STORMWATER MANAGEMENT & SEDIMENT AND EROSION CONTROL PLAN

Prepared for:

STONEARCH DEVELOPMENT CORPORATION 42J DOVER POINT ROAD DOVER, NH 03820 COMMERCIAL SITE PLAN LOTS 26-58 & 26-59

Prepared by:

BEALS ASSOCIATES, *PLLC* 70 PORTSMOUTH AVENUE STRATHAM, NH 03885

Project Number: NH-1144.5 NH Route 125 Barrington, New Hampshire **October 2023**

DESIGN METHOD OBJECTIVES – EXECUTIVE SUMMARY

StoneArch Development Corportation proposes a Commercial Site Plan on the recently approved lots shown as Tax Map 223 as Lots 26-58 & 26-59 on approximately 8.77 acres of land located off NH Route 125 in Barrington, NH. A commercial development project (NH Alteration of Terrain Permit #AoT-2319) was approved by NHDES on March 13, 2023 for St. Hilaire Motor Sports. A revised drainage analysis for the proposed commercial development was conducted for the purpose of estimating the peak rate of stormwater run-off and to subsequently design adequate drainage structures. Two models were compiled; one for the area in its existing (preconstruction) condition, and a second for its proposed (post-construction) condition. The analysis was conducted using data for the 2-year, 10-year, and 50-year 24-hour storm events using the USDA SCS TR-20 method within the HydroCAD Stormwater Modeling System environment. The purpose of this analysis is to estimate the peak rates of run-off from the site and to compare the peak rate of run-off between the existing and proposed conditions. Rainfall data utilized is as provided in the Extreme Precipitation tables by Cornell University for the following 24-hour storm events:

Storm Event	Rainfall Depth (inches)
2-Year	3.08
10-Year	4.64
50-Year	7.00

Peak Rate of Discharge

		Component	Peak Rate of Dis	scharge (CFS)
Analysis Point # Analysis Point Description	Condition	2-Year	10-Year	50-Year
Reach #300 -	Existing	16.01	41.35	86.47
Northerly Analysis Point Old	Proposed	14.35	38.40	86.47
Green Hill stream crossing				

Channel Protection

Analysis Point # Analysis Point Description	Condition	2-Year Storm Volume (Acre-Feet)
Reach #300 -	Existing	3.515
Northerly Analysis Point Old	Proposed	3.208
Green Hill stream crossing		

The existing property is located on a parcel consisting of forest, and a wetland area draining to a New Hampshire Department of Transportation (NHDOT) culvert under Route 125. The existing topography is such that the site analysis is divided into two subcatchments (though the entire area & all nodes draining to Reach 300 is provided as approved by AoT-2069). The reach flows Northerly toward culverts under the class 6 Old Green Hill Road to a large prime wetland

complex. Classified by Site Specific Soil Mapping, the land within the drainage analysis is composed of slopes ranging from 3% to 15%, and soils categorized into the Hydrologic Soil Groups (HSG) B and C. No flood hazard zone exists on the parcel.

The proposed commercial layout includes buildings, pavement, and stormwater controls. The curve numbers (CNs) and times of concentration (Tc's) were revised accordingly to reflect a net result of offsetting any potential increase in peak rates of run-off from the site. The proposed development divides the site into multiple post-construction subcatchments to reflect the flow from stormwater areas (roofs, pavement, lawn, etc.) into stormwater controls (catchbasins, sediment forebays, overland flow, etc.). Impervious area take-offs were calculated digitally from the proposed pavement and roof areas. Seasonal high-water tables for the sediment forebay and sand filter pond to be expanded were modeled based on actual test pits logged within the proposed BMP areas. The run-off is treated and infiltrated or outletted toward wetlands areas modeled as HydroCAD "reaches" and "ponds". The overall development area, which includes the Signature Drive subdivision, consists of constructed swales, existing flow paths through larger subcatchments, roadway culverts, deep sump catch basins, wet detention pond, constructed gravel wetlands, infiltration basins, and level spreaders. Required groundwater recharge will be met by a reduction in overall impervious areas by 0.75 acres from the previously approved development estimates.

