        | 1        | Outwash and Stream Terraces                                        | mesic            | coarse sand                     | no       |                                   |
| Canaan             | 663        | 2.0          | 20.0          | 2.00         | 20.0          | C        | 4        | Weathered Bedrock Till                                             | frigid           | loamy-skeletal                  | yes      | less than 20 in. deep             |
| Canterbury         | 166        | 0.6          | 2.0           | 0.06         | 0.6           | C        | 3        | Firm, platy, loamy till                                            | frigid           | loamy                           | no       | loam in Cd                        |
| Canton             | 42         | 2.0          | 6.0           | 6.00         | 20.0          | B        | 2        | Loose till, sandy textures                                         | mesic            | loamy over sandy                | no       | loamy over loamy sand             |
| Cardigan           | 357        | 0.6          | 2.0           | 0.60         | 2.0           | В        | 4        | Friable till, silty, schist & phyllite                             | mesic            | loamy                           | no       | 20 to 40 in. deep                 |
| Catden             | 296        |              |               |              |               | A/D      | 6        | Organic Materials - Freshwater                                     | mesic            | sapric                          | no       | deep organic                      |
| Champlain          | 35         | 6.0          | 20.0          | 20.00        | 100.0         | A        | 1        | Outwash and Stream Terraces                                        | frigid           | gravelly sand                   | no       | ' 3                               |
| Charles            | 209        | 0.6          | 100.0         | 0.60         | 100.0         | С        | 5        | Flood Plain (Bottom Land)                                          | frigid           | silty                           | no       |                                   |
| Charlton           | 62         | 0.6          | 6.0           | 0.60         | 6.0           | В        | 2        | Loose till, loamy textures                                         | mesic            | loamy                           | no       | fine sandy loam                   |
| Chatfield          | 89         | 0.6          | 6.0           | 0.60         | 6.0           | В        | 4        | Loose till, bedrock                                                | mesic            | loamy                           | no       | 20 to 40 in. deep                 |
| Chatfield Var.     | 289        | 0.6          | 6.0           | 0.60         | 6.0           | В        | 3        | Loose till, bedrock                                                | mesic            | loamy                           | no       | mwd to swpd                       |
| Chesuncook         | 126        | 0.6          | 2.0           | 0.02         | 0.2           | С        | 3        | Firm, platy, silty till, schist & phyllite                         | frigid           | loamy                           | yes      | channery silt loam in Cd          |
| Chichester         | 442        | 0.6          | 2.0           | 2.00         | 6.0           | В        |          | Loose till, sandy textures                                         | frigid           | loamy over sandy                | no       | loamy over loamy sand             |
| Chocorua           | 395        |              |               | 6.00         | 20.0          | D        | 6        | Organic Materials - Freshwater                                     | frigid           | sandy or sandy-skeletal         | no       | organic over sand                 |
| Cohas              | 505        | 0.6          | 2.0           | 0.60         | 100.0         | С        | 5        | Flood Plain (Bottom Land)                                          | frigid           | co. loamy over sandy (skeletal) | no       |                                   |
| Colonel            | 927        | 0.6          | 2.0           | 0.06         | 0.6           | С        | 3        | Firm, platy, loamy till                                            | frigid           | loamy                           | yes      | loam in Cd                        |
| Colton             | 22         | 6.0          | 20.0          | 20.00        | 100.0         | Α        | 1        | Outwash and Stream Terraces                                        | frigid           | sandy-skeletal                  | yes      |                                   |
| Colton, gravelly   | 21         | 6.0          | 20.0          | 20.00        | 100.0         | A        | 1        | Outwash and Stream Terraces                                        | frigid           | sandy-skeletal                  | yes      | gravelly surface                  |
| Croghan            | 613        | 20.0         | 100.0         | 20.00        | 100.0         | В        | 3        | Outwash and Stream Terraces                                        | frigid           | sandy                           | yes      | single grain in C                 |
| Dartmouth          | 132        | 0.6          | 2.0           | 0.06         | 0.6           | В        | 3        | Terraces and glacial lake plains                                   | mesic            | silty                           | no       | thin strata silty clay loam       |
| Deerfield          | 313        | 6.0          | 20.0          | 20.00        | 100.0         | В        | 3        | Outwash and Stream Terraces                                        | mesic            | sandy                           | no       | single grain in C                 |
| Dixfield           | 378        | 0.6          | 2.0           | 0.06         | 0.6           | С        | 3        | Firm, platy, loamy till                                            | frigid           | loamy                           | yes      | fine sandy loam in Cd             |
| Dixmont            | 578        | 0.6          | 2.0           | 0.60         | 2.0           | C        | 3        | Friable till, silty, schist & phyllite                             | frigid           | loamy                           | yes      | silt loam, platy in C             |
| Duane              | 413        | 6.0          | 20.0          | 6.00         | 20.0          | <u>B</u> | 3        | Outwash and Stream Terraces                                        | frigid           | sandy-skeletal                  | yes      | cemented (ortstein)               |
| Dutchess           | 366        | 0.6          | 2.0           | 0.60         | 2.0           | В        | 2        | Friable till, silty, schist & phyllite                             | mesic            | loamy                           | no       | very channery                     |
| Eldridge           | 38         | 6.0          | 20.0          | 0.06         | 0.6           | C        | 3        | Sandy/loamy over silt/clay                                         | mesic            | sandy over loamy                | no       | 20 to 40 :                        |
| Elliottsville      | 128<br>238 | 0.6<br>2.0   | 2.0<br>6.0    | 0.60         | 2.0<br>0.2    | B<br>C   | 3        | Friable till, silty, schist & phyllite                             | frigid           | loamy                           | yes      | 20 to 40 in. deep                 |
| Elmridge           | 338        | 2.0          | 6.0           | 0.00         | 0.2           | C        | 3        | Sandy/loamy over silt/clay                                         | mesic            | loamy over clayey               | no       |                                   |
| Elmwood<br>Finch   | 338<br>116 | ∠.∪          | 0.0           | 0.00         | 0.2           | C        | 3        | Sandy/loamy over silt/clay Outwash and Stream Terraces             | frigid<br>frigid | loamy over clayey               | no       | comented (ortatein)               |
| FINCH              | 110        |              |               |              |               | U        | 3        | Outwash and Stream Terraces                                        | ırıgıa           | sandy                           | yes      | cemented (ortstein)               |

| Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   Figure   F | Soil Series | legend | Ksat low - B | Ksat high - B | Ksat low - C | Ksat high - C | Hyd. | Group    | Land Form                             | Temp.  | Soil Textures | Spodosol | Other                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|--------------|---------------|--------------|---------------|------|----------|---------------------------------------|--------|---------------|----------|------------------------------|
| Fysiolog   268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0011 001100 | •      |              | · ·           |              | •             | •    | Cicap    | Luna i omi                            | Tomp.  | Con rextures  |          | Cilion                       |
| Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Climber   Clim | E l         |        |              |               |              |               | •    |          | Florid Divis (Dettern Learn)          | 6.11.1 | . 116         |          |                              |
| Gebre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , ,         |        |              |               |              |               |      |          | \ ,                                   |        | ,             |          |                              |
| Clovered   11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |              |               |              |               |      |          |                                       |        | ,             |          |                              |
| Glover   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |              |               |              |               | _    | 4        | ·                                     | ,      | ,             | ,        |                              |
| Greenwood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |        |              |               |              |               |      | 1        |                                       |        |               |          |                              |
| Creventon Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.   Co.    |             |        |              |               |              |               |      |          |                                       | ,      |               |          | less than 20 in. deep        |
| Grovelon   27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        | 0.0          | 2.0           | 0.00         | 2.0           |      |          |                                       |        |               |          | doop organic                 |
| Hadley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |        | 0.6          | 2.0           | 0.60         | 6.0           |      |          | ŭ                                     |        |               |          |                              |
| Hardland   108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |        |              |               |              |               |      |          |                                       |        |               | ,        |                              |
| Hartland   31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |              |               |              |               |      |          | , ,                                   |        | ,             |          |                              |
| Henniter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |        |              |               |              |               |      |          | \ ,                                   |        |               |          |                              |
| Hemmon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |        |              |               |              |               |      |          | ů i                                   |        |               |          | _ ,                          |
| Hernorn   55   2.0   20.0   6.00   20.0   A   1   Sandy-ITII   frigid   sandy-skeletal   yes   loamy cap   Hernody   12   6.0   20.0   20.00   100.0   A   1   Outwash and Stream Terraces   mesic   sandy-skeletal   yes   loamy cap   Hickbook   130   0.6   2.0   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0.6   0 |             |        |              |               |              |               | -    |          | _                                     |        |               |          |                              |
| Hitchcook   12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |        |              |               |              |               | _    |          |                                       |        | ,             |          | ,                            |
| Hickbook   130   0.6   2.0   0.06   0.6   8   3   Terraces and glacial lake plains   nest   stifty   no   stift nom to sitt not   hospace   140   hospace    |             |        |              |               |              |               |      | 1        | ,                                     | ,      | ,             | ,        | loanly cap                   |
| Hopback   91   2.0   6.0   2.00   6.0   C   4   Loose III, bedrock   frigid   loamy   yes   less than 20 in. deep   Hoosic   510   2.0   20.0   20.00   100.0   A   1   Loose III, bedrock   mesic   loamy   no   less than 20 in. deep   Hoosic   510   2.0   20.0   20.00   100.0   A   1   Loose III, bedrock   mesic   loamy   no   less than 20 in. deep   Howland   566   0.6   0.6   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0. |             |        |              |               |              |               |      | 3        |                                       |        |               |          | silt loam to silt in C       |
| Holist   B6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        |              |               |              |               |      |          |                                       |        | ,             |          | _                            |
| Houghtorwille   795   0.6   6.0   0.60   6.0   0.60   6.0   0.8   2.0   0.06   0.2   C. 3   Firm, platy, silty tills, ochsist 8 phyllite   frigid   loarny   yes   cobbyfine aardy; loany   Howland   666   0.6   2.0   0.06   0.2   C. 3   Firm, platy, silty tills, ochsist 8 phyllite   frigid   loarny   yes   cobbyfine aardy; loany   Howland   666   0.6   2.0   0.06   0.2   C. 3   Firm, platy, silty tills, ochsist 8 phyllite   frigid   loarny   yes   cobbyfine aardy; loany   frigid   frigid   loarny   yes   silt loam, platy in Cd   deep organic   frigid   f |             |        |              |               |              |               |      |          | ·                                     |        | ,             | ,        |                              |
| Houghnov    795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |        |              |               |              |               |      | 1        |                                       |        | ,             |          |                              |
| Howland   566   0.6   2.0   0.06   0.2   C   3   Firm, plays, sity sill, schist & phylite   figid   learny   yes   sill comp, play in Cd   fisher               |        |              |               |              |               |      | 2        |                                       |        |               |          |                              |
| Inspection   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1987   1 |             |        |              |               |              |               |      |          |                                       |        |               | ,        |                              |
| Karsarge   359   0.6   2.0   0.60   2.0   B   4   Friable III, slfly, schist & phyllite   mesic   loamy   no   less than 20 in. deep   Kinsman   614   6.0   2.0   0.60   2.0   0.60   0.2   C   3   Firm, platy, slfly III, schist & phyllite   frijid   sandy   yes   less than 20 in. deep   Lanesboro   228   0.6   2.0   0.60   0.20   C   5   Loose III, loamy textures   mesic   loamy   no   channery slfl loam in Cd   Limer   C   Loose III, loamy textures   mesic   loamy   no   channery slfl loam in Cd   Limer   C   Loose III, loamy textures   mesic   loamy   no   Loose III, loamy               |        | 0.0          | 2.0           | 0.00         | 0.2           |      |          |                                       | _      | ,             | _        |                              |
| Kinsman   614   6.0   20.0   6.00   20.0   C   5   Culwash and Stream Terraces   frigid   sandy   yes   channery sitt Jamesboro   228   0.6   2.0   0.66   0.20   0.06   0.20   C   5   Cuose till, loarny textures   mesic   loarny   no   channery sitt Jamesboro   C   Leicester   514   0.6   6.0   0.60   20.0   C   5   Cuose till, loarny textures   mesic   loarny   no   channery sitt Jamesboro   C   C   5   Flood Plain (Bottom Land)   mesic   loarny   no   channery sitt Jamesboro   C   C   5   Flood Plain (Bottom Land)   mesic   sitty   no   channery sitt Jamesboro   C   C   C   5   Flood Plain (Bottom Land)   mesic   sitty   no   certain   C   C   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |        | 0.6          | 2.0           | 0.60         | 2.0           |      |          |                                       |        |               |          |                              |
| Leinesboro   228   0.6   2.0   0.06   0.2   C   3   Firm, platy, sitly till, schiel & phyllite   Infigid   loamy   no   channery sitt loam in Cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |        |              |               |              |               |      |          |                                       |        | ,             |          | less than 20 in. deep        |
| Leinester   514   0.6   6.0   0.60   20.0   C   5   Loose till, learny textures   mesic   loarny   no   loarny               |        |              |               |              |               | _    |          |                                       | ,      | ,             | ,        | channery silt loam in Cd     |
| Lime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |        |              |               |              |               |      |          |                                       |        | ,             |          | Chairlery silt loann in Cu   |
| Limerick   109   0.6   2.0   0.60   2.0   C   5   Flood Plain (Bottom Land)   mesic   silty   no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |        |              |               |              |               | _    |          |                                       |        |               |          |                              |
| Lombard   259   0.6   6.0   2.00   20.0   C/D   2   Weathered bedrock, phyllite   frigid   loamy   no   very channery   Lovewell   307   0.6   2.0   6.0   2.00   6.0   A/D   4   Loose till, bedrock   frigid   loamy   yes   less than 20   lo. deep   Lyma   92   2.0   6.0   2.00   6.0   A/D   4   Loose till, bedrock   frigid   loamy   yes   less than 20   lo. deep   Lyme   246   0.6   6.0   0.60   6.0   0.60   6.0   C   5   Loose till, sandy textures   frigid   loamy   no   loamy   |             |        |              |               |              |               | _    |          |                                       |        | ,             |          |                              |
| Lowevell   307   0.6   2.0   0.60   2.0   B   3   Flood Plain (Bottom Land)   frigid   silty   no   very fine sandy loam   Lyman   92   2.0   6.0   2.00   6.0   A/D   4   Loose till, bedrock   frigid   loamy   yes   less than 20 in. deep   Lyme   246   0.6   6.0   0.60   6.0   0.60   6.0   C   5   Loose till, bedrock   frigid   loamy   yes   less than 20 in. deep   Lyme   246   0.6   6.0   0.60   6.0   0.0   0.0   B   3   Outwash and Stream Terraces   frigid   loamy-skeletal   yes   strata sand/gravel in C   Macomber   252   0.6   2.0   0.60   2.0   0.60   2.0   C   4   Friable till, silty, schist & phylite   frigid   loamy-skeletal   yes   20 to 40 in. deep   Madawaska   28   0.6   2.0   6.00   20.0   B   3   Outwash and Stream Terraces   frigid   loamy over sandy   yes   sandy or sandy-skeletal   Marlow   76   0.6   2.0   0.06   0.6   0.0   20.0   B   3   Outwash and Stream Terraces   frigid   loamy over sandy   yes   sandy or sandy-skeletal   Marlow   76   0.6   2.0   0.06   0.6   0.6   0.0   20.0   A   1   Outwash and Stream Terraces   frigid   loamy   yes   sandy   sandy-skeletal   Mashpee   315   0.0   20.0   6.00   20.0   A   1   Outwash and Stream Terraces   frigid   sandy-skeletal   yes   sandy   sandy-skeletal   yes   sandy   yes   sandy   sandy-skeletal   yes   sandy   y |             |        |              |               |              |               | ,    |          |                                       |        |               |          | very channery                |
| Lyman   92   2.0   6.0   2.00   6.0   AD   4   Loose till, bedrock   frigid   loamy   yes   less than 20 in. deep   Lyme   246   0.6   6.0   0.60   6.0   C   5   Loose till, sandy textures   frigid   loamy   no   no   management   no   manageme |             |        |              |               |              |               |      |          |                                       |        |               |          |                              |
| Lyme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |        |              |               |              |               |      |          | \ ,                                   |        | ,             |          |                              |
| Machias         520         2.0         6.0         6.00         20.0         B         3         Outwash and Stream Terraces         frigid frigid loamy over sandy ves strata sand/gravel in C           Macomber         252         0.6         2.0         0.60         2.0         C         4         Friable till, silty, schist & phyllite         frigid loamy over sandy yes sandy or sandy-skeletal adawaska, super 48         0.6         2.0         6.00         20.0         B         3         Outwash and Stream Terraces         frigid loamy over sandy yes sandy or sandy-skeletal adawaska, super 48         0.6         2.0         6.00         20.0         B         3         Outwash and Stream Terraces frigid loamy over sandy yes sandy or sandy-skeletal adawaska, super 48         0.6         2.0         0.06         0.6         2.0         0.06         0.6         2.0         0.06         0.0         20.0         B         3         Outwash and Stream Terraces         frigid loamy over sandy yes sandy or sandy-skeletal adawaska, super 3         6.0         20.0         6.00         20.0         A         1         Outwash and Stream Terraces frigid sandy-skeletal yes slate, loamy cape slate, loamy cape slate, loamy cape slate, loamy cape slate, loamy cape slate, loamy cape slate, loamy cape slate, loamy cape slate, loamy cape slate, loamy cape slate, loamy cape slate, loamy cape slate, loamy cape slate, loamy cape slate, loamy cape slate, loamy cape slate, loamy cape slate, loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |              |               |              |               |      |          | · · · · · · · · · · · · · · · · · · · |        | ,             | ,        | icas trair zo iri. deep      |
| Macomber   252   0.6   2.0   0.60   2.0   C   4   Friable till, silty, schist & phyllite   frigid   loamy-skeletal   yes   20 to 40 in. deep   Madawaska   28   0.6   2.0   6.00   20.0   B   3   Outwash and Stream Terraces   frigid   loamy over sandy   yes   sandy or sandy-skeletal   Marlow   76   0.6   2.0   6.00   20.0   B   3   Outwash and Stream Terraces   frigid   loamy over sandy   yes   sandy or sandy-skeletal   Marlow   76   0.6   2.0   0.06   0.6   C   3   Firm, platy, loamy till   frigid   loamy over sandy   yes   sandy or sandy-skeletal   Marlow   76   0.6   2.0   0.06   0.6   C   3   Firm, platy, loamy till   frigid   loamy   yes   fine sandy loam in Cd   Masardis   23   6.0   20.0   6.00   20.0   B   5   Outwash and Stream Terraces   frigid   sandy-skeletal   yes   salate, loamy cap   salate, loamy ca |             |        |              |               |              |               |      |          |                                       |        | ,             |          | strata sand/gravel in C      |
| Madawaska   28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |        |              |               |              |               |      |          |                                       |        |               | ,        |                              |
| Adamaska,   aquin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |        |              |               |              |               |      |          |                                       |        | ,             | _        |                              |
| Marlow         76         0.6         2.0         0.06         0.6         C         3         Firm, platy, loamy till         frigid sandy-skeletal         loamy         yes         fine sandy loam in Cd           Masardis         23         6.0         20.0         6.00         20.0         A         1         Outwash and Stream Terraces         ffigid sandy-skeletal         yes         slate, loamy cap           Mathunck         797         20.0         100.0         D         6         Tidal Flat         mesic         sandy         no         organic over sand           Maybid         134         0.0         0.2         0.00         0.2         D         6         Silt and Clay Deposits         mesic         fine         no         organic over sand           Medowsedge         894         mesic         fine         no         deep organic         organic Materials - Freshwater         frigid         peat         no         deep organic           Melorse         37         2.0         6.0         0.00         0.2         C         3         Sandy/loamy over sit/clay         frigid         loamy over clayey         no         sitly clay loam in C           Mericrose         37         2.0         6.0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | _      |              |               |              |               |      |          |                                       | ,      | , ,           | ,        | , ,                          |
| Masardis         23         6.0         20.0         6.00         20.0         A         1         Outwash and Stream Terraces         frigid         sandy-skeletal         yes         slate, loamy cap           Mashpee         315         6.0         20.0         6.00         20.0         B         5         Outwash and Stream Terraces         mesic         sandy         yes           Matunuck         797         0.0         0.0         10.0         D         6         Tidal Flat         mesic         sandy         no         organic over sand           Maybid         134         0.0         0.2         0.00         0.2         D         6         Silt and Clay Deposits         mesic         sandy         no         organic over sand           Meadowsedge         894         894         0.6         0.6         2.0         0.60         2.0         D         6         Organic Materials - Freshwater         frigid         peat         no         deep organic           Meladowsedge         894         0.6         0.6         2.0         D         6         Flood Plain (Bottom Land)         frigid         peat         no         organic over salt           Melomata         10         2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |        |              |               |              |               |      |          |                                       |        | , ,           | ,        |                              |
| Mashpee         315         6.0         20.0         6.00         20.0         B         5         Outwash and Stream Terraces         mesic         sandy         yes           Matunuck         797         0         20.00         100.0         D         6         Tidal Flat         mesic         sandy         no         organic over sand           Maybid         134         0.0         0.2         0.00         0.2         D         6         Silt and Clay Deposits         mesic         no         silt over clay           Meadowsedge         894         0         0         0.2         D         6         Organic Materials - Freshwater         frigid         peat         no         deep organic           Medomak         406         0.6         2.0         0.60         2.0         D         6         Flood Plain (Bottom Land)         frigid         silty         no         organic over silt           Melrose         37         2.0         6.0         0.00         0.2         C         3         Sandy/loamy over silt/clay         frigid         loamy over clayey         no         silty clay loam in C           Metrose         37         2.0         6.0         0.0         0.0         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |        |              |               |              |               | _    |          |                                       |        | ,             | ,        | ,                            |
| Matunuck         797         20.00         100.0         D         6         Tidal Flat         mesic         sandy         no         organic over sand           Maybid         134         0.0         0.2         0.00         0.2         D         6         Silt and Clay Deposits         mesic         fine         no         silt over clay           Meadowsedge         894         Board         D         6         Organic Materials - Freshwater         frigid         peat         no         deep organic           Medomak         406         0.6         2.0         0.60         2.0         D         6         Flood Plain (Bottom Land)         frigid         silty or clayey         no         organic over silt           Melrose         37         2.0         6.0         0.00         0.2         C         3         Sandy/loamy over silt/clay         frigid         loamy over clayey         no         silty clay loam in C           Merrimac         10         2.0         20.0         6.00         20.0         A         1         Outwash and Stream Terraces         mesic         gravelly sand         no         loamy cap           Metacomet         458         0.6         2.0         0.06         0.6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td>,</td> <td>siate, rearry sup</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |        |              |               |              |               |      | 5        |                                       |        |               | ,        | siate, rearry sup            |
| Maybid         134         0.0         0.2         0.00         0.2         D         6         Silt and Clay Deposits         mesic         fine         no         silt over clay           Meadowsedge         894         Beadowsedge         B94         Beadowsedge         Beadowself                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |        | 5:5          | 20.0          |              |               |      | <u> </u> |                                       |        | ,             | ,        | organic over sand            |
| Meadowsedge         894         D         6         Organic Materials - Freshwater         frigid         peat         no         deep organic           Medomak         406         0.6         2.0         0.60         2.0         D         6         Flood Plain (Bottom Land)         frigid         silty         no         organic over silt           Melrose         37         2.0         6.0         0.00         0.2         C         3         Sandy/loamy over silt/clay         frigid         loamy over clayey         no         silty clay loam in C           Merrimac         10         2.0         20.0         6.00         20.0         A         1         Outwash and Stream Terraces         mesic         gravelly sand         no         loamy spand in C           Metalak         404         6.0         100.0         6.00         0.6         C         3         Firm, platy, sandy till         frigid         loamy over sandy         no         sandy or sandy-skeletal           Millisite         251         0.6         6.0         0.60         6.0         C         4         Loose till, bedrock         frigid         loamy         no         20 to 40 in. deep           Monadnock         142         0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |        | 0.0          | 0.2           |              |               |      |          |                                       |        |               |          |                              |
| Medomak         406         0.6         2.0         0.60         2.0         D         6         Flood Plain (Bottom Land)         frigid frigid         silty         no         organic over silt           Melrose         37         2.0         6.0         0.00         0.2         C         3         Sandy/loamy over silt/clay         frigid         loamy over clayey         no         silty clay loam in C           Merrimac         10         2.0         20.0         6.00         20.0         A         1         Outwash and Stream Terraces         mesic         gravelly sand         no         loamy sand in Cd           Metacomet         458         0.6         2.0         0.06         0.6         C         3         Firm, platy, sandy till         frigid         loamy         no         loamy and in Cd           Metallak         404         6.0         100.0         6.00         100.0         B         3         Flood Plain (Bottom Land)         frigid         loamy over sandy         no         sandy or sandy-skeletal           Millisi         39         C         3         Firm, platy, sandy till         frigid         loamy         yes         loamy sand in Cd           Millisite         251         0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        | 5.5          |               | 0.00         | V.=           |      |          |                                       |        |               |          | ,                            |
| Melrose         37         2.0         6.0         0.00         0.2         C         3         Sandy/loamy over silt/clay         frigid         loamy over clayey         no         silty clay loam in C           Merrimac         10         2.0         20.0         6.00         20.0         A         1         Outwash and Stream Terraces         mesic         gravelly sand         no         loamy cap           Metacomet         458         0.6         2.0         0.06         0.6         C         3         Firm, platy, sandy till         frigid         loamy         no         loamy sand in Cd           Metallak         404         6.0         100.0         6.00         100.0         B         3         Flood Plain (Bottom Land)         frigid         loamy over sandy         no         sandy sandy-skeletal           Millisi         39         C         3         Firm, platy, sandy till         frigid         loamy         yes         loamy sand in Cd           Millsite         251         0.6         6.0         0.60         6.0         C         4         Loose till, bedrock         frigid         loamy         no         20 to 40 in. deep           Monadrock         142         0.6         2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |        | 0.6          | 2.0           | 0.60         | 2.0           |      |          |                                       |        |               |          |                              |
| Merrimac         10         2.0         20.0         6.00         20.0         A         1         Outwash and Stream Terraces         mesic         gravelly sand         no         loamy cap           Metacomet         458         0.6         2.0         0.06         0.6         C         3         Firm, platy, sandy till         frigid         loamy over sandy         no         sandy or sandy-skeletal           Metallak         404         6.0         100.0         6.00         100.0         B         3         Flood Plain (Bottom Land)         frigid         loamy over sandy         no         sandy or sandy-skeletal           Millisi         39         C         3         Firm, platy, sandy till         frigid         loamy         yes         loamy sand in Cd           Millsite         251         0.6         6.0         0.60         6.0         C         4         Loose till, bedrock         frigid         loamy         no         20 to 40 in. deep           Monadnock         142         0.6         2.0         2.00         6.0         B         2         Loose till, sandy textures         frigid         bamy over sandy, sandy-skeletal         gravelly loamy sand in Cd           Monadnock         142         0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |        |              |               |              |               |      |          | \ ,                                   | _      |               |          | Ŭ                            |
| Metacomet         458         0.6         2.0         0.06         0.6         C         3         Firm, platy, sandy till         frigid         loamy         no         loamy sand in Cd           Metallak         404         6.0         100.0         6.00         100.0         B         3         Flood Plain (Bottom Land)         frigid         loamy over sandy         no         sandy or sandy-skeletal           Millisi         39         C         3         Firm, platy, sandy till         frigid         loamy         yes         loamy sand in Cd           Millsite         251         0.6         6.0         0.60         6.0         C         4         Loose till, bedrock         frigid         loamy         no         20 to 40 in. deep           Monadnock         142         0.6         2.0         2.00         6.0         B         2         Loose till, sandy textures         frigid         bamy over sandy, sandy-skeletal         yes         gravelly loamy sand in Cd           Monarda         569         0.2         2.0         0.02         0.2         D         5         Firm, platy, silty till, schist & phyllite         frigid         loamy         no         less than 20 in. deep           Monson         133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |        |              |               |              |               |      | 1 1      |                                       |        |               |          |                              |
| Metallak         404         6.0         100.0         6.00         100.0         B         3         Flood Plain (Bottom Land)         frigid frigid loamy over sandy         no         sandy or sandy-skeletal loamy sand in Cd           Millisite         251         0.6         6.0         0.60         6.0         C         4         Loose till, bedrock frigid loamy         loamy over sandy         no         20 to 40 in. deep           Monadnock         142         0.6         2.0         2.00         6.0         B         2         Loose till, sandy textures frigid loamy over sandy, sandy-skeletal yes gravelly loamy sand in Cd           Monarda         569         0.2         2.0         0.02         0.2         D         5         Firm, platy, silty till, schist & phyllite frigid loamy         loamy         no         less than 20 in. deep           Montauk         44         0.6         6.0         0.06         C         3         Firm, platy, sandy till         frigid loamy         loamy         no         less than 20 in. deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |        |              |               |              |               |      | 3        |                                       |        |               |          | , ,                          |
| Millis         39         C         3         Firm, platy, sandy till         frigid         loamy         yes         loamy sand in Cd           Millsite         251         0.6         6.0         0.60         6.0         C         4         Loose till, bedrock         frigid         loamy         no         20 to 40 in. deep           Monadnock         142         0.6         2.0         2.00         6.0         B         2         Loose till, sandy textures         frigid         pamy over sandy, sandy-skeleta         yes         gravelly loamy sand in Cd           Monson         569         0.2         2.0         0.02         0.2         D         5         Firm, platy, silty till, schist & phyllite         frigid         loamy         no           Monson         133         0.6         2.0         0.60         2.0         D         4         Friable till, silty, schist & phyllite         frigid         loamy         yes         less than 20 in. deep           Montauk         44         0.6         6.0         0.06         0.6         C         3         Firm, platy, sandy till         mesic         loamy         no         loamy sand in Cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |        |              |               |              |               |      |          |                                       |        |               |          |                              |
| Millsite         251         0.6         6.0         0.60         6.0         C         4         Loose till, bedrock         frigid         loamy         no         20 to 40 in. deep           Monadnock         142         0.6         2.0         2.00         6.0         B         2         Loose till, sandy textures         frigid         pamy over sandy, sandy-skelet         yes         gravelly loamy sand in C           Monarda         569         0.2         2.0         0.02         0.2         D         5         Firm, platy, silty till, schist & phyllite         frigid         loamy         no           Monson         133         0.6         2.0         0.60         2.0         D         4         Friable till, silty, schist & phyllite         frigid         loamy         yes         less than 20 in. deep           Montauk         44         0.6         6.0         0.06         0.6         C         3         Firm, platy, sandy till         mesic         loamy         no         loamy sand in Cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |        | 2.0          | . 20.0        | 2.00         |               |      |          |                                       |        |               |          |                              |
| Monadnock         142         0.6         2.0         2.00         6.0         B         2         Loose till, sandy textures         frigid pamy over sandy, sandy-skeleta         yes         gravelly loamy sand in C           Monarda         569         0.2         2.0         0.02         0.2         D         5         Firm, platy, silty till, schist & phyllite         frigid frigid         loamy         no           Monson         133         0.6         2.0         0.60         2.0         D         4         Friable till, silty, schist & phyllite         frigid frigid         loamy         yes         less than 20 in. deep           Montauk         44         0.6         6.0         0.06         0.6         C         3         Firm, platy, sandy till         mesic         loamy         no         loamy sand in Cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |        | 0.6          | 6.0           | 0.60         | 6.0           |      |          |                                       | ,      |               | ,        | ,                            |
| Monarda         569         0.2         2.0         0.02         0.2         D         5         Firm, platy, silty till, schist & phyllite         frigid         loamy         no           Monson         133         0.6         2.0         0.60         2.0         D         4         Friable till, silty, schist & phyllite         frigid         loamy         yes         less than 20 in. deep           Montauk         44         0.6         6.0         0.06         0.6         C         3         Firm, platy, sandy till         mesic         loamy         no         loamy sand in Cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |              |               |              |               |      |          |                                       |        |               |          |                              |
| Monson         133         0.6         2.0         0.60         2.0         D         4         Friable till, silty, schist & phyllite         frigid         loamy         yes         less than 20 in. deep           Montauk         44         0.6         6.0         0.06         0.6         C         3         Firm, platy, sandy till         mesic         loamy         no         loamy sand in Cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |        |              |               |              |               |      |          |                                       |        | , ,           | ,        | g. z. onj rodinj odila ili O |
| Montauk 44 0.6 6.0 0.06 0.6 C 3 Firm, platy, sandy till mesic loamy no loamy sand in Cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |        |              |               |              |               |      |          |                                       |        | ,             |          | less than 20 in, deep        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |        |              |               |              |               |      |          |                                       | ,      |               | ,        |                              |
| ■ IVIOUSIIAUNE I 414 I D.O. I ZU.O I D.O.O I ZU.O I D.O.O I C I D I LOOSE III SANOV ISKINO I SANOV I NO I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Moosilauke  | 414    | 6.0          | 20.0          | 6.00         | 20.0          | C    | 5        | Loose till, sandy textures            | frigid | sandy         | no       | iouiii, ouilu iii ou         |