The use of Best Management Practices per the New Hampshire Stormwater Manual has been applied to the design of these structures and will be observed during all stages of construction. All land disturbed during construction will be permanently stabilized within 60 days of groundbreaking, and existing wetlands and abutters will suffer no adversity resulting from this development.

Table of Contents

Design Method Objectives

1.0	Rainfall Characteristics	Page 1
2.0	Existing Conditions Analysis	Page 2
3.0	Proposed Conditions Analysis	Pages 2
4.0	Sediment & Erosion Control Best Management Practices	Pages 2-5
5.0	Conclusion	Page 5

Appendix I - Existing Conditions Analysis 2-Year 24-Hour Summary 10-Year 24-Hour Complete 50-Year 24-Hour Summary

Appendix II - Proposed Conditions Analysis 2-Year 24-Hour Summary 10-Year 24-Hour Complete 50-Year 24-Hour Summary

Appendix III - Charts, Graphs, and Calculations

	Appendix IV - Plans
Sheet W-1	Existing Conditions Watershed Plan
Sheet W-2	Proposed Conditions Watershed Plan

1.0 RAINFALL CHARACTERISTICS

This stormwater management plan includes an existing conditions analysis of the area involved in the proposed development, as well as proposed conditions, or post-construction analysis of the same location. These analyses were accomplished using the USDA SCS TR-20 Method within the HydroCAD Stormwater Modeling System. The curve numbers were developed using the SCS TR-55 Runoff Curve numbers for Urban Areas. A Type III SCS 24-hour rainfall distribution was utilized in analyzing the data for the 2, 10 and 50Yr – 24 Hr storm events using the USDA SCS TR-20 method within the HydroCAD Stormwater Modeling System environment.

Peak Rate of Discharge

		Component	Peak Rate of Dis	scharge (CFS)
Analysis Point # Analysis Point Description	Condition	2-Year	10-Year	50-Year
Reach #300 -	Existing	16.01	41.35	86.47
Northerly Analysis Point Old	Proposed	14.35	38.40	86.47
Green Hill stream crossing				

Channel Protection

Analysis Point # Analysis Point Description	Condition	2-Year Storm Volume (Acre-Feet)
Reach #300 -	Existing	3.515
Northerly Analysis Point Old	Proposed	3.208
Green Hill stream crossing		

2.0 EXISTING CONDITIONS

Reference: Sheet W-1, Existing Conditions Watershed Plan (Enclosed) Existing Conditions Plans

The existing property is located on a parcel consisting of forest, and a wetland area draining to an NHDOT culvert under Route 125. The existing topography is such that the site analysis is divided into two subcatchments (though the entire area & all nodes draining to Reach 300 is provided as approved by Ao.T-2069). The reach flows Northerly toward culverts under the class 6 Old Green Hill Road to a large prime wetland complex. Classified by Site Specific Soil Mapping, the land within the drainage analysis is composed of slopes ranging from 3% to 15%, and soils categorized into the Hydrologic Soil Groups (HSG) B and C. No flood hazard zone exists on the parcel.

3.0 PROPOSED CONDITIONS

Reference: W-Sheets Proposed Conditions Watershed Plan (Enclosed) C Sheets Proposed Conditions Plans

The addition of the impervious area from the proposed buildings and pavement will cause an increase in the curve number (Cn) and a decrease in the time of concentration (Tc), the net result being a potential increase in peak rates of run-off from the site. The proposed development divides the site into multiple post-construction subcatchments. Impervious area take-offs were calculated digitally from the proposed pavement and roof areas. Seasonal high-water tables for the sediment forebay and expanded sand filter pond were modeled based on actual test pits logged within the proposed BMP areas. The run-off is treated and infiltrated or outletted toward wetlands areas modeled as HydroCAD "reaches" and "ponds". Required groundwater recharge will be met by a reduction in overall impervious areas by 0.75 acres from the previously approved development estimates.