| Soil Series | legend | Ksat low - B | Ksat high - B | Ksat low - C | Ksat high - C | Hyd. | Group | Land Form                                  | Temp.  | Soil Textures                   | Spodosol | Other                               |
|-------------|--------|--------------|---------------|--------------|---------------|------|-------|--------------------------------------------|--------|---------------------------------|----------|-------------------------------------|
|             | number | in/hr        | in/hr         | in/hr        | in/hr         | Grp. |       |                                            |        |                                 | ?        |                                     |
| Mundal      | 610    | 0.6          | 2.0           | 0.06         | 0.6           | C    | 3     | Firm, platy, loamy till                    | frigid | loamy                           | yes      | gravelly sandy loam in Cd           |
| Natchaug    | 496    | 0.0          | 2.0           | 0.20         | 2.0           | D    | 6     | Organic Materials - Freshwater             | mesic  | loamy                           | no       | organic over loam                   |
| Naumburg    | 214    | 6.0          | 20.0          | 6.00         | 20.0          | C    | 5     | Outwash and Stream Terraces                | frigid | sandy                           | yes      | organic over loan                   |
| Newfields   | 444    | 0.6          | 2.0           | 0.60         | 2.0           | В    | 3     | Loose till, sandy textures                 | mesic  | loamy over sandy                | no       | sandy or sandy-skeletal             |
| Nicholville | 632    | 0.6          | 2.0           | 0.60         | 2.0           | C    | 3     | Terraces and glacial lake plains           | frigid | silty                           | yes      | very fine sandy loam                |
| Ninigret    | 513    | 0.6          | 6.0           | 6.00         | 20.0          | В    | 3     | Outwash and Stream Terraces                | mesic  | loamy over sandy                | no       | sandy or sandy-skeletal             |
| Occum       | 1      | 0.6          | 2.0           | 6.00         | 20.0          | В    | 2     | Flood Plain (Bottom Land)                  | mesic  | loamy                           | no       | loamy over loamy sand               |
| Ondawa      | 101    | 0.6          | 6.0           | 6.00         | 20.0          | В    | 2     | Flood Plain (Bottom Land)                  | frigid | loamy                           | no       | loamy over loamy sand               |
| Ondawa      | 201    | 0.6          | 6.0           | 6.00         | 20.0          | В    | 2     | Flood Plain (Bottom Land)                  | frigid | loamy                           | no       | occ flood, loamy over I. sand       |
| Ossipee     | 495    |              |               | 0.20         | 2.0           | D    | 6     | Organic Materials - Freshwater             | frigid | loamy                           | no       | organic over loam                   |
| Pawcatuck   | 497    |              |               | 20.00        | 100.0         | D    | 6     | Tidal Flat                                 | mesic  | sandy or sandy-skeletal         | no       | organic over sand                   |
| Paxton      | 66     | 0.6          | 2.0           | 0.00         | 0.2           | C    | 3     | Firm, platy, loamy till                    | mesic  | loamy                           | no       |                                     |
| Peacham     | 549    | 0.6          | 2.0           | 0.00         | 0.2           | D    | 6     | Firm, platy, silty till, schist & phylitte | frigid | loamy                           | no       | organic over loam                   |
| Pemi        | 633    | 0.6          | 2.0           | 0.06         | 0.6           | С    | 5     | Terraces and glacial lake plains           | frigid | siltv                           | no       | 3                                   |
| Pennichuck  | 460    | 0.6          | 2.0           | 0.60         | 2.0           | В    | 4     | Friable till, silty, schist & phyllite     | mesic  | loamy-skeletal                  | no       | 20 to 40 in. deep                   |
| Peru        | 78     | 0.6          | 2.0           | 0.06         | 0.6           | С    | 3     | Firm, platy, loamy till                    | frigid | loamy                           | yes      | 1                                   |
| Pillsbury   | 646    | 0.6          | 2.0           | 0.06         | 0.2           | C    | 5     | Firm, platy, loamy till                    | frigid | silty                           | no       |                                     |
| Pipestone   | 314    |              |               |              |               | В    | 5     | Outwash and Stream Terraces                | mesic  | sandy                           | yes      |                                     |
| Pittstown   | 334    | 0.6          | 2.0           | 0.06         | 0.2           | С    | 3     | Firm, platy, silty till, schist & phyllite | mesic  | loamy                           | no       | channery silt loam in Cd            |
| Plaisted    | 563    | 0.6          | 2.0           | 0.06         | 0.6           | C    | 3     | Firm, platy, silty till, schist & phyllite | frigid | loamy                           | yes      | channery silt loam in Cd            |
| Podunk      | 104    | 0.6          | 6.0           | 6.00         | 20.0          | В    | 3     | Flood Plain (Bottom Land)                  | frigid | loamy                           | no       | loamy to coarse sand in C           |
| Pondicherry | 992    |              |               | 6.00         | 20.0          | D    | 6     | Organic Materials - Freshwater             | frigid | sandy or sandy-skeletal         | no       | organic over sand                   |
| Poocham     | 230    | 0.6          | 2.0           | 0.20         | 2.0           | В    | 3     | Terraces and glacial lake plains           | mesic  | silty                           | no       | silt loam in C                      |
| Pootatuck   | 4      | 0.6          | 6.0           | 6.00         | 20.0          | В    | 3     | Flood Plain (Bottom Land)                  | mesic  | loamy                           | no       | single grain in C                   |
| Quonset     | 310    | 2.0          | 20.0          | 20.00        | 100.0         | Ā    | 1     | Outwash and Stream Terraces                | mesic  | sandy-skeletal                  | no       | shale                               |
| Rawsonville | 98     | 0.6          | 6.0           | 0.60         | 6.0           | С    | 4     | Loose till, bedrock                        | frigid | loamy                           | yes      | 20 to 40 in. deep                   |
| Raynham     | 533    | 0.2          | 2.0           | 0.06         | 0.2           | C    | 5     | Terraces and glacial lake plains           | mesic  | silty                           | no       | 1                                   |
| Raypol      | 540    | 0.6          | 2.0           | 6.00         | 100.0         | D    | 5     | Outwash and Stream Terraces                | mesic  | co. loamy over sandy (skeletal) | no       |                                     |
| Redstone    | 665    | 2.0          | 6.0           | 6.00         | 20.0          | Α    | 1     | Weathered Bedrock Till                     | frigid | fragmental                      | yes      | loamy cap                           |
| Ricker      | 674    | 2.0          | 6.0           | 2.00         | 6.0           | Α    | 4     | rganic over bedrock (up to 4" of minera    | cryic  | fibric to hemic                 | no       | well drained, less than 20 in. deep |
| Ridgebury   | 656    | 0.6          | 6.0           | 0.00         | 0.2           | С    | 5     | Firm, platy, loamy till                    | mesic  | loamy                           | no       |                                     |
| Rippowam    | 5      | 0.6          | 6.0           | 6.00         | 20.0          | С    | 5     | Flood Plain (Bottom Land)                  | mesic  | loamy                           | no       |                                     |
| Roundabout  | 333    | 0.2          | 2.0           | 0.06         | 0.6           | С    | 5     | Terraces and glacial lake plains           | frigid | silty                           | no       | silt loam in the C                  |
| Rumney      | 105    | 0.6          | 6.0           | 6.00         | 20.0          | С    | 5     | Flood Plain (Bottom Land)                  | frigid | loamy                           | no       |                                     |
| Saco        | 6      | 0.6          | 2.0           | 6.00         | 20.0          | D    | 6     | Flood Plain (Bottom Land)                  | mesic  | silty                           | no       | strata                              |
| Saddleback  | 673    | 0.6          | 2.0           | 0.60         | 2.0           | C/D  | 4     | Loose till, bedrock                        | cryic  | loamy                           | yes      | less than 20 in. deep               |
| Salmon      | 630    | 0.6          | 2.0           | 0.60         | 2.0           | В    | 2     | Terraces and glacial lake plains           | frigid | silty                           | yes      | very fine sandy loam                |
| Saugatuck   | 16     | 0.06         | 0.2           | 6.00         | 20.0          | С    | 5     | Outwash and Stream Terraces                | mesic  | sandy                           | yes      | ortstein                            |
| Scantic     | 233    | 0.0          | 0.2           | 0.00         | 0.2           | D    | 5     | Silt and Clay Deposits                     | frigid | fine                            | no       |                                     |
| Scarboro    | 115    | 6.0          | 20.0          | 6.00         | 20.0          | D    | 6     | Outwash and Stream Terraces                | mesic  | sandy                           | no       | organic over sand, non stony        |
| Scio        | 531    | 0.6          | 2.0           | 0.60         | 2.0           | В    | 3     | Terraces and glacial lake plains           | mesic  | silty                           | no       | gravelly sand in 2C                 |
| Scitico     | 33     | 0.0          | 0.2           | 0.00         | 0.2           | С    | 5     | Silt and Clay Deposits                     | mesic  | fine                            | no       | j                                   |
| Scituate    | 448    | 0.6          | 2.0           | 0.06         | 0.2           | С    | 3     | Firm, platy, sandy till                    | mesic  | loamy                           | no       | loamy sand in Cd                    |
| Searsport   | 15     | 6.0          | 20.0          | 6.00         | 20.0          | D    | 6     | Outwash and Stream Terraces                | frigid | sandy                           | no       | organic over sand                   |
| Shaker      | 439    | 2.0          | 6.0           | 0.00         | 0.2           | С    | 5     | Sandy/loamy over silt/clay                 | mesic  | co. loamy over clayey           | no       | -                                   |
| Shapleigh   | 136    |              |               |              |               | C/D  | 4     | Sandy Till                                 | mesic  | sandy                           | yes      | less than 20 in. deep               |
| Sheepscot   | 14     | 6.0          | 20.0          | 6.00         | 20.0          | В    | 3     | Outwash and Stream Terraces                | frigid | sandy-skeletal                  | yes      | gravelly coarse sand                |
| Sisk        | 667    | 0.6          | 2.0           | 0.00         | 0.6           | С    | 3     | Firm, platy, loamy till                    | cryic  | loamy                           | yes      | sandy loam in Cd                    |
| Skerry      | 558    | 0.6          | 2.0           | 0.06         | 0.6           | С    | 3     | Firm, platy, sandy till                    | frigid | loamy                           | yes      | loamy sand in Cd                    |
| Squamscott  | 538    | 6.0          | 20.0          | 0.06         | 0.6           | С    | 5     | Sandy/loamy over silt/clay                 | mesic  | sandy over loamy                | yes      |                                     |
| Stetson     | 523    | 0.6          | 6.0           | 6.00         | 20.0          | В    | 2     | Outwash and Stream Terraces                | frigid | sandy-skeletal                  | yes      | loamy over gravelly                 |
| Stissing    | 340    | 0.6          | 2.0           | 0.06         | 0.2           | С    | 5     | Firm, platy, silty till, schist & phyllite | mesic  | loamy                           | no       |                                     |
| Success     | 154    | 2.0          | 6.0           | 6.00         | 20.0          | Α    | 1     | Sandy Till                                 | frigid | sandy-skeletal                  | yes      | cemented                            |
| Sudbury     | 118    | 2.0          | 6.0           | 2.00         | 20.0          | В    | 3     | Outwash and Stream Terraces                | mesic  | sandy                           | no       | loam over gravelly sand             |

| Soil Series | legend | Ksat low - B | Ksat high - B | Ksat low - C | Ksat high - C | Hyd. | Group | Land Form                                  | Temp.  | Soil Textures           | Spodosol | Other                    |
|-------------|--------|--------------|---------------|--------------|---------------|------|-------|--------------------------------------------|--------|-------------------------|----------|--------------------------|
|             | number | in/hr        | in/hr         | in/hr        | in/hr         | Grp. |       |                                            | -      |                         | ?        |                          |
| Suffield    | 536    | 0.6          | 2.0           | 0.00         | 0.2           | С    | 3     | Sandy/loamy over silt/clay                 | mesic  | silty over clayey       | no       | deep to clay C           |
| Sunapee     | 168    | 0.6          | 2.0           | 0.60         | 6.0           | В    | 3     | Loose till, loamy textures                 | frigid | loamy                   | yes      |                          |
| Sunapee var | 269    | 0.6          | 2.0           | 0.60         | 6.0           | В    | 3     | Loose till, loamy textures                 | frigid | loamy                   | yes      | frigid dystrudept        |
| Suncook     | 2      | 6.0          | 20.0          | 6.00         | 20.0          | Α    | 1     | Flood Plain (Bottomland)                   | mesic  | sandy                   | no       | occasionally flooded     |
| Suncook     | 402    | 6.0          | 20.0          | 6.00         | 20.0          | Α    | 1     | Flood Plain (Bottomland)                   | mesic  | sandy                   | no       | frequent flooding        |
| Sunday      | 102    | 6.0          | 20.0          | 6.00         | 20.0          | Α    | 1     | Flood Plain (Bottomland)                   | frigid | sandy                   | no       | occasionally flooded     |
| Sunday      | 202    | 6.0          | 20.0          | 6.00         | 20.0          | Α    | 1     | Flood Plain (Bottomland)                   | frigid | sandy                   | no       | frequently flooded       |
| Surplus     | 669    | 0.6          | 2.0           | 0.00         | 0.6           | С    | 3     | Firm, platy, loamy till                    | cryic  | loamy                   | yes      | mwd, sandy loam in Cd    |
| Sutton      | 68     | 0.6          | 6.0           | 0.60         | 6.0           | В    | 3     | Loose till, loamy textures                 | mesic  | loamy                   | no       |                          |
| Swanton     | 438    | 2.0          | 6.0           | 0.00         | 0.2           | С    | 5     | Sandy/loamy over silt/clay                 | frigid | co. loamy over clayey   | no       |                          |
| Telos       | 123    | 0.6          | 2.0           | 0.02         | 0.2           | С    | 3     | Firm, platy, silty till, schist & phyllite | frigid | loamy                   | yes      | channery silt loam in Cd |
| Thorndike   | 84     | 0.6          | 2.0           | 0.60         | 2.0           | C/D  | 4     | Friable till, silty, schist & phyllite     | frigid | loamy-skeletal          | yes      | less than 20 in. deep    |
| Timakwa     | 393    |              |               | 6.00         | 100.0         | D    | 6     | Organic Materials - Freshwater             | mesic  | sandy or sandy-skeletal | no       | organic over sand        |
| Tunbridge   | 99     | 0.6          | 6.0           | 0.60         | 6.0           | С    | 4     | Loose till, bedrock                        | frigid | loamy                   | yes      | 20 to 40 in. deep        |
| Unadilla    | 30     | 0.6          | 2.0           | 2.00         | 20.0          | В    | 2     | Terraces and glacial lake plains           | mesic  | silty                   | no       | silty over gravelly      |
| Vassalboro  | 150    |              |               |              |               | D    | 6     | Organic Materials - Freshwater             | frigid | peat                    | no       | deep organic             |
| Walpole     | 546    | 2.0          | 6.0           | 6.00         | 20.0          | С    | 5     | Outwash and Stream Terraces                | mesic  | sandy                   | no       |                          |
| Wareham     | 34     | 6.0          | 20.0          | 6.00         | 20.0          | С    | 5     | Outwash and Stream Terraces                | mesic  | sandy                   | no       |                          |
| Warwick     | 210    | 2.0          | 6.0           | 20.00        | 100.0         | Α    | 1     | Outwash and Stream Terraces                | mesic  | loamy-skeletal          | no       | loamy over slate gravel  |
| Waskish     | 195    |              |               |              |               | D    | 6     | Organic Materials - Freshwater             | frigid | peat                    | no       | deep organic             |
| Waumbeck    | 58     | 2.0          | 20.0          | 6.00         | 20.0          | В    | 3     | Loose till, sandy textures                 | frigid | sandy-skeletal          | yes      | very cobbly loamy sand   |
| Westbrook   | 597    |              |               | 0.00         | 2.0           | D    | 6     | Tidal Flat                                 | mesic  | loamy                   | no       | organic over loam        |
| Whitman     | 49     | 0.0          | 0.2           | 0.00         | 0.2           | D    | 6     | Firm, platy, loamy till                    | mesic  | loamy                   | no       | mucky loam               |
| Windsor     | 26     | 6.0          | 20.0          | 6.00         | 20.0          | Α    | 1     | Outwash and Stream Terraces                | mesic  | sandy                   | no       |                          |
| Winnecook   | 88     | 0.6          | 2.0           | 0.60         | 2.0           | С    | 4     | Friable till, silty, schist & phyllite     | frigid | loamy-skeletal          | yes      | 20 to 40 in. deep        |
| Winooski    | 9      | 0.6          | 6.0           | 0.60         | 6.0           | В    |       | Flood Plain (Bottom Land)                  | mesic  | silty over loamy        | no       |                          |
| Winooski    | 103    | 0.6          | 6.0           | 0.60         | 6.0           | В    | 3     | Flood Plain (Bottom Land)                  | mesic  | silty                   | no       | very fine sandy loam     |
| Wonsqueak   | 995    |              |               | 0.20         | 2.0           | D    | 6     | Organic Materials - Freshwater             | frigid | loamy                   | no       | organic over loam        |
| Woodbridge  | 29     | 0.6          | 2.0           | 0.00         | 0.6           | С    | 3     | Firm, platy, loamy till                    | mesic  | loamy                   | no       | sandy loam in Cd         |
| Woodstock   | 93     | 2.0          | 6.0           | 2.00         | 6.0           | C/D  | 4     | Loose till, bedrock                        | frigid | loamy                   | no       | less than 20 in. deep    |

no longer recognized organic materials

# TABLE C NHDES SOIL GROUPINGS

| Soil Series      | number    | NHDES      | Ksat low - B | Ksat high - B | Ksat low - C | Ksat high - C | Hyd. | Land Form                                           | Temp.  | Soil Textures                  | Spodosol | Other                            |
|------------------|-----------|------------|--------------|---------------|--------------|---------------|------|-----------------------------------------------------|--------|--------------------------------|----------|----------------------------------|
|                  |           | Soil Group | in/hr        | in/hr         | in/hr        | in/hr         | Grp. |                                                     |        |                                | ?        |                                  |
|                  |           |            |              |               |              |               |      |                                                     |        |                                |          |                                  |
| Adams            | 36        | 1          | 6.0          | 20.0          | 20.00        | 99.0          | Α    | Outwash and Stream Terraces                         | frigid | sandy                          | yes      |                                  |
| Boscawen         | 220       | 1          | 6.0          | 20.0          | 20.00        | 100.0         | Α    | Outwash and Stream Terraces                         | frigid | sandy-skeletal                 | no       | loamy cap                        |
| Caesar           | 526       | 1          | 20.0         | 100.0         | 20.00        | 100.0         | Α    | Outwash and Stream Terraces                         | mesic  | coarse sand                    | no       |                                  |
| Champlain        | 35        | 1          | 6.0          | 20.0          | 20.00        | 100.0         | Α    | Outwash and Stream Terraces                         | frigid | gravelly sand                  | no       |                                  |
| Colton           | 22        | 1          | 6.0          | 20.0          | 20.00        | 100.0         | Α    | Outwash and Stream Terraces                         | frigid | sandy-skeletal                 | yes      |                                  |
| Colton, gravelly | 21        | 1          | 6.0          | 20.0          | 20.00        | 100.0         | Α    | Outwash and Stream Terraces                         | frigid | sandy-skeletal                 | yes      | gravelly surface                 |
| Gloucester       | 11        | 1          | 6.0          | 20.0          | 6.00         | 20.0          | Α    | Sandy Till                                          | mesic  | sandy-skeletal                 | no       | loamy cap                        |
| Hermon           | 55        | 1          | 2.0          | 20.0          | 6.00         | 20.0          | Α    | Sandy Till                                          | frigid | sandy-skeletal                 | yes      | loamy cap                        |
| Hinckley         | 12        | 1          | 6.0          | 20.0          | 20.00        | 100.0         | Α    | Outwash and Stream Terraces                         | mesic  | sandy-skeletal                 | no       |                                  |
| Hoosic           | 510       | 1          | 2.0          | 20.0          | 20.00        | 100.0         | Α    | Outwash and Stream Terraces                         | mesic  | sandy-skeletal                 | no       | slate, loamy cap                 |
| Masardis         | 23        | 1          | 6.0          | 20.0          | 6.00         | 20.0          | Α    | Outwash and Stream Terraces                         | frigid | sandy-skeletal                 | yes      | slate, loamy cap                 |
| Merrimac         | 10        | 1          | 2.0          | 20.0          | 6.00         | 20.0          | Α    | Outwash and Stream Terraces                         | mesic  | gravelly sand                  | no       | loamy cap                        |
| Quonset          | 310       | 1          | 2.0          | 20.0          | 20.00        | 100.0         | Α    | Outwash and Stream Terraces                         | mesic  | sandy-skeletal                 | no       | shale                            |
| Redstone         | 665       | 1          | 2.0          | 6.0           | 6.00         | 20.0          | Α    | Weathered Bedrock Till                              | frigid | fragmental                     | yes      | loamy cap                        |
| Success          | 154       | 1          | 2.0          | 6.0           | 6.00         | 20.0          | Α    | Sandy Till                                          | frigid | sandy-skeletal                 | yes      | cemented                         |
| Suncook          | 2         | 1          | 6.0          | 20.0          | 6.00         | 20.0          | Α    | Flood Plain (Bottomland)                            | mesic  | sandy                          | no       | occasionally flooded             |
| Suncook          | 402       | 1          | 6.0          | 20.0          | 6.00         | 20.0          | Α    | Flood Plain (Bottomland)                            | mesic  | sandy                          | no       | frequent flooding                |
| Sunday           | 102       | 1          | 6.0          | 20.0          | 6.00         | 20.0          | Α    | Flood Plain (Bottomland)                            | frigid | sandy                          | no       | occasionally flooded             |
| Sunday           | 202       | 1          | 6.0          | 20.0          | 6.00         | 20.0          | Α    | Flood Plain (Bottomland)                            | frigid | sandy                          | no       | frequently flooded               |
| Warwick          | 210       | 1          | 2.0          | 6.0           | 20.00        | 100.0         | Α    | Outwash and Stream Terraces                         | mesic  | loamy-skeletal                 | no       | loamy over slate gravel          |
| Windsor          | 26        | 1          | 6.0          | 20.0          | 6.00         | 20.0          | Α    | Outwash and Stream Terraces                         | mesic  | sandy                          | no       | -                                |
|                  |           |            |              |               |              |               |      |                                                     |        |                                |          |                                  |
| Abenaki          | 501       | 2          | 0.6          | 2.0           | 6.00         | 99.0          | В    | Outwash and Stream Terraces                         | frigid | loamy over sandy-skeletal      | no       | loamy over gravelly              |
| Agawam           | 24        | 2          | 6.0          | 20.0          | 20.00        | 100.0         | В    | Outwash and Stream Terraces                         | mesic  | loamy over sandy               | no       | loamy over sand/gravel           |
| Allagash         | 127       | 2          | 0.6          | 2.0           | 6.00         | 20.0          | В    | Outwash and Stream Terraces                         | frigid | loamy over sandy               | yes      | loamy over sandy                 |
| Bangor           | 572       | 2          | 0.6          | 2.0           | 0.60         | 2.0           | В    | Friable till, silty, schist & phyllite              | frigid | loamy                          | yes      | silt loam                        |
| Berkshire        | 72        | 2          | 0.6          | 6.0           | 0.60         | 6.0           | В    | Loose till, loamy textures                          | frigid | loamy                          | yes      | fine sandy loam                  |
| Bice             | 226       | 2          | 0.6          | 6.0           | 0.60         | 6.0           | В    | Loose till, loamy textures                          | friaid | loamv                          | no       | sandy loam                       |
| Canton           | 42        | 2          | 2.0          | 6.0           | 6.00         | 20.0          | В    | Loose till, sandy textures                          | mesic  | loamy over sandy               | no       | loamy over loamy sand            |
| Charlton         | 62        | 2          | 0.6          | 6.0           | 0.60         | 6.0           | В    | Loose till, loamy textures                          | mesic  | loamv                          | no       | fine sandy loam                  |
| Dutchess         | 366       | 2          | 0.6          | 2.0           | 0.60         | 2.0           | В    | Friable till, silty, schist & phyllite              | mesic  | loamy                          | no       | very channery                    |
| Fryeburg         | 208       | 2          | 0.6          | 2.0           | 2.00         | 6.0           | В    | Flood Plain (Bottom Land)                           | frigid | silty                          | no       | very fine sandy loam             |
| Groveton         | 27        | 2          | 0.6          | 2.0           | 0.60         | 6.0           | В    | Outwash and Stream Terraces                         | frigid | loamy                          | yes      | loamy over sandy                 |
| Hadley           | 8         | 2          | 0.6          | 2.0           | 0.60         | 6.0           | В    | Flood Plain (Bottom Land)                           | mesic  | silty                          | no       | strata of fine sand              |
| Hadley           | 108       | 2          | 0.6          | 2.0           | 0.60         | 6.0           | В    | Flood Plain (Bottom Land)                           | mesic  | silty                          | no       | strata of fine sand, occ flooded |
| Hartland         | 31        | 2          | 0.6          | 2.0           | 0.20         | 2.0           | В    | Terraces and glacial lake plains                    | mesic  | silty                          | no       | very fine sandy loam             |
| Haven            | 410       | 2          | 0.6          | 2.0           | 20.00        | 100.0         | В    | Outwash and Stream Terraces                         | mesic  | loamy over sandy               | no       | loamy over sand/gravel           |
| Houghtonville    | 795       | 2          | 0.6          | 6.0           | 0.60         | 6.0           | В    | Loose till, loamy textures                          | frigid | loamy                          | yes      | cobbly fine sandy loam           |
| Lombard          | 259       | 2          | 0.6          | 6.0           | 2.00         | 20.0          | C/D  | Weathered bedrock, phyllite                         | frigid | loamy                          | no       | very channery                    |
| Monadnock        | 142       | 2          | 0.6          | 2.0           | 2.00         | 6.0           | В    | Loose till, sandy textures                          | frigid | pamy over sandy, sandy-skeleta | ves      | gravelly loamy sand in C         |
| Occum            | 142       | 2          | 0.6          | 2.0           | 6.00         | 20.0          | В    | Flood Plain (Bottom Land)                           | mesic  | loamy                          | no       | loamy over loamy sand            |
| Ondawa           | 101       | 2          | 0.6          | 6.0           | 6.00         | 20.0          | В    | Flood Plain (Bottom Land)                           | frigid | loamy                          | no       | loamy over loamy sand            |
| Ondawa           | 201       | 2          | 0.6          | 6.0           | 6.00         | 20.0          | В    | Flood Plain (Bottom Land) Flood Plain (Bottom Land) | frigid | loamy                          | no       | occ flood, loamy over I. sand    |
| Salmon           | 630       | 2          | 0.6          | 2.0           | 0.60         | 2.0           | В    | Terraces and glacial lake plains                    | )      | silty                          |          | very fine sandy loam             |
| Stetson          | 523       | 2          | 0.6          | 6.0           | 6.00         | 20.0          | В    | Outwash and Stream Terraces                         | frigid |                                | yes      | loamy over gravelly              |
| Unadilla         | 30        |            |              | 2.0           | 2.00         | 20.0          | В    |                                                     | frigid | sandy-skeletal                 | yes      | , , ,                            |
|                  | 30<br>442 | 2          | 0.6          | 2.0           | 2.00         | 6.0           | В    | Terraces and glacial lake plains                    | mesic  | silty                          | no       | silty over gravelly              |
| Chichester       | 442       |            | 0.0          | 2.0           | ∠.00         | 0.0           | В    | Loose till, sandy textures                          | frigid | loamy over sandy               | no       | loamy over loamy sand            |
| A -4             | 110       | 2          | 2.0          | 20.0          | 0.00         | 20.0          | -    | Lana All annels Anstro                              |        | anneli alcaletal               |          | and the language of              |
| Acton            | 146       | 3          | 2.0          | 20.0          | 2.00         | 20.0          | В    | Loose till, sandy textures                          | mesic  | sandy-skeletal                 | no       | cobbly loamy sand                |
| Becket           | 56        | 3          | 0.6          | 2.0           | 0.06         | 0.6           | С    | Firm, platy, sandy till                             | frigid | loamy                          | yes      | gravelly sandy loam in Cd        |
| Belgrade         | 532       | 3          | 0.6          | 2.0           | 0.06         | 2.0           | В    | Terraces and glacial lake plains                    | mesic  | silty                          | no       | strata of fine sand              |
| Bernardston      | 330       | 3          | 0.6          | 2.0           | 0.06         | 0.2           | С    | Firm, platy, silty till, schist & phyllite          | mesic  | loamy                          | no       | channery silt loam in Cd         |
| Boxford          | 32        | 3          | 0.1          | 0.2           | 0.00         | 0.2           | С    | Silt and Clay Deposits                              | mesic  | fine                           | no       | silty clay loam                  |