The use of Best Management Practices per the New Hampshire Stormwater Manual has been applied to the design of these structures and will be observed during all stages of construction. All land disturbed during construction will be permanently stabilized within 60 days of groundbreaking, and existing wetlands and abutters will suffer no adversity resulting from this development.

To prevent the sedimentation of adjacent wetlands or abutting property silt barriers, a sediment forebay, and a sand filter pond will be utilized. Ksat values were utilized based on field testing with an amoozemeter. Post development stormwater flows are reduced or match the previously approved development analysis for all storm events, and the sand filter pond safely passes the 50-Year storm event as required by NHDES AoT. It should also be noted that the stormwater volume to the analysis point is reduced compared to the existing conditions under the 2-Year frequency storm event. All BMP's have been designed per the New Hampshire Stormwater Manual and design worksheets appear in the appendices. During construction, appropriate temporary and/or permanent BMP's will be applied to negate the potential for sediment-laden run-off to discharge into wetlands prior to the final stabilization of the proposed grading. The structures outlined in this proposal provide for compliant treatment of stormwater run-off and for sediment control.

4.0 SEDIMENT & EROSION CONTROL BEST MANAGEMENT PRACTICES

Reference: C Sheets Proposed Conditions Plan E Sheet Erosion & Sediment Control Details

The proposed site development is protected from erosion and the roadways and abutting properties are protected from sediment using Best Management Practices as outlined in the <u>New Hampshire</u> <u>Stormwater Manual</u>. Any area disturbed by construction will be permanently re-stabilized within 60 days and abutting properties and wetlands will not be adversely affected by this development. All swales and drainage structures will be constructed and stabilized prior to having run-off directed to them.

4.1 Silt Fence / Erosion Control Berm and Construction Fence

The plan set demonstrates the location of silt fence or Erosion Control Berm for sediment control. In areas where the limits of construction need to be emphasized to operators, construction fence for added visibility will be installed. Sheet E-1, Erosion and Sediment Control Details, has the specifications for installation and maintenance of the silt fence. Orange construction fence will be VISI Perimeter Fence by Conwed Plastic Fencing, or equal. The four-foot fencing to be installed using six-foot posts at least two feet in the ground with spacing of six to eight feet.

4.2 Vegetated Stabilization

All areas that are disturbed during construction will be stabilized with vegetated material within 60 days of breaking ground. Construction will be managed in such a manner that erosion is prevented and that no abutter's property will be subjected to any siltation, unless otherwise permitted. All areas to be planted with grass for long-term cover will follow the specification and on Sheet E-1 using seeding mixture C, as follows:

Mixture	Pounds	Pounds per
	per Acre	1,000 Sq. Ft.
Tall Fescue	20	0.45
Creeping Red Fescue	28	0.65
Total	48	1.10

4.3 Stabilized Construction Entrance

A temporary gravel construction entrance provides an area where mud can be dislodged from tires before the vehicle leaves the construction site to reduce the amount of mud and sediment transported onto paved municipal and state roads. The stone size for the pad should be between 1 and 2-inch coarse aggregate, and the pad itself constructed to a minimum length of 50' for the full width of the access road. The aggregate should be placed at least six inches thick. A plan view and profile are shown on Sheet E1 - Sediment and Erosion Control Detail Plan.

4.4 Environmental Dust Control

Dust will be controlled on the site using multiple Best Management Practices. Mulching and temporary seeding will be the first line of protection to be utilized where problems occur. If dust problems are not solved by these applications, the use of water and calcium chloride can be applied. Calcium chloride will be applied at a rate that will keep the surface moist but not cause pollution.