1

| Soil Series     | number   | NHDES      | Ksat low - B | Ksat high - B | Ksat low - C | Ksat high - C | Hyd. | Land Form                                  | Temp.  | Soil Textures           | Spodosol | Other                       |
|-----------------|----------|------------|--------------|---------------|--------------|---------------|------|--------------------------------------------|--------|-------------------------|----------|-----------------------------|
|                 |          | Soil Group | in/hr        | in/hr         | in/hr        | in/hr         | Grp. |                                            |        |                         | ?        |                             |
| Buckland        | 237      | 3          | 0.6          | 2.0           | 0.06         | 0.2           | С    | Firm, platy, loamy till                    | frigid | loamy                   | no       | loam in Cd                  |
| Buxton          | 232      | 3          | 0.1          | 0.6           | 0.00         | 0.2           | С    | Silt and Clay Deposits                     | frigid | fine                    | no       | silty clay                  |
| Canterbury      | 166      | 3          | 0.6          | 2.0           | 0.06         | 0.6           | С    | Firm, platy, loamy till                    | frigid | loamy                   | no       | loam in Cd                  |
| Chatfield Var.  | 289      | 3          | 0.6          | 6.0           | 0.60         | 6.0           | В    | Loose till, bedrock                        | mesic  | loamy                   | no       | mwd to swpd                 |
| Chesuncook      | 126      | 3          | 0.6          | 2.0           | 0.02         | 0.2           | С    | Firm, platy, silty till, schist & phyllite | frigid | loamy                   | yes      | channery silt loam in Cd    |
| Colonel         | 927      | 3          | 0.6          | 2.0           | 0.06         | 0.6           | С    | Firm, platy, loamy till                    | frigid | loamy                   | yes      | loam in Cd                  |
| Croghan         | 613      | 3          | 20.0         | 100.0         | 20.00        | 100.0         | В    | Outwash and Stream Terraces                | frigid | sandy                   | yes      | single grain in C           |
| Dartmouth       | 132      | 3          | 0.6          | 2.0           | 0.06         | 0.6           | В    | Terraces and glacial lake plains           | mesic  | silty                   | no       | thin strata silty clay loam |
| Deerfield       | 313      | 3          | 6.0          | 20.0          | 20.00        | 100.0         | В    | Outwash and Stream Terraces                | mesic  | sandy                   | no       | single grain in C           |
| Dixfield        | 378      | 3          | 0.6          | 2.0           | 0.06         | 0.6           | С    | Firm, platy, loamy till                    | frigid | loamy                   | yes      | fine sandy loam in Cd       |
| Dixmont         | 578      | 3          | 0.6          | 2.0           | 0.60         | 2.0           | С    | Friable till, silty, schist & phyllite     | frigid | loamy                   | yes      | silt loam, platy in C       |
| Duane           | 413      | 3          | 6.0          | 20.0          | 6.00         | 20.0          | В    | Outwash and Stream Terraces                | frigid | sandy-skeletal          | yes      | cemented (ortstein)         |
| Eldridge        | 38       | 3          | 6.0          | 20.0          | 0.06         | 0.6           | С    | Sandy/loamy over silt/clay                 | mesic  | sandy over loamy        | no       |                             |
| Elmridge        | 238      | 3          | 2.0          | 6.0           | 0.00         | 0.2           | С    | Sandy/loamy over silt/clay                 | mesic  | loamy over clayey       | no       |                             |
| Elmwood         | 338      | 3          | 2.0          | 6.0           | 0.00         | 0.2           | С    | Sandy/loamy over silt/clay                 | frigid | loamy over clayey       | no       |                             |
| Finch           | 116      | 3          | 0.0          | 0.0           | 0.00         | 0.0           | С    | Outwash and Stream Terraces                | frigid | sandy                   | yes      | cemented (ortstein)         |
| Gilmanton       | 478      | 3          | 0.6          | 2.0           | 0.06         | 0.6           | С    | Firm, platy, loamy till                    | frigid | loamy                   | no       | fine sandy loam in Cd       |
| Henniker        | 46       | 3          | 0.6          | 2.0           | 0.06         | 0.6           | С    | Firm, platy, sandy till                    | frigid | loamy                   | no       | loamy sand in Cd            |
| Hitchcock       | 130      | 3          | 0.6          | 2.0           | 0.06         | 0.6           | В    | Terraces and glacial lake plains           | mesic  | silty                   | no       | silt loam to silt in C      |
| Howland         | 566      | 3          | 0.6          | 2.0           | 0.06         | 0.2           | С    | Firm, platy, silty till, schist & phyllite | frigid | loamy                   | yes      | silt loam, platy in Cd      |
| Lanesboro       | 228      | 3          | 0.6          | 2.0           | 0.06         | 0.2           | С    | Firm, platy, silty till, schist & phyllite | frigid | loamy                   | no       | channery silt loam in Cd    |
| Lovewell        | 307      | 3          | 0.6          | 2.0           | 0.60         | 2.0           | В    | Flood Plain (Bottom Land)                  | frigid | silty                   | no       | very fine sandy loam        |
| Machias         | 520      | 3          | 2.0          | 6.0           | 6.00         | 20.0          | В    | Outwash and Stream Terraces                | frigid | sandy or sandy-skeletal | yes      | strata sand/gravel in C     |
| Madawaska       | 28       | 3          | 0.6          | 2.0           | 6.00         | 20.0          | В    | Outwash and Stream Terraces                | frigid | loamy over sandy        | yes      | sandy or sandy-skeletal     |
| adawaska, aquer | 48       | 3          | 0.6          | 2.0           | 6.00         | 20.0          | В    | Outwash and Stream Terraces                | frigid | loamy over sandy        | yes      | sandy or sandy-skeletal     |
| Marlow          | 76       | 3          | 0.6          | 2.0           | 0.06         | 0.6           | С    | Firm, platy, loamy till                    | frigid | loamy                   | yes      | fine sandy loam in Cd       |
| Melrose         | 37       | 3          | 2.0          | 6.0           | 0.00         | 0.2           | С    | Sandy/loamy over silt/clay                 | frigid | loamy over clayey       | no       | silty clay loam in C        |
| Metacomet       | 458      | 3          | 0.6          | 2.0           | 0.06         | 0.6           | С    | Firm, platy, sandy till                    | frigid | loamy                   | no       | loamy sand in Cd            |
| Metallak        | 404      | 3          | 6.0          | 100.0         | 6.00         | 100.0         | В    | Flood Plain (Bottom Land)                  | frigid | loamy over sandy        | no       | sandy or sandy-skeletal     |
| Millis          | 39       | 3          |              |               |              |               | С    | Firm, platy, sandy till                    | frigid | loamy                   | yes      | loamy sand in Cd            |
| Montauk         | 44       | 3          | 0.6          | 6.0           | 0.06         | 0.6           | С    | Firm, platy, sandy till                    | mesic  | loamy                   | no       | loamy sand in Cd            |
| Mundal          | 610      | 3          | 0.6          | 2.0           | 0.06         | 0.6           | С    | Firm, platy, loamy till                    | frigid | loamy                   | yes      | gravelly sandy loam in Cd   |
| Newfields       | 444      | 3          | 0.6          | 2.0           | 0.60         | 2.0           | В    | Loose till, sandy textures                 | mesic  | loamy over sandy        | no       | sandy or sandy-skeletal     |
| Nicholville     | 632      | 3          | 0.6          | 2.0           | 0.60         | 2.0           | С    | Terraces and glacial lake plains           | frigid | silty                   | yes      | very fine sandy loam        |
| Ninigret        | 513      | 3          | 0.6          | 6.0           | 6.00         | 20.0          | В    | Outwash and Stream Terraces                | mesic  | loamy over sandy        | no       | sandy or sandy-skeletal     |
| Paxton          | 66       | 3          | 0.6          | 2.0           | 0.00         | 0.2           | С    | Firm, platy, loamy till                    | mesic  | loamy                   | no       |                             |
| Peru            | 78       | 3          | 0.6          | 2.0           | 0.06         | 0.6           | С    | Firm, platy, loamy till                    | frigid | loamy                   | yes      |                             |
| Pittstown       | 334      | 3          | 0.6          | 2.0           | 0.06         | 0.2           | С    | Firm, platy, silty till, schist & phyllite | mesic  | loamy                   | no       | channery silt loam in Cd    |
| Plaisted        | 563      | 3          | 0.6          | 2.0           | 0.06         | 0.6           | С    | Firm, platy, silty till, schist & phyllite | frigid | loamy                   | yes      | channery silt loam in Cd    |
| Podunk          | 104      | 3          | 0.6          | 6.0           | 6.00         | 20.0          | В    | Flood Plain (Bottom Land)                  | frigid | loamy                   | no       | loamy to coarse sand in C   |
| Poocham         | 230      | 3          | 0.6          | 2.0           | 0.20         | 2.0           | В    | Terraces and glacial lake plains           | mesic  | silty                   | no       | silt loam in C              |
| Pootatuck       | <u>4</u> | 3          | 0.6          | 6.0           | 6.00         | 20.0          | В    | Flood Plain (Bottom Land)                  | mesic  | loamy                   | no       | single grain in C           |
| Scio            | 531      | 3          | 0.6          | 2.0           | 0.60         | 2.0           | В    | Terraces and glacial lake plains           | mesic  | silty                   | no       | gravelly sand in 2C         |
| Scituate        | 448      | 3          | 0.6          | 2.0           | 0.06         | 0.2           | С    | Firm, platy, sandy till                    | mesic  | loamy                   | no       | loamy sand in Cd            |
| Sheepscot       | 14       | 3          | 6.0          | 20.0          | 6.00         | 20.0          | В    | Outwash and Stream Terraces                | frigid | sandy-skeletal          | yes      | gravelly coarse sand        |
| Sisk            | 667      | 3          | 0.6          | 2.0           | 0.00         | 0.6           | С    | Firm, platy, loamy till                    | cryic  | loamy                   | yes      | sandy loam in Cd            |
| Skerry          | 558      | 3          | 0.6          | 2.0           | 0.06         | 0.6           | С    | Firm, platy, sandy till                    | frigid | loamy                   | yes      | loamy sand in Cd            |
| Sudbury         | 118      | 3          | 2.0          | 6.0           | 2.00         | 20.0          | В    | Outwash and Stream Terraces                | mesic  | sandy                   | no       | loam over gravelly sand     |
| Suffield        | 536      | 3          | 0.6          | 2.0           | 0.00         | 0.2           | С    | Sandy/loamy over silt/clay                 | mesic  | silty over clayey       | no       | deep to clay C              |
| Sunapee         | 168      | 3          | 0.6          | 2.0           | 0.60         | 6.0           | В    | Loose till, loamy textures                 | frigid | loamy                   | yes      | fortal algorithms to the    |
| Sunapee var     | 269      | 3          | 0.6          | 2.0           | 0.60         | 6.0           | В    | Loose till, loamy textures                 | frigid | loamy                   | yes      | frigid dystrudept           |
| Surplus         | 669      | 3          | 0.6          | 2.0           | 0.00         | 0.6           | С    | Firm, platy, loamy till                    | cryic  | loamy                   | yes      | mwd, sandy loam in Cd       |
| Sutton          | 68       | 3          | 0.6          | 6.0           | 0.60         | 6.0           | В    | Loose till, loamy textures                 | mesic  | loamy                   | no       |                             |
| Telos           | 123      | 3          | 0.6          | 2.0           | 0.02         | 0.2           | С    | Firm, platy, silty till, schist & phyllite | frigid | loamy                   | yes      | channery silt loam in Cd    |

| Soil Series   | number | NHDES      | Ksat low - B | Ksat high - B | Ksat low - C | Ksat high - C | Hyd. | Land Form                                  | Temp.  | Soil Textures                   | Spodosol | Other                               |
|---------------|--------|------------|--------------|---------------|--------------|---------------|------|--------------------------------------------|--------|---------------------------------|----------|-------------------------------------|
|               |        | Soil Group | in/hr        | in/hr         | in/hr        | in/hr         | Grp. |                                            |        |                                 | ?        |                                     |
| Waumbeck      | 58     | 3          | 2.0          | 20.0          | 6.00         | 20.0          | В    | Loose till, sandy textures                 | frigid | sandy-skeletal                  | yes      | very cobbly loamy sand              |
| Winooski      | 103    | 3          | 0.6          | 6.0           | 0.60         | 6.0           | В    | Flood Plain (Bottom Land)                  | mesic  | silty                           | no       | very fine sandy loam                |
| Woodbridge    | 29     | 3          | 0.6          | 2.0           | 0.00         | 0.6           | С    | Firm, platy, loamy till                    | mesic  | loamy                           | no       | sandy loam in Cd                    |
| Winooski      | 9      | 3          | 0.6          | 6.0           | 0.60         | 6.0           | В    | Flood Plain (Bottom Land)                  | mesic  | silty over loamy                | no       |                                     |
| Canaan        | 663    | 4          | 2.0          | 20.0          | 2.00         | 20.0          | С    | Weathered Bedrock Till                     | frigid | loamy-skeletal                  | yes      | less than 20 in. deep               |
| Cardigan      | 357    | 4          | 0.6          | 2.0           | 0.60         | 2.0           | В    | Friable till, silty, schist & phyllite     | mesic  | loamy                           | no       | 20 to 40 in. deep                   |
| Chatfield     | 89     | 4          | 0.6          | 6.0           | 0.60         | 6.0           | В    | Loose till, bedrock                        | mesic  | loamy                           | no       | 20 to 40 in. deep                   |
| Elliottsville | 128    | 4          | 0.6          | 2.0           | 0.60         | 2.0           | В    | Friable till, silty, schist & phyllite     | frigid | loamy                           | yes      | 20 to 40 in. deep                   |
| Glebe         | 671    | 4          | 2.0          | 6.0           | 2.00         | 6.0           | C    | Loose till, bedrock                        | cryic  | loamy                           | yes      | 20 to 40 in. deep                   |
| Glover        | NA     | 4          | 0.6          | 2.0           | 0.60         | 2             | D    | Friable till, silty, schist & phyllite     | frigid | loamy                           | no       | less than 20 in. deep               |
| Hogback       | 91     | 4          | 2.0          | 6.0           | 2.00         | 6.0           | C    | Loose till, bedrock                        | frigid | loamy                           | yes      | less than 20 in. deep               |
| Hollis        | 86     | 4          | 0.6          | 6.0           | 0.60         | 6.0           | C/D  | Loose till, bedrock                        | mesic  | loamy                           | no       | less than 20 in. deep               |
| Kearsarge     | 359    | 4          | 0.6          | 2.0           | 0.60         | 2.0           | В    | Friable till, silty, schist & phyllite     | mesic  | loamy                           | no       | less than 20 in. deep               |
| Lyman         | 92     | 4          | 2.0          | 6.0           | 2.00         | 6.0           | A/D  | Loose till, bedrock                        | frigid | loamy                           | yes      | less than 20 in. deep               |
| Macomber      | 252    | 4          | 0.6          | 2.0           | 0.60         | 2.0           | C    | Friable till, silty, schist & phyllite     | frigid | loamy-skeletal                  | yes      | 20 to 40 in. deep                   |
| Millsite      | 251    | 4          | 0.6          | 6.0           | 0.60         | 6.0           | Č    | Loose till, bedrock                        | frigid | loamy                           | no       | 20 to 40 in. deep                   |
| Monson        | 133    | 4          | 0.6          | 2.0           | 0.60         | 2.0           | D    | Friable till, silty, schist & phyllite     | frigid | loamy                           | yes      | less than 20 in. deep               |
| Pennichuck    | 460    | 4          | 0.6          | 2.0           | 0.60         | 2.0           | В    | Friable till, silty, schist & phyllite     | mesic  | loamy-skeletal                  | no       | 20 to 40 in. deep                   |
| Rawsonville   | 98     | 4          | 0.6          | 6.0           | 0.60         | 6.0           | C    | Loose till, bedrock                        | frigid | loamy                           | yes      | 20 to 40 in. deep                   |
| Ricker        | 674    | 4          | 2.0          | 6.0           | 2.00         | 6.0           | A    | rganic over bedrock (up to 4" of minera    | cryic  | fibric to hemic                 | no       | well drained, less than 20 in. deep |
| Saddleback    | 673    | 4          | 0.6          | 2.0           | 0.60         | 2.0           | C/D  | Loose till, bedrock                        | cryic  | loamy                           | yes      | less than 20 in. deep               |
| Shapleigh     | 136    | 4          | 0.0          | 2.0           | 0.00         | 2.0           | C/D  | Sandy Till                                 | mesic  | sandy                           | yes      | less than 20 in. deep               |
| Thorndike     | 84     | 4          | 0.6          | 2.0           | 0.60         | 2.0           | C/D  | Friable till, silty, schist & phyllite     | frigid | loamy-skeletal                  | yes      | less than 20 in. deep               |
| Tunbridge     | 99     | 4          | 0.6          | 6.0           | 0.60         | 6.0           | C    | Loose till, bedrock                        | frigid | loamy                           | yes      | 20 to 40 in. deep                   |
| Winnecook     | 88     | 4          | 0.6          | 2.0           | 0.60         | 2.0           | Č    | Friable till, silty, schist & phyllite     | frigid | loamy-skeletal                  | yes      | 20 to 40 in. deep                   |
| Woodstock     | 93     | 4          | 2.0          | 6.0           | 2.00         | 6.0           | C/D  | Loose till, bedrock                        | frigid | loamy                           | no       | less than 20 in. deep               |
|               |        | -          |              |               |              |               | 0,-  | ,                                          |        |                                 |          |                                     |
| Au Gres       | 516    | 5          |              |               |              |               | В    | Outwash and Stream Terraces                | frigid | sandy                           | yes      | single grain, loose                 |
| Bemis         | 224    | 5          | 0.6          | 0.2           | 0.00         | 0.2           | С    | Firm, platy, loamy till                    | cryic  | loamy                           | no       |                                     |
| Binghamville  | 534    | 5          | 0.2          | 2.0           | 0.06         | 0.2           | D    | Terraces and glacial lake plains           | mesic  | silty                           | no       |                                     |
| Brayton       | 240    | 5          | 0.6          | 2.0           | 0.06         | 0.6           | С    | Firm, platy, silty till, schist & phyllite | frigid | loamy                           | no       |                                     |
| Cabot         | 589    | 5          | 0.6          | 2.0           | 0.06         | 0.2           | D    | Firm, platy, silty till, schist & phyllite | frigid | loamy                           | no       |                                     |
| Charles       | 209    | 5          | 0.6          | 100.0         | 0.60         | 100.0         | С    | Flood Plain (Bottom Land)                  | frigid | silty                           | no       |                                     |
| Cohas         | 505    | 5          | 0.6          | 2.0           | 0.60         | 100.0         | С    | Flood Plain (Bottom Land)                  | frigid | co. loamy over sandy (skeletal) | no       |                                     |
| Grange        | 433    | 5          | 0.6          | 2.0           | 0.60         | 2.0           | С    | Outwash and Stream Terraces                | frigid | co. loamy over sandy (skeletal) | no       |                                     |
| Kinsman       | 614    | 5          | 6.0          | 20.0          | 6.00         | 20.0          | С    | Outwash and Stream Terraces                | frigid | sandy                           | yes      |                                     |
| Leicester     | 514    | 5          | 0.6          | 6.0           | 0.60         | 20.0          | С    | Loose till, loamy textures                 | mesic  | loamy                           | no       |                                     |
| Lim           | 3      | 5          | 0.6          | 2.0           | 6.00         | 20.0          | С    | Flood Plain (Bottom Land)                  | mesic  | loamy                           | no       |                                     |
| Limerick      | 109    | 5          | 0.6          | 2.0           | 0.60         | 2.0           | C    | Flood Plain (Bottom Land)                  | mesic  | silty                           | no       |                                     |
| Lyme          | 246    | 5          | 0.6          | 6.0           | 0.60         | 6.0           | С    | Loose till, sandy textures                 | frigid | loamy                           | no       |                                     |
| Mashpee       | 315    | 5          | 6.0          | 20.0          | 6.00         | 20.0          | В    | Outwash and Stream Terraces                | mesic  | sandy                           | yes      |                                     |
| Monarda       | 569    | 5          | 0.2          | 2.0           | 0.02         | 0.2           | D    | Firm, platy, silty till, schist & phyllite | frigid | loamy                           | no       |                                     |
| Moosilauke    | 414    | 5          | 6.0          | 20.0          | 6.00         | 20.0          | С    | Loose till, sandy textures                 | frigid | sandy                           | no       |                                     |
| Naumburg      | 214    | 5          | 6.0          | 20.0          | 6.00         | 20.0          | С    | Outwash and Stream Terraces                | frigid | sandy                           | yes      |                                     |
| Pemi          | 633    | 5          | 0.6          | 2.0           | 0.06         | 0.6           | С    | Terraces and glacial lake plains           | frigid | silty                           | no       |                                     |
| Pillsbury     | 646    | 5          | 0.6          | 2.0           | 0.06         | 0.2           | С    | Firm, platy, loamy till                    | frigid | silty                           | no       |                                     |
| Pipestone     | 314    | 5          |              |               |              |               | В    | Outwash and Stream Terraces                | mesic  | sandy                           | yes      |                                     |
| Raynham       | 533    | 5          | 0.2          | 2.0           | 0.06         | 0.2           | С    | Terraces and glacial lake plains           | mesic  | silty                           | no       |                                     |
| Raypol        | 540    | 5          | 0.6          | 2.0           | 6.00         | 100.0         | D    | Outwash and Stream Terraces                | mesic  | co. loamy over sandy (skeletal) | no       |                                     |
| Ridgebury     | 656    | 5          | 0.6          | 6.0           | 0.00         | 0.2           | С    | Firm, platy, loamy till                    | mesic  | loamy                           | no       |                                     |
| Rippowam      | 5      | 5          | 0.6          | 6.0           | 6.00         | 20.0          | С    | Flood Plain (Bottom Land)                  | mesic  | loamy                           | no       |                                     |
| Roundabout    | 333    | 5          | 0.2          | 2.0           | 0.06         | 0.6           | С    | Terraces and glacial lake plains           | frigid | silty                           | no       | silt loam in the C                  |
| Rumney        | 105    | 5          | 0.6          | 6.0           | 6.00         | 20.0          | С    | Flood Plain (Bottom Land)                  | frigid | loamy                           | no       |                                     |

SSSNNE Special Publilcation No. 5 September, 2009

| Soil Series | number | NHDES      | Ksat low - B | Ksat high - B | Ksat low - C | Ksat high - C | Hyd. | Land Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Temp.    | Soil Textures           | Spodosol | Other                        |
|-------------|--------|------------|--------------|---------------|--------------|---------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|----------|------------------------------|
|             |        | Soil Group | in/hr        | in/hr         | in/hr        | in/hr         | Grp. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                         | ?        |                              |
| Saugatuck   | 16     | 5          | 0.06         | 0.2           | 6.00         | 20.0          | С    | Outwash and Stream Terraces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mesic    | sandy                   | yes      | ortstein                     |
| Scantic     | 233    | 5          | 0.0          | 0.2           | 0.00         | 0.2           | D    | Silt and Clay Deposits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | frigid   | fine                    | no       |                              |
| Scitico     | 33     | 5          | 0.0          | 0.2           | 0.00         | 0.2           | С    | Silt and Clay Deposits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mesic    | fine                    | no       |                              |
| Shaker      | 439    | 5          | 2.0          | 6.0           | 0.00         | 0.2           | С    | Sandy/loamy over silt/clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mesic    | co. loamy over clayey   | no       |                              |
| Squamscott  | 538    | 5          | 6.0          | 20.0          | 0.06         | 0.6           | С    | Sandy/loamy over silt/clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mesic    | sandy over loamy        | yes      |                              |
| Stissing    | 340    | 5          | 0.6          | 2.0           | 0.06         | 0.2           | С    | Firm, platy, silty till, schist & phyllite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mesic    | loamy                   | no       |                              |
| Swanton     | 438    | 5          | 2.0          | 6.0           | 0.00         | 0.2           | С    | Sandy/loamy over silt/clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | frigid   | co. loamy over clayey   | no       |                              |
| Walpole     | 546    | 5          | 2.0          | 6.0           | 6.00         | 20.0          | С    | Outwash and Stream Terraces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mesic    | sandy                   | no       |                              |
| Wareham     | 34     | 5          | 6.0          | 20.0          | 6.00         | 20.0          | С    | Outwash and Stream Terraces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mesic    | sandy                   | no       |                              |
|             |        |            |              |               |              |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | •                       |          |                              |
| Biddeford   | 234    | 6          | 0.0          | 0.2           | 0.00         | 0.2           | D    | Silt and Clay Deposits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | frigid   | fine                    | no       | organic over clay            |
| Bucksport   | 895    | 6          |              |               |              |               | D    | Organic Materials - Freshwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | frigid   | sapric                  | no       | deep organic                 |
| Burnham     | 131    | 6          | 0.2          | 6.0           | 0.02         | 0.2           | D    | Firm, platy, silty till, schist & phylitte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | frigid   | loamy                   | no       | organic over silt            |
| Catden      | 296    | 6          |              |               |              |               | A/D  | Organic Materials - Freshwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mesic    | sapric                  | no       | deep organic                 |
| Chocorua    | 395    | 6          |              |               | 6.00         | 20.0          | D    | Organic Materials - Freshwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | frigid   | sandy or sandy-skeletal | no       | organic over sand            |
| Greenwood   | 295    | 6          |              |               |              |               | A/D  | Organic Materials - Freshwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | frigid   | hemic                   | no       | deep organic                 |
| Ipswich     | 397    | 6          |              |               |              |               | D    | Tidal Flat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mesic    | hemic/sapric            | no       | deep organic                 |
| Matunuck    | 797    | 6          |              |               | 20.00        | 100.0         | D    | Tidal Flat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mesic    | sandy                   | no       | organic over sand            |
| Maybid      | 134    | 6          | 0.0          | 0.2           | 0.00         | 0.2           | D    | Silt and Clay Deposits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mesic    | fine                    | no       | silt over clay               |
| Meadowsedge | 894    | 6          |              |               |              |               | D    | Organic Materials - Freshwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | frigid   | peat                    | no       | deep organic                 |
| Medomak     | 406    | 6          | 0.6          | 2.0           | 0.60         | 2.0           | D    | Flood Plain (Bottom Land)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | frigid   | silty                   | no       | organic over silt            |
| Natchaug    | 496    | 6          |              |               | 0.20         | 2.0           | D    | Organic Materials - Freshwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mesic    | loamy                   | no       | organic over loam            |
| Ossipee     | 495    | 6          |              |               | 0.20         | 2.0           | D    | Organic Materials - Freshwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | frigid   | loamy                   | no       | organic over loam            |
| Pawcatuck   | 497    | 6          |              |               | 20.00        | 100.0         | D    | Tidal Flat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mesic    | sandy or sandy-skeletal | no       | organic over sand            |
| Peacham     | 549    | 6          | 0.6          | 2.0           | 0.00         | 0.2           | D    | Firm, platy, silty till, schist & phylitte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | frigid   | loamy                   | no       | organic over loam            |
| Pondicherry | 992    | 6          |              |               | 6.00         | 20.0          | D    | Organic Materials - Freshwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | frigid   | sandy or sandy-skeletal | no       | organic over sand            |
| Saco        | 6      | 6          | 0.6          | 2.0           | 6.00         | 20.0          | D    | Flood Plain (Bottom Land)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mesic    | silty                   | no       | strata                       |
| Scarboro    | 115    | 6          | 6.0          | 20.0          | 6.00         | 20.0          | D    | Outwash and Stream Terraces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mesic    | sandy                   | no       | organic over sand, non stony |
| Searsport   | 15     | 6          | 6.0          | 20.0          | 6.00         | 20.0          | D    | Outwash and Stream Terraces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | frigid   | sandy                   | no       | organic over sand            |
| Timakwa     | 393    | 6          |              |               | 6.00         | 100.0         | D    | Organic Materials - Freshwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mesic    | sandy or sandy-skeletal | no       | organic over sand            |
| Vassalboro  | 150    | 6          |              |               |              |               | D    | Organic Materials - Freshwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | frigid   | peat                    | no       | deep organic                 |
| Waskish     | 195    | 6          |              |               |              |               | D    | Organic Materials - Freshwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | frigid   | peat                    | no       | deep organic                 |
| Westbrook   | 597    | 6          |              |               | 0.00         | 2.0           | D    | Tidal Flat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mesic    | loamy                   | no       | organic over loam            |
| Whitman     | 49     | 6          | 0.0          | 0.2           | 0.00         | 0.2           | D    | Firm, platy, loamy till                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mesic    | loamy                   | no       | mucky loam                   |
| Wonsqueak   | 995    | 6          |              | -             | 0.20         | 2.0           | D    | Organic Materials - Freshwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | frigid   | loamy                   | no       | organic over loam            |
| 1           |        |            |              |               |              |               |      | , in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | <u> </u> | · .                     |          | <u> </u>                     |

| Saco       | 6     | 6         | 0.6    | 2.0  | 6.00 | 20.0              | D | Flood Plain (Bottom Land)      | mesic     | silty                   | no | strata                       |
|------------|-------|-----------|--------|------|------|-------------------|---|--------------------------------|-----------|-------------------------|----|------------------------------|
| Scarboro   | 115   | 6         | 6.0    | 20.0 | 6.00 | 20.0              | D | Outwash and Stream Terraces    | mesic     | sandy                   | no | organic over sand, non stony |
| Searsport  | 15    | 6         | 6.0    | 20.0 | 6.00 | 20.0              | D | Outwash and Stream Terraces    | frigid    | sandy                   | no | organic over sand            |
| Timakwa    | 393   | 6         |        |      | 6.00 | 100.0             | D | Organic Materials - Freshwater | mesic     | sandy or sandy-skeletal | no | organic over sand            |
| Vassalboro | 150   | 6         |        |      |      |                   | D | Organic Materials - Freshwater | frigid    | peat                    | no | deep organic                 |
| Waskish    | 195   | 6         |        |      |      |                   | D | Organic Materials - Freshwater | frigid    | peat                    | no | deep organic                 |
| Westbrook  | 597   | 6         |        |      | 0.00 | 2.0               | D | Tidal Flat                     | mesic     | loamy                   | no | organic over loam            |
| Whitman    | 49    | 6         | 0.0    | 0.2  | 0.00 | 0.2               | D | Firm, platy, loamy till        | mesic     | loamy                   | no | mucky loam                   |
| Wonsqueak  | 995   | 6         |        |      | 0.20 | 2.0               | D | Organic Materials - Freshwater | frigid    | loamy                   | no | organic over loam            |
|            | no lo | nger reco | gnized |      |      | organic materials |   |                                | denotes b | oreak betweenSoil Group |    |                              |
|            |       |           |        |      |      |                   |   |                                |           |                         |    |                              |

## **ORDER FORM**

## Ksat VALUES FOR

### **NEW HAMPSHIRE SOILS**

(Including Hydrologic and Soil Lot Sizing Groups)

**SSSNNE Publication #5** 

| DATE                  |                                                                              |                       |           |
|-----------------------|------------------------------------------------------------------------------|-----------------------|-----------|
| <i>DI</i> 111 <u></u> | <del></del>                                                                  |                       |           |
| Mail Copy of          | f Publication #5 to:                                                         |                       |           |
|                       |                                                                              |                       |           |
| Name                  |                                                                              |                       |           |
|                       |                                                                              |                       |           |
| City                  | State                                                                        | Zip                   |           |
| Quantity of Pu        | blications@ \$8.00 =<br>Amount E                                             | Total Order: \$       |           |
| Enclose check         | or money order for the full  Society of Soil Scie PO Box 76  Durham, NH 0382 | entists of Northern N |           |
|                       | <b>PO Box 76</b>                                                             |                       | ew Englan |

Please allow 4 weeks for delivery.

## Each Watershed Report Card covers a single 12-digit Hydrologic Unit Code (HUC12), on average a 34 square mile area. Each Watershed Report Card has three components;

- 1. REPORT CARD A one page card that summarizes the overall use support for Aquatic Life Integrity, Primary Contact (i.e. Swimming), and Secondary Contact (i.e. Boating) Designated Uses on every Assessment Unit ID (AUID) within the HUC12.
- 2. HUC 12 MAP A map of the watershed with abbreviated labels for each AUID within the HUC12.
- 3. ASSESSMENT DETAILS Anywhere from one to forty pages with the detailed assessment information for each and every AUID in the Report Card and Map.

#### How are the Surface Water Quality Assessment determinations made?

All readily available data with reliable Quality Assurance/Quality Control is used in the biennial surface water quality assessments. For a full understanding of how the Surface Water Quality Standards (Env-Wq 1700) are translated into surface water quality assessments we urge the reader to review the 2020/2022 Consolidated Assessment and Listing Methodology (CALM).

#### Where can I find more advanced mapping resources?

GIS files are available by assessment cycle at the NHDES FTP site.

#### I'd like to see the more raw water quality data?

The <u>web mapping tool</u> allows you to download the data used in the assessment of the primary contact and aquatic life designated uses by clicking on the "Data Access Waterbody Data (Aquatic Life and Swimming Uses)" link for any assessment unit.