4.5 Construction Sequence

1. Construct and/or install temporary and permanent sediment erosion and detention control facilities (silt fence/erosion control berm, vegetated swales, level spreaders, and constructed Vegetated buffers), as required. Erosion and sediment facilities shall be installed and stabilized prior to any earth moving operation, and prior to directing run-off to them.

- 2. Clear, cut, grub, and dispose of debris in approved facilities.
- 3. Excavate and stockpile topsoil / loam. All disturbed areas shall be stabilized immediately after grading.
- 4. Construct the roadway and its associated drainage structures.
- 5. Begin permanent and temporary seeding and mulching. All cut and fill slopes and disturbed areas shall be seeded and mulched as required, or directed.
- 6. Daily, or as required, construct temporary berms, drainage ditches, sediment traps, etc. to prevent erosion on the site and prevent any siltation of abutting waters or property.
- 7. Inspect and maintain all erosion and sediment control measures during construction every two weeks and after every storm event with 0.5" or more rain.
- 9. Complete permanent seeding and landscaping.
- 9. Remove temporary erosion control measures after seeding areas have established themselves and site improvements are complete. Smooth and re-vegetate all disturbed areas.
- 10. All swales and all drainage ponds and structures will be constructed and fully stabilized prior to having run-off being directed to them.
- 11. Finish graveling all roadways/parking.

4.6 Temporary Erosion Control Measures

- 1. The smallest practical area of open soil shall be exposed at any one time.
- 2. Erosion, sediment control measures shall be installed as shown on the plans and at locations as required, or directed by the engineer.
- 3. All disturbed areas shall be returned to original grades and elevations. Disturbed areas shall be loamed with a minimum of 4" of loam and seeded with not less than 1.10 pound of seed per 1,000 square feet (48 pounds per acre) of area.
- 4. Silt fences and other barriers shall be inspected periodically and after every rainstorm during the life of the project. All damaged areas shall be repaired; sediment deposits shall periodically be removed and properly disposed of.
- 5. After all disturbed areas have been stabilized, the temporary erosion control measures are to be removed and the area disturbed by the removal smoothed and revegetated.

- 6. Areas must be seeded and mulched within 5 days of final grading, permanently stabilized within 15 days of final grading, or temporarily stabilized within 30 days of initial disturbance of soil.
- 4.7 Inspection and Maintenance Schedule

Fencing/Erosion Control Berm will be inspected during and after storm events to ensure that the fence still has integrity and is not allowing sediment to pass. Sediment build-up in swales and level spreaders will be removed if it is deeper than six inches.

5.0 CONCLUSION

This proposed development off NH Route 125 in Barrington, NH will have no adverse effect on abutting property owners by way of stormwater run-off or siltation. The post-construction peak rate of run-off for the site has been decreased or match from that of the approved conditions for the analyzed design storms and roadway run-off will be treated by deep-sump catchbasins, a sediment forebay, and a sand filter pond. Appropriate steps will be taken to eliminate erosion and sedimentation through the Best Management Practices developed by the State of New Hampshire that have been utilized in the design of this system and these applications will be enforced throughout the construction process.

An Alteration of Terrain Permit (RSA 485: A-17) is required for this project based on the condition cited in permit #AoT-2069.

Respectfully Submitted,

BEALS ASSOCIATES, PLLC.