#### How are assessments coded in the report card?

Assessment outcomes are displayed on a color scale as well as an alpha numeric scale that provides additional distinctions for the designated use and parameter level assessments as outlined in the table below.

|            |                                                   | Severe                       | Poor                           | Likely Bad                               | No      | Likely                                    | Marginal                  | Good                  |
|------------|---------------------------------------------------|------------------------------|--------------------------------|------------------------------------------|---------|-------------------------------------------|---------------------------|-----------------------|
|            |                                                   |                              |                                | Insufficient                             | Data    | Good<br>Insufficient                      |                           |                       |
|            |                                                   | Not<br>Supporting,<br>Severe | Not<br>Supporting,<br>Marginal | Information – Potentially Not Supporting | No Data | Information – Potentially Full Supporting | Full Support,<br>Marginal | Full Support,<br>Good |
| CATEGORY   | Description                                       |                              |                                |                                          |         |                                           |                           |                       |
| Category 2 | Meets standards                                   |                              |                                |                                          |         |                                           | 2-M or<br>2-OBS           | 2-G                   |
| Category 3 | Insufficient Information                          |                              |                                | 3-PNS                                    | 3-ND    | 3-PAS                                     |                           |                       |
| Category 4 | Does not Meet Standards;                          |                              |                                |                                          |         |                                           |                           |                       |
| 4A         | TMDL* Completed                                   | 4A-P                         | 4A-M or<br>4A-T                |                                          |         |                                           |                           |                       |
| 4B         | Other enforceable measure will correct the issue. | 4B-P                         | 4B-M or<br>4B-T                |                                          |         |                                           |                           |                       |
| 4C         | Non-pollutant (i.e. exotic weeds)                 | 4C-P                         | 4C-M                           |                                          |         |                                           |                           |                       |
| Category 5 | TMDL* Needed                                      | 5-P                          | 5-M or<br>5-T                  |                                          |         |                                           |                           |                       |

<sup>\*</sup> TMDL stands for Total Maximum Daily Load studies

## Watershed 305(b) Assessment Summary Report:

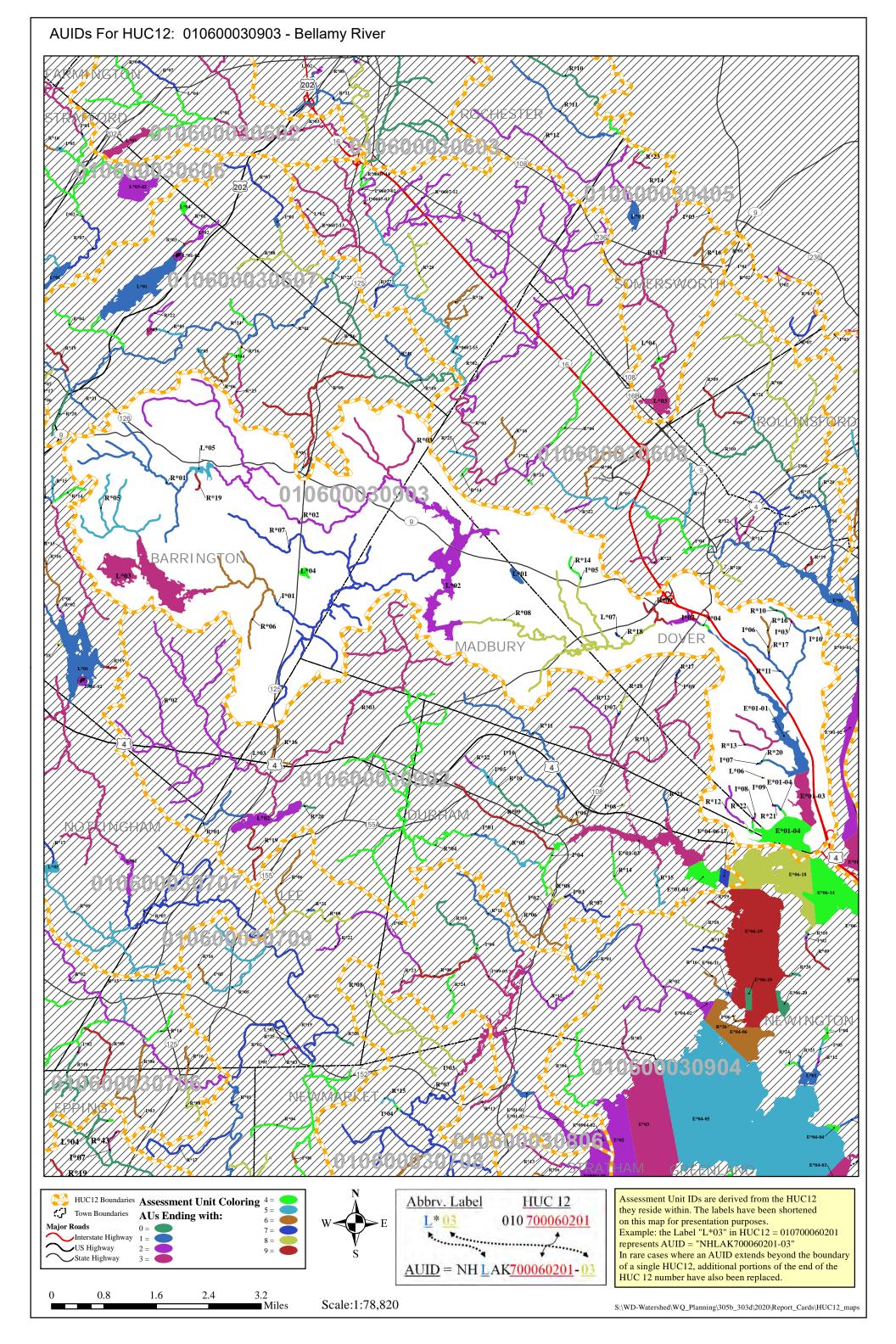
Assessment Cycle: 2020/2022

HUC 12: 010600030903 HUC 12 Name: Bellamy River

(Locator map on next page only applies to this HUC12)

| Good            | Meets water quality standards/thresholds by a relatively large margin.                                                                               |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Marginal        | Meets water quality standards/thresholds but only marginally.                                                                                        |
| Likely Good     | Limited data available, however, the data that is available suggests that the parameter is Potentially Attaining Standards (PAS).                    |
| No Current Data | Insufficient information to make an assessment decision.                                                                                             |
| Likely Bad      | Limited data available, however, the data that is available suggests that the parameter is Potentially Not Supporting (PNS) water quality standards. |
| Poor            | Not meeting water quality standards/thresholds. The impairment is marginal.                                                                          |
| Severe          | Not meeting water quality standards/thresholds. The impairment is more severe and causes poor water quality.                                         |










| Assessment Unit ID   | Map<br>Label | Assessment Unit Name                        | Aquatic<br>Life | Fish<br>Consump. | Swimming | Boating |
|----------------------|--------------|---------------------------------------------|-----------------|------------------|----------|---------|
| NHEST600030903-01-01 | E*01-01      | Bellamy River North                         |                 | 5-M              | 2-G      | 2-G     |
| NHEST600030903-01-03 | E*01-03      | Bellamy River South Clement Point           | 5-P             | 5-M              | 2-G      | 2-G     |
| NHEST600030903-01-04 | E*01-04      | Bellamy River South                         | 5-P             | 5-M              | 2-G      | 2-G     |
| NHIMP600030903-01    | I*01         | Bellamy River                               | 3-ND            | 4A-M             | 3-ND     | 3-ND    |
| NHIMP600030903-02    | I*02         | Bellamy River - Sawyers Mill Dam Pond       | 5-M             | 4A-M             | 5-M      | 3-ND    |
| NHIMP600030903-03    | I*03         | Canney Brook - Wildlife Pond                | 3-ND            | 4A-M             | 3-ND     | 3-ND    |
| NHIMP600030903-04    | I*04         | Bellamy River Iv Dam                        | 3-ND            | 4A-M             | 3-ND     | 3-ND    |
| NHIMP600030903-05    | I*05         | Knox Marsh Brook                            | 3-ND            | 4A-M             | 3-ND     | 3-ND    |
| NHIMP600030903-06    | I*06         | Unnamed Brook - Thornwood Commons Pond      | 3-ND            | 4A-M             | 3-ND     | 3-ND    |
| NHIMP600030903-07    | I*07         | Unnamed Brook - Bellamy River Wildlife Pond | 3-ND            | 4A-M             | 3-ND     | 3-ND    |
| NHIMP600030903-08    | I*08         | Unnamed Brook - Farm Pond                   | 3-ND            | 4A-M             | 3-ND     | 3-ND    |
| NHIMP600030903-09    | I*09         | Unnamed Brook - Webster Brook Dam           | 3-ND            | 4A-M             | 3-ND     | 3-ND    |

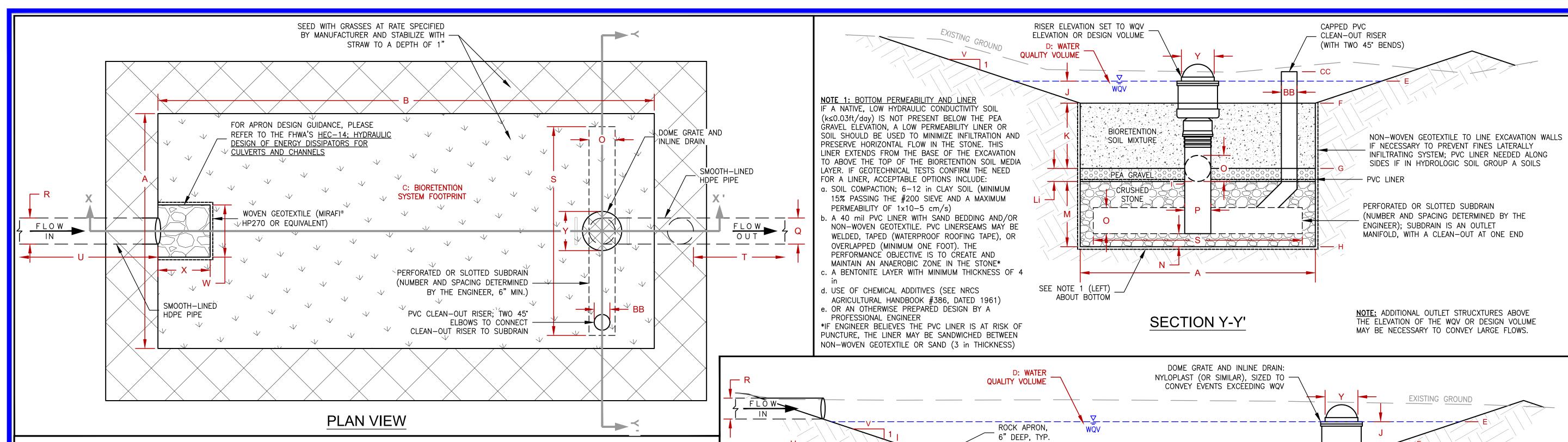
| NHIMP600030903-10 | I*10 | Unnamed Brook - Farm Pond                      | 3-ND | 4A-M | 3-ND  | 3-ND  |
|-------------------|------|------------------------------------------------|------|------|-------|-------|
| NHLAK600030903-01 | L*01 | Barbadoes Pond                                 | 3-ND | 4A-M | 3-ND  | 3-ND  |
| NHLAK600030903-02 | L*02 | Bellamy Reservoir                              | 5-M  | 4A-M | 3-ND  | 3-ND  |
| NHLAK600030903-03 | L*03 | Swains Lake                                    | 5-P  | 4A-M | 3-PAS | 3-ND  |
| NHLAK600030903-04 | L*04 | Winkley Pond                                   | 5-P  | 4A-M | 3-ND  | 3-ND  |
| NHLAK600030903-05 | L*05 | Branch Mallego Brook Pond                      | 3-ND | 4A-M | 3-ND  | 3-ND  |
| NHLAK600030903-06 | L*06 | Farm Pond                                      | 3-ND | 4A-M | 3-ND  | 3-ND  |
| NHLAK600030903-07 | L*07 | Unnamed Pond                                   | 3-ND | 4A-M | 3-ND  | 3-ND  |
| NHRIV600030903-01 | R*01 | Madla Brook                                    | 5-M  | 4A-M | 3-ND  | 3-ND  |
| NHRIV600030903-02 | R*02 | Mallego Brook                                  | 5-P  | 4A-M | 3-ND  | 3-ND  |
| NHRIV600030903-03 | R*03 | Calef Brook                                    | 3-ND | 4A-M | 3-ND  | 3-ND  |
| NHRIV600030903-05 | R*05 | Unnamed Brook - To Swains Lake                 | 3-ND | 4A-M | 3-ND  | 3-ND  |
| NHRIV600030903-06 | R*06 | Bellamy River - Unnamed Brook                  | 5-M  | 4A-M | 3-ND  | 3-ND  |
| NHRIV600030903-07 | R*07 | Bellamy River                                  | 5-P  | 4A-M | 4A-P  | 4A-P  |
| NHRIV600030903-08 | R*08 | Bellamy River - Kelly Brook - Knox Marsh Brook | 5-P  | 4A-M | 4A-P  | 3-PAS |
| NHRIV600030903-09 | R*09 | Bellamy River - Unnamed Brook                  | 5-M  | 4A-M | 4A-P  | 3-ND  |
| NHRIV600030903-10 | R*10 | Canney Brook                                   | 3-ND | 4A-M | 3-ND  | 3-ND  |
| NHRIV600030903-11 | R*11 | Varney Brook - Canney Brook                    | 3-ND | 4A-M | 4A-P  | 4A-M  |
| NHRIV600030903-12 | R*12 | Unnamed Brook - To Bellamy River Royalls Cove  | 3-ND | 4A-M | 3-ND  | 3-ND  |
| NHRIV600030903-13 | R*13 | Garrison Brook                                 | 3-ND | 4A-M | 4A-P  | 3-ND  |
| NHRIV600030903-14 | R*14 | Knox Marsh Brook                               | 3-ND | 4A-M | 3-ND  | 3-ND  |
| NHRIV600030903-16 | R*16 | Unnamed Brook                                  | 3-ND | 4A-M | 3-ND  | 3-ND  |
| NHRIV600030903-17 | R*17 | Varney Brook                                   | 3-ND | 4A-M | 3-ND  | 3-ND  |
| NHRIV600030903-18 | R*18 | Unnamed Brook                                  | 3-ND | 4A-M | 3-ND  | 3-ND  |
| NHRIV600030903-19 | R*19 | Unnamed Brook                                  | 3-ND | 4A-M | 3-ND  | 3-ND  |
| NHRIV600030903-20 | R*20 | Unnamed Brook                                  | 3-ND | 4A-M | 3-ND  | 3-ND  |
| NHRIV600030903-21 | R*21 | Unnamed Brook                                  | 3-ND | 4A-M | 3-ND  | 3-ND  |
| NHRIV600030903-22 | R*22 | Unnamed Brook                                  | 3-ND | 4A-M | 3-ND  | 3-ND  |
|                   | _    |                                                |      |      |       |       |



Assessment Unit ID: NHRIV600030903-02 Size: 9.5430 MILES

Assessment Unit Name: Mallego Brook Assessment Unit Category: 5-P

Town(s) Primary Town is Listed First: Barrington, Beach: N


Madbury

2020/2022, 305(b)/303(d) - All Reviewed Parameters by Assessment Unit

| Designated Use Description      | Desig. Use<br>Category | Parameter Name                                        | Parameter<br>Threatened<br>(Y/N) | Last<br>Sample | Last<br>Exceed | Parameter<br>Category | TMDL<br>Priority |
|---------------------------------|------------------------|-------------------------------------------------------|----------------------------------|----------------|----------------|-----------------------|------------------|
| Aquatic Life Integrity          | 5-P                    | AMMONIA (TOTAL)                                       | N                                | 2016           | N/A            | 3-PAS                 |                  |
|                                 |                        | Benthic-Macroinvertebrate<br>Bioassessments (Streams) | N                                |                |                | 3-ND                  |                  |
|                                 |                        | CHLORIDE                                              | N                                | 2019           | N/A            | 3-PAS                 |                  |
|                                 |                        | DISSOLVED OXYGEN SATURATION                           | N                                | 2019           | 2017           | 5-M                   | LOW              |
|                                 |                        | Fishes Bioassessments (Streams)                       | N                                |                |                | 3-PAS                 |                  |
|                                 |                        | OXYGEN, DISSOLVED                                     | N                                | 2019           | 2018           | 5-M                   | LOW              |
|                                 |                        | РН                                                    | N                                | 2019           | 2019           | 5-P                   | LOW              |
|                                 |                        | TURBIDITY                                             | N                                | 2019           | N/A            | 3-PAS                 |                  |
| Fish Consumption                | 4A-M                   | MERCURY - FISH CONSUMPTION<br>ADVISORY                | N                                |                |                | 4A-M                  |                  |
| Potential Drinking Water Supply | 2-G                    |                                                       |                                  |                |                |                       |                  |
| Primary Contact Recreation      | 3-ND                   | Escherichia coli                                      | N                                |                |                | 3-ND                  |                  |
| Secondary Contact Recreation    | 3-ND                   | Escherichia coli                                      | N                                |                |                | 3-ND                  |                  |
| Wildlife                        | 3-ND                   |                                                       |                                  |                |                |                       |                  |

| Good                    | Marginal                 | Likely Good                 | No Current Data          | Likely Bad                 | Poor                      | Severe                 |
|-------------------------|--------------------------|-----------------------------|--------------------------|----------------------------|---------------------------|------------------------|
| Meets water quality     | Meets water quality      | Limited data available. The | Insufficient information | Limited data available The | Not meeting water quality | Not meeting water      |
| standards/thresholds by | standards/thresholds but | data that is available      | to make an assessment    | data that is available     | standards/thresholds. The | quality                |
| a relatively large      | only marginally.         | suggests that the           | decision.                | suggests that the          | impairment is marginal.   | standards/thresholds   |
| margin.                 |                          | parameter is Potentially    |                          | parameter is Potentially   |                           | The impairment is more |
|                         |                          | Attaining Standards (PAS)   |                          | Not Supporting (PNS)       |                           | severe and causes poor |
|                         |                          |                             |                          | water quality standards.   |                           | water quality.         |
|                         |                          |                             |                          |                            |                           |                        |