Christian O. Smith

Christian O. Smith, PE Principal

Appendix I

Existing Conditions Analysis

2-Year 24-Hour Summary

10-Year 24-Hour Complete

50-Year 24-Hour Summary

NH-1144.5-Existing 08-2023 Prepared by Beals Associates, PLLC HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.971	68	1 acre lots, 20% imp, HSG B (3)
5.465	79	1 acre lots, 20% imp, HSG C (3B, 3I)
3.786	80	1/2 acre lots, 25% imp, HSG C (3, 3A)
0.579	65	2 acre lots, 12% imp, HSG B (3)
2.119	77	2 acre lots, 12% imp, HSG C (3)
0.424	61	>75% Grass cover, Good, HSG B (3F)
1.114	74	>75% Grass cover, Good, HSG C (1S, 3, 3C, 3D, 3E)
0.724	96	Gravel surface, HSG C (3)
0.350	89	Paved roads w/open ditches, 50% imp, HSG B (3C)
2.132	92	Paved roads w/open ditches, 50% imp, HSG C (1S, 3, 3A, 3B, 3D, 3E)
0.037	98	Roofs, HSG C (1S)
3.362	94	Urban commercial, 85% imp, HSG C (1S, 3)
1.980	98	Water Surface, HSG D (3)
2.673	55	Woods, Good, HSG B (3, 3F)
31.643	70	Woods, Good, HSG C (1S, 3, 3A, 3B)
57.359	75	TOTAL AREA

Soil Listing (all nodes)

1	Area	Soil	Subcatchment
(ac	cres)	Group	Numbers
0	.000	HSG A	
4	.997	HSG B	3, 3C, 3F
50	.383	HSG C	1S, 3, 3A, 3B, 3C, 3D, 3E, 3I
1	.980	HSG D	3
0	.000	Other	
57	.359		TOTAL AREA

NH-1144.5-Existing 08-2023 Prepared by Beals Associates, PLLC HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Printed 10/12/2023 Page 4

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchr
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	0.971	5.465	0.000	0.000	6.436	1 acre lots, 20% imp	-
0.000	0.000	3.786	0.000	0.000	3.786	1/2 acre lots, 25% imp	
0.000	0.579	2.119	0.000	0.000	2.698	2 acre lots, 12% imp	
0.000	0.424	1.114	0.000	0.000	1.539	>75% Grass cover, Good	
0.000	0.000	0.724	0.000	0.000	0.724	Gravel surface	
0.000	0.350	2.132	0.000	0.000	2.482	Paved roads w/open ditches, 50%	
						imp	
0.000	0.000	0.037	0.000	0.000	0.037	Roofs	
0.000	0.000	3.362	0.000	0.000	3.362	Urban commercial, 85% imp	
0.000	0.000	0.000	1.980	0.000	1.980	Water Surface	
0.000	2.673	31.643	0.000	0.000	34.316	Woods, Good	
0.000	4.997	50.383	1.980	0.000	57.359	TOTAL AREA	
	HSG-A (acres) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	HSG-A HSG-B (acres) (acres) 0.000 0.971 0.000 0.000 0.000 0.579 0.000 0.424 0.000 0.000 0.000 0.350 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.673 0.000 4.997	HSG-A (acres) HSG-B (acres) HSG-C (acres) 0.000 0.971 5.465 0.000 0.000 3.786 0.000 0.579 2.119 0.000 0.424 1.114 0.000 0.350 2.132 0.000 0.350 2.132 0.000 0.000 0.037 0.000 0.000 3.362 0.000 0.000 0.000 0.000 2.673 31.643 0.000 4.997 50.383	HSG-A (acres)HSG-B (acres)HSG-C (acres)HSG-D (acres)0.0000.9715.4650.0000.0000.0003.7860.0000.0000.5792.1190.0000.0000.4241.1140.0000.0000.0000.7240.0000.0000.3502.1320.0000.0000.0003.3620.0000.0000.0003.3620.0000.0000.0003.3620.0000.0002.67331.6430.0000.0004.99750.3831.980	HSG-A (acres)HSG-B (acres)HSG-C (acres)HSG-D (acres)Other (acres)0.0000.9715.4650.0000.0000.0000.0003.7860.0000.0000.0000.5792.1190.0000.0000.0000.4241.1140.0000.0000.0000.0000.7240.0000.0000.0000.3502.1320.0000.0000.0000.0003.3620.0000.0000.0000.0003.3620.0000.0000.0000.00031.6430.0000.0000.0002.67331.6430.0000.0000.0004.99750.3831.9800.000	HSG-A (acres)HSG-B (acres)HSG-C (acres)HSG-D (acres)Other (acres)Total (acres)0.0000.9715.4650.0000.0006.4360.0000.0003.7860.0000.0003.7860.0000.5792.1190.0000.0002.6980.0000.4241.1140.0000.0001.5390.0000.0000.7240.0000.0000.7240.0000.3502.1320.0000.0002.4820.0000.0003.3620.0000.0003.3620.0000.0003.3620.0001.9800.0000.0002.67331.6430.0000.00034.3160.0004.99750.3831.9800.00057.359	HSG-A (acres) HSG-C (acres) HSG-D (acres) Other (acres) Total (acres) Ground Cover 0.000 0.971 5.465 0.000 0.000 6.436 1 acre lots, 20% imp 0.000 0.000 3.786 0.000 0.000 3.786 1/2 acre lots, 25% imp 0.000 0.579 2.119 0.000 0.000 2.698 2 acre lots, 12% imp 0.000 0.424 1.114 0.000 0.000 1.539 >75% Grass cover, Good 0.000 0.350 2.132 0.000 0.000 0.724 Gravel surface 0.000 0.350 2.132 0.000 0.000 2.482 Paved roads w/open ditches, 50% imp 0.000 0.000 0.037 0.000 0.000 3.362 Urban commercial, 85% imp 0.000 0.000 3.362 0.000 0.000 1.980 Water Surface 0.000 2.673 31.643 0.000 0.000 34.316 Woods, Good