30 of 52 02/18/2022



- 1. FOR FULL BIORETENTION STORMWATER SYSTEM SPECIFICATIONS, PLEASE REFER TO THE UNH STORMWATER CENTER'S BIORETENTION SPECIFICATIONS PUBLICATION, DATED FEBRUARY 2017, FOUND AT:
- https://www.unh.edu/unhsc/sites/default/files/media/unhsc\_bsm\_spec\_2-28-17\_0.pdf SYSTEM FOOTPRINT NEED NOT BE RECTANGULAR. ANY SHAPE IS POSSIBLE. THESE DETAILS USE THE RECTANGULAR SHAPE AS AN EXAMPLE.
- THESE DETAILS ARE NOT TO SCALE; FOR DIMENSIONS AND SPECIFICATIONS, REFERENCE EACH LETTER TO THE TABLE OF METRICS.
- BIORETENTION SOIL MIX SHALL NOT BE PLACED UNTIL AFTER ENGINEERING APPROVAL AND INSPECTION OF SUBGRADE. BIORETENTION SYSTEM IS RECOMMENDED TO HAVE PRETREATMENT (FOREBAY, SWALE, OR
- OTHER APPROVED STRUCTURE). PRETREATMENT IS REQUIRED FOR PROJECTS REQUIRING ALTERATION OF TERRAIN (AOT) PERMITTING.
- PLANT THE SYSTEM AS SPECIFIED; AT A MINIMUM, SEED THE SYSTEM FLOOR AND SIDE SLOPES WITH RYE GRASS MIXTURE CONTAINING PERENNIAL AND WINTER RYES, AT A RATE SPECIFIED BY THE MANUFACTURER. STABILIZE THE SLOPES WITH STRAW TO A DEPTH OF 1".
- GENERAL CONSTRUCTION GUIDELINES:
- 7.1. VERIFY THAT NO FOREIGN OR DELETERIOUS MATERIAL OR LIQUID SUCH AS PAINT, PAINT WASHOUT, CONCRETE SLURRY, ASPHALT/CONCRETE LAYERS OR CHUNKS, CEMENT, PLASTER, OILS, GASOLINE, DIESEL FUEL, PAINT THINNER, TURPENTINE, TAR, ROOFING COMPOUND, SOLID WASTE, OR ACID HAS BEEN DEPOSITED IN PLANTING SOIL (BIORETENTION MEDIA OR LOAM ON SIDE SLOPES).
- 7.2. PROCEED WITH PLACEMENT OF ANY SUBSURFACE MATERIALS ONLY AFTER UNSATISFACTORY CONDITIONS HAVE BEEN CORRECTED.
- 7.3. COMPACT EACH BLENDED LIFT OF BIORETENTION SOIL MEDIA TO 75% OF MAXIMUM STANDARD PROCTOR DENSITY ACCORDING TO ASTM D698.
- 7.4. GRADE SOIL MEDIA TO A SMOOTH, UNIFORM SURFACE PLANE WITH LOOSE, UNIFORMLY FINE TEXTURE. ROLL AND RAKE, REMOVE RIDGES, AND FILL DEPRESSIONS TO MEET FINISH GRADES.
- 7.5. LIGHTLY COMPACT FINISHED FLOOR ELEVATION AND FINISHED SLOPES USING THE BUCKET OF AN EXCAVATOR, NON-MOTORIZED ROLLER, HAND TAMP, OR OTHER MEANS, THEN ROUGHEN SURFACE WITH A RAKE TO LOOSEN SOILS BEFORE
- 7.6. DO NOT COMPACT THE SUBGRADE AT THE BOTTOM OF EXCAVATION UNLESS PERMEABILITY EXCEEDS 1x10<sup>-5</sup> cm/s
- 8. BIORETENTION SOIL MEDIA (BSM) MIXTURE SPECIFICATIONS:
- 8.1. STICKS AND ROOTS SHOULD BE MINIMIZED IN THE BSM MIXTURE, AND PREFERABLY
- LIMITED TO NOTHING LARGER THAN 4.76 mm (0.187 in). 8.2. DEBRIS AND OTHER FOREIGN MATERIALS SHOULD BE MINIMIZED.
- 8.3. ORGANIC MATTER SHOULD MAKE UP A MINIMUM OF 3% BY VOLUME AND A MAXIMUM 8% BY VOLUME OF THE BSM.
- 8.4. BSM MIXTURE SHOULD HAVE A SOIL REACTION pH OF 6 TO 7.
- 8.5. CATION EXCHANGE CAPACITY (CEC) OF BSM SHOULD BE A MINIMUM OF 10 meg PER 100 mL AT A pH OF 7.0. 9. IF BSM IS PURCHASED FROM A MANUFACTURER, BSM MIXTURE SHALL NOT CONTAIN THE
- 9.1. UNACCEPTABLE MATERIALS: CONCRETE SLURRY, CONCRETE LAYERS OR CHUNKS,

- CEMENT, PLASTER, BUILDING DEBRIS, ASPHALT, BRICKS, OILS, GASOLINE, DIESEL FUEL, PAINT THINNER, TURPENTINE, TAR, ROOFING COMPOUND, ACID, SOLID WASTE, OR OTHER EXTRANEOUS MATERIALS THAT ARE HARMFUL TO PLANTS.
- 9.2. UNSUITABLE MATERIALS: STONES, ROOTS, PLANTS, SOD, CLAY LUMPS, OR POCKETS OF COARSE SAND THAT EXCEED A COMBINED MAXIMUM OF 5% BY DRY WEIGHT OF THE MANUFACTURED SOIL.
- 9.3. LARGE MATERIALS: STONES, CLODS, ROOTS, CLAY LUMPS EXCEEDING 0.187 in (4.76 mm) IN ANY DIMENSION.
- 10. ORGANIC SOIL AMENDMENTS: 10.1. NO COMPOST SHOULD BE USED IN THE PLANTING MIX (USED ON THE SIDE SLOPES
- AND SURROUNDING AREA) UNLESS SPECIFIED BY THE ENGINEER. 10.1. SPHAGNUM PEAT: PARTIALLY DECOMPOSED SPHAGNUM PEAT MOSS, FINELY DIVIDED OR OF GRANULAR TEXTURE WITH 100% PASSING THROUGH A 1/2-in (13 mm)
- SIEVE, WITH A pH OF 3.4 TO 4.8. 10.2. WOOD DERIVATIVES: SHREDDED WOOD, WOOD CHIPS, GROUND BARK, OR WOOD WASTE; OF UNIFORM TEXTURE AND FREE OF STONES, STICKS, SOIL, OR TOXIC MATERIAL
- 11. THE CRUSHED STONE LAYER SHOULD CONSIST OF AASHTO #5 STONE (3/4-in).
- 12. THE VOLUME OF WATER CONTAINED ABOVE THE BSM ELEVATION AND BELOW THE HIGH
- FLOW SPILLWAY IS STATISTICALLY DESIGNED TO HOLD A SPECIFIC RUNOFF VOLUME. 13. THE DESIGN VOLUME ABOVE THE BSM IS PREFERABLY THE WQV. THIS VOLUME MAY NOT BE ACHIEVABLE FOR RETROFIT INSTALLATIONS

## WOVEN GEOTEXTILE (MIRAFI® HP270 OR EQUIVALENT) IMPERMEABLE 40 mil PVC LINER BIORETENTION SLOPED AWAY FROM OUTLET NON-WOVEN GEOTEXTILE SOIL MIXTURE TO LINE EXCAVATION AA: OUTLET SLOPE WALLS, IF NECESSARY 0 U T PEÁ GRÁVEL RISER PIPE PERFORATED/SLOTTED SMOOTH-LINED HDPE PIPE CRUSHED STONE (ISR); ORIFICE [EE] SIZED TO REFER TO NOTES BELOW\_ CREATE 24-HR RESIDENCE TIME OF WQV SEE NOTE 1, ABOVE, ABOUT BOTTOM **SECTION X-X'**

| B  | BIORETENTION SYSTEM D             | ESIG | N METR | ICS   |
|----|-----------------------------------|------|--------|-------|
| ID | DESIGN PARAMETER                  | MIN  | DESIGN | UNITS |
| Α  | SYSTEM FLOOR WIDTH                |      |        | FT    |
| В  | SYSTEM FLOOR LENGTH               |      |        | FT    |
| С  | BIORETENTION FOOTPRINT AREA       |      |        | SF    |
| D  | WATER QUALITY VOLUME              |      |        | CF    |
| Е  | WQV AND RISER CAP ELEVATION       |      |        | FT    |
| F  | SYSTEM FLOOR ELEVATION            |      |        | FT    |
| G  | BOTTOM BSM ELEVATION              |      |        | FT    |
| Ι  | BOTTOM STONE ELEVATION            |      |        | FT    |
| 1  | TOP STONE/OUTLET INVERT ELEVATION |      |        | FT    |
| J  | WQV PONDING DEPTH                 |      |        | IN    |
| K  | BSM MEDIA DEPTH                   | 18   |        | IN    |
| Li | INLET END PEA GRAVEL DEPTH        |      |        | IN    |
| Lo | OUTLET END PEA GRAVEL DEPTH       | 3    |        | IN    |
| Mi | INLET END CRUSHED STONE DEPTH     |      |        | IN    |
| Мо | OUTLET END CRUSHED STONE DEPTH    | 14   |        | IN    |
| N  | SUBDRAIN DEPTH ABOVE BOTTOM       | 4    |        | IN    |
| 0  | PERFORATED SUBDRAIN DIAMETER      | 6    |        | IN    |
|    |                                   |      |        |       |

| E  | BIORETENTION SYSTEM D          | ESIG  | N METR | ICS  |
|----|--------------------------------|-------|--------|------|
| ID | DESIGN PARAMETER               | MIN   | DESIGN | UNIT |
| Р  | RISER PIPE DIAMETER            | 6     |        | IN   |
| Q  | OUTLET PIPE DIAMETER           | 6     |        | IN   |
| R  | INFLOW PIPE DIAMETER           |       |        | IN   |
| S  | PERFORATED SUBDRAIN LENGTH     |       |        | FT   |
| Т  | OUTLET PIPE LENGTH             |       |        | FT   |
| U  | INFLOW PIPE LENGTH             |       |        | FT   |
| V  | SLOPE GRADE (RUN PER 1ft RISE) |       |        | FT   |
| W  | ROCK APRON WIDTH               |       |        | FT   |
| X  | ROCK APRON LENGTH              |       |        | FT   |
| Υ  | RISER DOME GRATE DIAMETER      |       |        | IN   |
| Z  | PVC LINER SLOPE                |       |        | %    |
| AA | OUTLET PIPE SLOPE              |       |        | %    |
| BB | CLEAN-OUT RISER DIAMETER       |       |        | IN   |
| CC | CLEAN-OUT RISER ELEVATION      |       |        | FT   |
| DD | PVC LINER GAP                  | 0.1*B |        | FT   |
| EE | OUTLET PIPE ORIFICE DIAMETER   | 1     |        | IN   |

| ACCEPTABLE PARTICLE SIZE DISTRIBUTION OF FINAL BIORETENTION SOIL MIX |                      |           |           |           |  |  |  |  |  |
|----------------------------------------------------------------------|----------------------|-----------|-----------|-----------|--|--|--|--|--|
| OF I                                                                 | -INAL E              | BIORETEN  | HON SOIL  | MIX       |  |  |  |  |  |
| MEDIA TYPE                                                           | SIEVE #              | SIZE (in) | SIZE (mm) | % PASSING |  |  |  |  |  |
| COARSE SAND                                                          | 4                    | 0.187     | 4.76      | 100       |  |  |  |  |  |
| MEDIUM SAND                                                          | 10                   | 0.079     | 2.00      | 95        |  |  |  |  |  |
| FINE SAND                                                            | 40                   | 0.017     | 0.42      | 40-15     |  |  |  |  |  |
| SILTS                                                                | ILTS 200 0.003 0.075 |           |           |           |  |  |  |  |  |
| CLAYS                                                                | <200                 | PAN       | PAN       | 0-5       |  |  |  |  |  |

BIORETENTION SOIL MEDIA COMPONENTS:\*

- AMOUNTS MIXED BY TOTAL VOLUME

- 60-85% SAND (0.5 TO 2.0 mm) (SEE SPECS ABOVE)
- 15-25% LOAM OR TOPSOIL
- 3-8% ORGANIC MATTER • 0-5% - WATER TREATMENT RESIDUALS OR IRON FILINGS\*\*
- \*ALTERNATELY, USE MEDIA SPECIFIED IN THE ALTERATION OF TERRAIN
- RULES, Env-Wq 1508.07(k) \*\*THIS IS AN AMENDMENT USED FOR ENHANCED PHOSPHORUS ADSORPTION

- INTERNAL STORAGE RESERVOIR (ISR) NOTES:
- THE HYBRID BIORETENTION SYSTEM HARBORS AN ANAEROBIC INTERNAL STORAGE RESERVOIR FOR NITROGEN REMOVAL.
- GRAVEL AND CRUSHED STONE LAYERS. • THE PVC LINER SLOPES FROM THE OUTLET TOWARDS THE INLET TO

• THE ISR IS SEPARATED BY AN IMPERMEABLE PVC LINER BETWEEN THE PEA

- MAXIMIZE STORAGE RETENTION AND PROVIDE EXTRA TREATMENT/FILTER TIME VIA PLUG FLOW THROUGH CRUSHED STONE • DESIGN GUIDELINES FOR THE SUBSURFACE GRAVEL WETLAND SPECIFICATIONS
- (UNHSC, 2016) IDENTIFIED THAT THE WATER VOLUME IN THE ISR BE AT
- LEAST 0.26\*WQV [WATER QUALITY VOLUME], OR 26% OF THE WQV. • PVC LINER THICKNESS OF 40 TO 60 mil, PREFERABLY SEAMLESS. IF SEAMS ARE UNAVOIDABLE, THE SEAMS SHOULD BE SEALED.

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing - any errors or omissions shall be reported to UNHSC without delay. The Copyrights to all designs and drawings are the property of UNHSC. Reproduction or use for any purpose other than that authorized by UNHSC is forbidden.



University of New Hampshire 35 Colovos Road Durham, NH 03824 Phone (603) 862-2818 Fax (603) 862-3957 http://www.unh.edu/unhsc

02 10 Sept 2019 DES Revisions 01 12 Mar 2019 Initial design No. Date Revision Designed: Checked: Approved: JČB TPB/JJH TPB/JJH

GRAPHIC SCALE N/A - DRAWING NOT TO SIZE Original Drawing Size  $= 34 \times 22$  in.

STANDARD DETAIL BIORETENTION ISR STORMWATER SYSTEM

Date: 21 FEB 2020 Sheet No.





**Erosion & Sediment Control - Construction Activities** 

## **SWPPP Cut Sheet:**

## Filtrexx® Inlet Protection

Sediment & Perimeter Control Technology

#### **PURPOSE & DESCRIPTION**

Filtrexx® Inlet protection is a three-dimensional tubular sediment control and storm water runoff filtration device typically used for storm drain **inlet protection** of sediment and soluble pollutants (such as phosphorus and petroleum hydrocarbons) on and around construction activities.

#### **APPLICATION**

Drain inlets are located in areas that receive runoff from surrounding lands, often exposed and disturbed soils, and are located at a low point, or in a sump. Inlet protection used around drain inlets (or Drain Inlet protection) should completely enclose the circumference of the drain and where possible should not be placed on a grade or slope. Inlet protection used around drain inlets should never be the only form of site sediment control and should be accompanied by erosion control/slope stabilization practices, such as Slope protection or rolled erosion control blankets (RECB). Inlet protection should never be placed where they divert runoff flow from the drain inlet, or on top of the inlet, which can cause flooding. Under high runoff and sediment loading conditions placement of 1-2 in (25-50 mm) diameter rock (AASHTO #2) may be placed around the outer circumference of the Inlet protection up to ½ the height of the Inlet protection. This will slow runoff velocity as it contacts the Inlet protection and will reduce sediment build-up and clogging of the Inlet protection.

**Curb inlets** are generally located on paved surfaces and are designed to rapidly drain storm runoff from roadways to prevent flooding that poses a hazard to vehicular traffic. Inlet protection devices should be placed in a manner which intercepts runoff prior to entering the inlet, but does not block or divert runoff from the inlet. To prevent diversion of runoff, Inlet protection used around curbs (or *Curb* 

Inlet protection) should be used in low points, or sumps, and minor slopes or grades. Inlet protection should never be placed in or on the curb inlet drain, or placed in a manner than obstructs vehicular traffic. Inlet protection height should be at least 1 in (25 mm) lower than top of curb inlet to allow for overflow into the drain and not over the curb. Maximum sediment removal efficiency occurs when minor ponding exists behind Inlet protection but should never lead to flooding.

Curb sediment containment systems are used to reduce the sediment and pollutant load flowing to a curb inlet. They are generally placed on paved surfaces perpendicular to runoff flow and should be lower than the height of the curb. Curb sediment containment systems should never cause flooding or placed where they are a hazard to vehicular traffic. Inlet protection used for curb sediment containment (or *Curb Sediment Containment* Inlet protection) can be placed on a grade but should never be placed directly upslope from curb inlet where it may inadvertently divert runoff from entering curb inlet.

#### INSTALLATION

- Inlet protection used for inlet protection to reduce sediment and soluble pollutants entering storm drains shall meet Filtrexx® FilterSoxx™ Material Specifications and use Certified Filtrexx® FilterMedia™.
- 2. Contractor is required to be a Filtrexx® Certified™ Installer as determined by Filtrexx® International, LLC (440-926-2607 or visit web site at Filtrexx.com). Certification shall be considered current if appropriate identification is shown during time of bid or at time of application (current list of installers can be found at www.filtrexx.com). Look for the Filtrexx® Certified™ Installer Seal.

- 3. Filtrexx® Inlet protection shall be placed at locations indicated on plans as directed by the Engineer. Inlet protection should be installed in a pattern that allows complete protection of the inlet area.
- 4. Installation of curb Inlet protection will ensure a minimal overlap of at least 1 ft (300mm) on either side of the opening being protected. The Inlet protection will be anchored to the soil behind the curb using staples, stakes or other devices capable of holding the Inlet protection in place.
- 5. Standard Inlet protection for curb inlet protection and curb sediment containment will use 8 in (200mm) diameter Inlet protection, and drain inlets on soil will use 12 in (300mm) or 18 in (450mm) diameter Inlet protection. In severe flow situations, larger Inlet protection may be specified by the Engineer. During curb installation, Inlet protection shall be compacted to be slightly shorter than curb height.
- **6.** If Inlet protection becomes clogged with debris and sediment, they shall be maintained so as to assure proper drainage and water flow into the storm drain. In severe storm events, overflow of the Inlet protection may be acceptable in order to keep the area from flooding.
- 7. Curb and drain Inlet protection shall be positioned so as to provide a permeable physical barrier to the drain itself, allowing sediment to collect on the outside of the Inlet protection.
- **8.** For drains and inlets that have only curb cuts, without street grates, a spacer is required in order to keep the Inlet protection away from the drain opening. This spacer should be a hog wire screen bent to overlap the grate opening and keep the sock from falling into the opening. Use at least one spacer for every 4 ft (1.2m) of curb drain opening. The wire grid also prevents other floatable waste from passing over the Inlet protection.
- 9. Stakes shall be installed through the middle of the drain Inlet protection on 5 ft (1.5m) centers, using 2 in (50mm) x 2 in (50mm) x 3 ft (1m) wood stakes.
- **10.** Staking depth for sand and silt loam soils shall be 12 in (300mm), and 8 in (200mm) for clay soils.

#### **INSPECTION AND MAINTENANCE**

Routine inspection should be conducted within 24 hrs of a runoff event or as designated by the regulating authority. Inlet protection should be regularly inspected to make sure they maintain their

- shape and are producing adequate hydraulic flowthrough. If ponding becomes excessive, additional Inlet protection may be required or sediment removal may be necessary. Inlet protection shall be inspected until contributing drainage area has been permanently stabilized and construction activity has ceased
- 1. The Contractor shall maintain the Inlet protection in a functional condition at all times and it shall be routinely inspected.
- **2.** If the Inlet protection has been damaged, it shall be repaired, or replaced if beyond repair.
- 3. The Contractor shall remove sediment at the base of the upslope side of the Inlet protection when accumulation has reached 1/2 of the effective height of the Inlet protection, or as directed by the Engineer. Alternatively, for drain Inlet protection a new Soxx™ may be placed on top of the original increasing the sediment storage capacity without soil disturbance.
- **4.** Inlet protection shall be maintained until disturbed area above or around the device has been permanently stabilized and construction activity has ceased.
- Regular maintenance includes lifting the Inlet protection and cleaning around and under them as sediment collects.
- 6. The FilterMedia™ will be removed from paved areas or dispersed on site soil or behind curb once disturbed area has been permanently stabilized, construction activity has ceased, or as determined by the Engineer.

**Table 2.4** Spacing for Curb Sediment Containment Systems.

| Grade (%) | Spacing (ft) | Spacing (mm) |
|-----------|--------------|--------------|
| 0.5       | 100          | 30           |
| 1.0       | 50           | 15           |
| 2.0       | 25           | 8            |
| 3.0       | 16           | 5            |
| 4.0       | 13           | 4            |
| 5.0       | 10           | 3            |

Source: Fifield, 2001.

EXCESS SOXX™ MATERIAL TO BE DRAWN IN AND TIED OFF TO 2x2 WOODEN STAKE, (TYP.) CURB CURB-WIRE TIES, (TYP.) STORM GRATE STORM GRATE FILTREXX® 8" SOXX™ FILTREXX® 8" SOXX™ **DRAIN INLET PLAN CURBSIDE OPTION "A" PLAN CURBSIDE OPTION "B" PLAN** EXCESS SOXX™ MATERIAL TO BE DRAWN IN AND TIED OFF TO CURB FILTREXX® 8" SOXX™ 2x2 WOODEN STAKE FILTREXX® 8" SOXX™ SECURE SOXX™ TO GRATE WITH RUBBER TIE DOWNS CATCH CATCH BASIN BASIN **DRAIN INLET SECTION CURBSIDE SECTION** 1. ALL MATERIAL TO MEET FILTREXX® SPECIFICATIONS. 2. FILTER MEDIA™ FILL TO MEET APPLICATION REQUIREMENTS.
3. COMPOST MATERIAL TO BE DISPERSED ON SITE, AS DETERMINED BY ENGINEER. **FILTREXX® INLET PROTECTION NTS** 

Figure 2.1. Engineering Design Drawing for Curb and Drain Inlet Protection

CURB FILTREXX® 8" SOXX™ WIRE TIED SOXX™ END **SECTION NTS** FILTREXX® 8" SOXX™ EXCESS SOXX™ MATERIAL TO BE DRAWN IN AND TIED OFF TO STAKE **FLOW** SPACING VARIES CURB-REFER TO SPECS NOTE: -LENGTH VARIES -1. INLET PROTECTION SHOULD NOT BE PLACED DIRECTLY **PLAN** NTS UPSLOPE FROM DRAIN INLETS FILTREXX® INLET PROTECTION **CURB CONTAINMENT** NTS

Figure 2.2. Engineering Design Drawing for Curb Sediment Containment Inlet Protection





#### **Erosion & Sediment Control - Construction Activities**

## **SWPPP Cut Sheet:**Filtrexx® Sediment Control

Sediment & Perimeter Control Technology

#### **PURPOSE & DESCRIPTION**

Filtrexx® Sediment control is a three-dimensional tubular sediment control and storm water runoff filtration device typically used for **perimeter control** of sediment and other soluble pollutants (such as phosphorus and petroleum hydrocarbons), on and around construction activities.

#### **APPLICATION**

Filtrexx® Sediment control is to be installed down slope of any disturbed area requiring erosion and sediment control and filtration of soluble pollutants from runoff. Sediment control is effective when installed perpendicular to sheet or low concentrated flow. Acceptable applications include:

- Site perimeters
- Above and below disturbed areas subject to sheet runoff, interrill and rill erosion
- Above and below exposed and erodable slopes
- Around area drains or inlets located in a 'sump'
- On compacted soils where trenching of silt fence is difficult or impossible
- Around sensitive trees where trenching of silt fence is not beneficial for tree survival or may unnecessarily disturb established vegetation.
- On frozen ground where trenching of silt fence is impossible.
- On paved surfaces where trenching of silt fence is impossible.

#### **INSTALLATION**

- Sediment control used for perimeter control of sediment and soluble pollutants in storm runoff shall meet Filtrexx<sup>®</sup> Soxx<sup>™</sup> Material Specifications and use Certified Filtrexx<sup>®</sup> FilterMedia<sup>™</sup>.
- 2. Contractor is required to be Filtrexx<sup>®</sup> Certified<sup>™</sup>, or use pre-filled Filtrexx<sup>®</sup> Sediment control

- products manufactured by a Filtrexx® Certified Manufacturer™ as determined by Filtrexx® International, LLC (440-926-2607 or visit www.filtrexx.com). Certification shall be considered current if appropriate identification is shown during time of bid or at time of application. Look for the Filtrexx® Certified™ Seal
- **3.** Sediment control will be placed at locations indicated on plans as directed by the Engineer.
- 4. Sediment control should be installed parallel to the base of the slope or other disturbed area. In extreme conditions (i.e., 2:1 slopes), a second Sediment control shall be constructed at the top of the slope.
- 5. Effective Soxx™ height in the field should be as follows: 8" Diameter Sediment control = 6.5" high, 12" Diameter Sediment control = 9.5" high, 18" Diameter SiltSoxx™ = 14.5" high, 24" Diameter Sediment control = 19" high.
- 6. Stakes shall be installed through the middle of the Sediment control on 10 ft (3m) centers, using 2 in (50mm) by 2 in (50mm) by 3 ft (1m) hard wood stakes. In the event staking is not possible, i.e., when Sediment control is used on pavement, heavy concrete blocks shall be used behind the Sediment control to help stabilize during rainfall/runoff events.
- 7. Staking depth for sand and silt loam soils shall be 12 in (300mm), and 8 in (200mm) for clay soils.
- **8.** Loose compost may be backfilled along the upslope side of the Sediment control, filling the seam between the soil surface and the device, improving filtration and sediment retention.
- **9.** If the Sediment control is to be left as a permanent filter or part of the natural landscape, it may be seeded at time of installation for

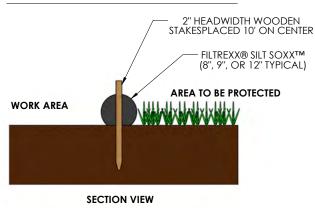
- establishment of permanent vegetation. The Engineer will specify seed requirements.
- **10.** Filtrexx<sup>®</sup> Sediment control is not to be used in perennial, ephemeral, or intermittent streams.

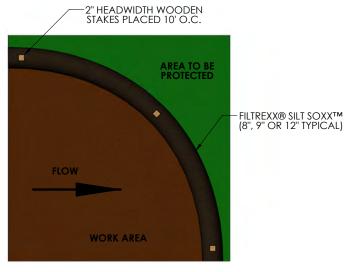
See design drawing schematic for correct Filtrexx<sup>®</sup> Sediment control installation (Figure 1.1).

#### INSPECTION AND MAINTENANCE

Routine inspection should be conducted within 24 hrs of a runoff event or as designated by the regulating authority. Sediment control should be regularly inspected to make sure they maintain their shape and are producing adequate hydraulic flow-through. If ponding becomes excessive, additional Sediment control may be required to reduce effective slope length or sediment removal may be necessary. Sediment control shall be inspected until area above has been permanently stabilized and construction activity has ceased

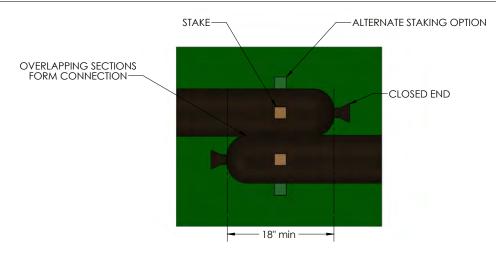
- 1. The Contractor shall maintain the Sediment control in a functional condition at all times and it shall be routinely inspected.
- **2.** If the Sediment control has been damaged, it shall be repaired, or replaced if beyond repair.


- 3. The Contractor shall remove sediment at the base of the upslope side of the Sediment control when accumulation has reached 1/2 of the effective height of the Sediment control, or as directed by the Engineer. Alternatively, a new Sediment control can be placed on top of and slightly behind the original one creating more sediment storage capacity without soil disturbance.
- **4.** Sediment control shall be maintained until disturbed area above the device has been permanently stabilized and construction activity has ceased.
- The FilterMedia<sup>™</sup> will be dispersed on site once disturbed area has been permanently stabilized, construction activity has ceased, or as determined by the Engineer.
- **6.** For long-term sediment and pollution control applications, Sediment control can be seeded at the time of installation to create a vegetative filtering system for prolonged and increased filtration of sediment and soluble pollutants (contained vegetative filter strip). The appropriate seed mix shall be determined by the Engineer.

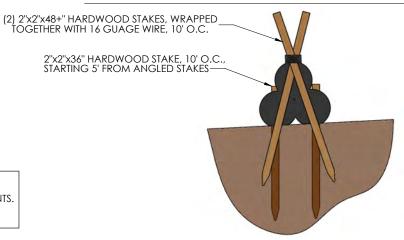

|               |                                   | Maximum Slope Length Above Sediment Control in Feet (meters)* |                                    |                                   |                                   |  |  |  |  |
|---------------|-----------------------------------|---------------------------------------------------------------|------------------------------------|-----------------------------------|-----------------------------------|--|--|--|--|
| Slope Percent | 8 in (200 mm) Sediment<br>control | 12 in (300 mm)<br>Sediment control                            | 18 in (450 mm)<br>Sediment control | 24 in (600mm)<br>Sediment control | 32 in (800mm)<br>Sediment control |  |  |  |  |
|               | 6.5 in<br>(160 mm)**              | 9.5 in<br>(240 mm) **                                         | 14.5 in<br>(360 mm) **             | 19 in (480 mm) **                 | 26 in<br>(650 mm) **              |  |  |  |  |
| 2 (or less)   | 600 (180)                         | 750 (225)                                                     | 1000 (300)                         | 1300 (400)                        | 1650 (500)                        |  |  |  |  |
| 5             | 400 (120)                         | 500 (150)                                                     | 550 (165)                          | 650 (200)                         | 750 (225)                         |  |  |  |  |
| 10            | 200 (60)                          | 250 (75)                                                      | 300 (90)                           | 400 (120)                         | 500 (150)                         |  |  |  |  |
| 15            | 140 (40)                          | 170 (50)                                                      | 200 (60)                           | 325 (100)                         | 450 (140)                         |  |  |  |  |
| 20            | 100 (30)                          | 125 (38)                                                      | 140 (42)                           | 260 (80)                          | 400 (120)                         |  |  |  |  |
| 25            | 80 (24)                           | 100 (30)                                                      | 110 (33)                           | 200 (60)                          | 275 (85)                          |  |  |  |  |
| 30            | 60 (18)                           | 75 (23)                                                       | 90 (27)                            | 130 (40)                          | 200 (60)                          |  |  |  |  |
| 35            | 60 (18)                           | 75 (23)                                                       | 80 (24)                            | 115 (35)                          | 150 (45)                          |  |  |  |  |
| 40            | 60 (18)                           | 75 (23)                                                       | 80 (24)                            | 100 (30)                          | 125 (38)                          |  |  |  |  |
| 45            | 40 (12)                           | 50 (15)                                                       | 60 (18)                            | 80 (24)                           | 100 (30)                          |  |  |  |  |
| 50            | 40 (12)                           | 50 (15)                                                       | 55 (17)                            | 65 (20)                           | 75 (23)                           |  |  |  |  |

<sup>\*</sup> Based on a failure point of 36 in (0.9 m) super silt fence (wire reinforced) at 1000 ft (303 m) of slope, watershed width equivalent to receiving length of sediment control device, 1 in/ 24 hr (25 mm/24 hr) rain event.

<sup>\*\*</sup> Effective height of Sediment control after installation and with constant head from runoff as determined by Ohio State University.

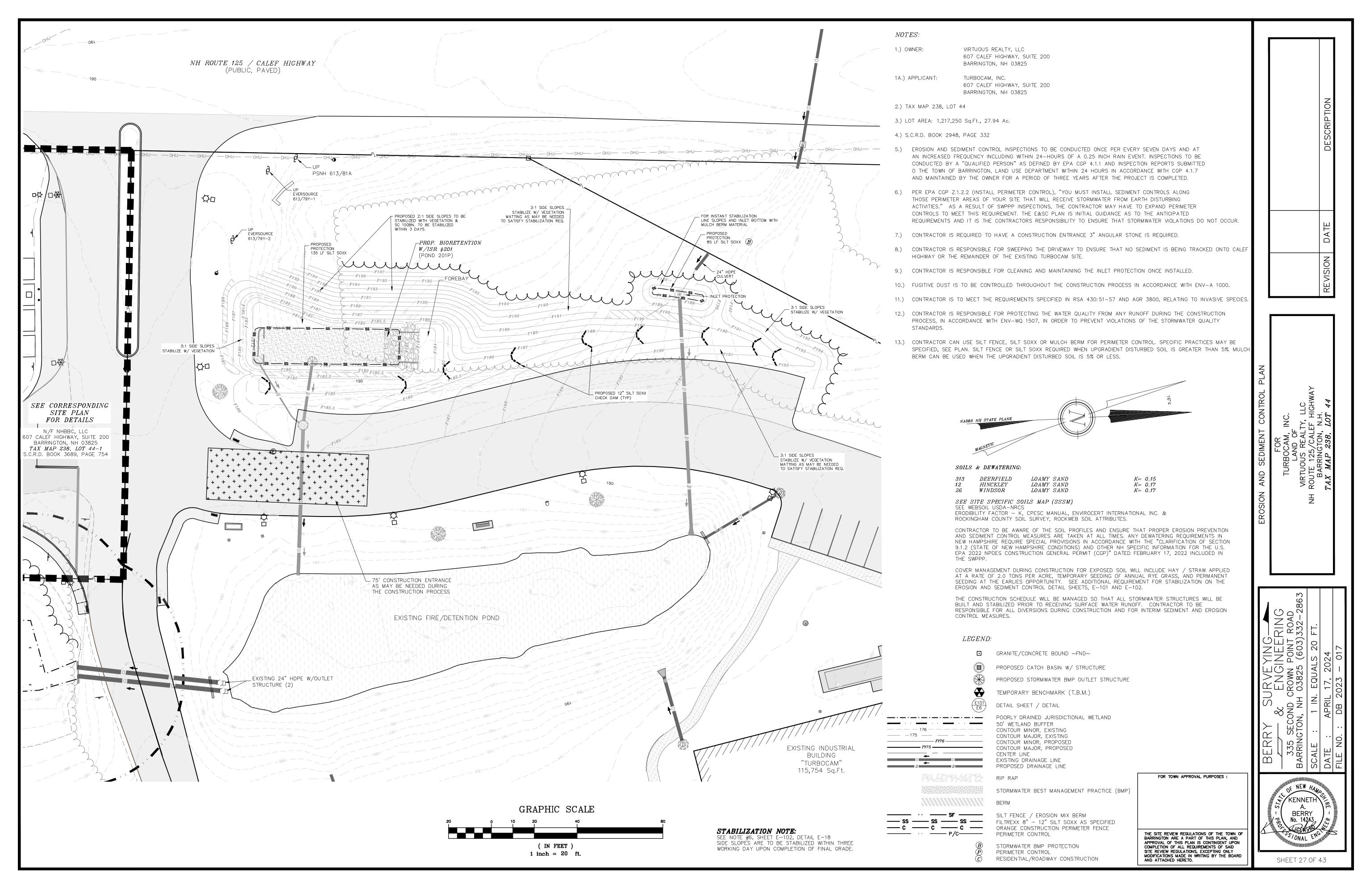

## FILTREXX® SILT SOXX™

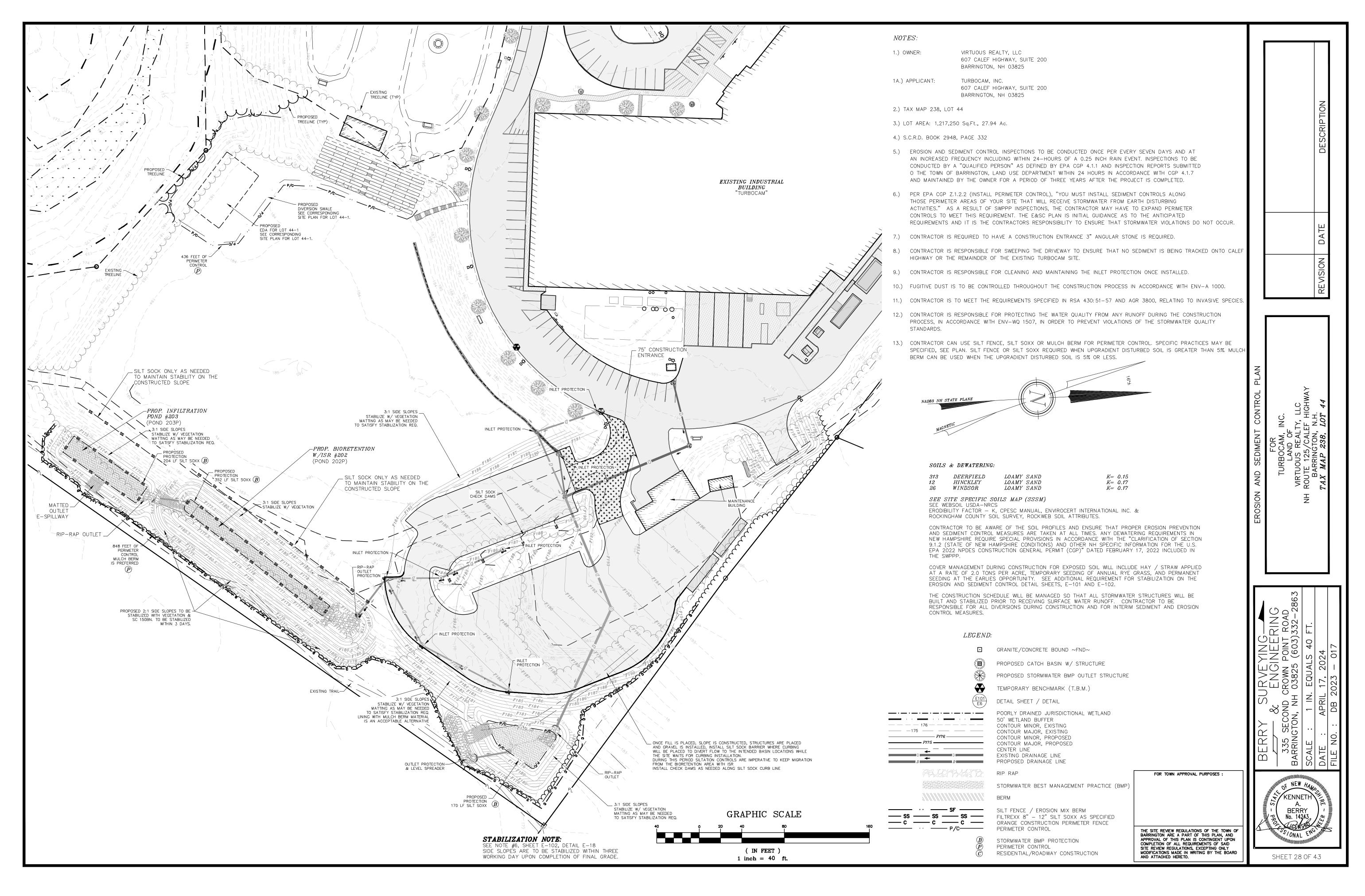





**TOP VIEW** 

## COMPOST SOCK CONNECTION/ATTACHMENT DETAIL





## FILTREXX® PYRAMID STAKING DETAIL



#### NOTES:

ALL MATERIAL TO MEET FILTREXX® SPECIFICATIONS.
 SILT SOXX™ FILL TO MEET APPLICATION REQUIREMENTS.
 COMPOST MATERIAL TO BE DISPERSED ON SITE, AS DETERMINED BY ENGINEER.