Ground Covers (all nodes)

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: To SSF	Runoff Area=139,897 sf 39.67% Impervious Runoff Depth=1.44" Flow Length=968' Tc=22.6 min CN=82 Runoff=3.45 cfs 0.386 af
Subcatchment 3: North Parcel area	Runoff Area=1,832,858 sf 12.91% Impervious Runoff Depth=0.96" Flow Length=1,703' Tc=68.0 min CN=74 Runoff=16.01 cfs 3.364 af
Subcatchment 3A: To Cistern Culv	Runoff Area=85,627 sf 20.78% Impervious Runoff Depth=1.25" Flow Length=802' Tc=22.4 min CN=79 Runoff=1.81 cfs 0.204 af
Subcatchment 3B: To Culv sta 10+00	Runoff Area=144,824 sf 10.00% Impervious Runoff Depth=0.96" Flow Length=935' Tc=24.8 min CN=74 Runoff=2.15 cfs 0.266 af
Subcatchment 3C: To Culv sta 6+20	Runoff Area=22,668 sf 33.64% Impervious Runoff Depth=1.58" Flow Length=253' Tc=7.3 min CN=84 Runoff=0.92 cfs 0.069 af
Subcatchment 3D: To Culv sta 9+15	Runoff Area=10,507 sf 44.02% Impervious Runoff Depth=2.06" Tc=6.0 min CN=90 Runoff=0.58 cfs 0.041 af
Subcatchment 3E: To Culv sta 12+40	Runoff Area=12,188 sf 34.47% Impervious Runoff Depth=1.73" Tc=6.0 min CN=86 Runoff=0.57 cfs 0.040 af
Subcatchment 3F: Direct to Bioret po	nd Runoff Area=65,477 sf 0.00% Impervious Runoff Depth=0.27" Flow Length=398' Tc=11.2 min CN=57 Runoff=0.17 cfs 0.034 af
Subcatchment 3I: To CULV STA 6+90	Runoff Area=184,533 sf 20.00% Impervious Runoff Depth=1.25" Flow Length=653' Tc=28.8 min CN=79 Runoff=3.49 cfs 0.440 af
Reach 3IR: SSF THROUGH SUBCAT 3 n=0.030	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=667.0' S=0.0582 '/' Capacity=379.37 cfs Outflow=0.00 cfs 0.000 af
Reach 3R: Reach THROUGH SUBCAT n=0.080 L=	(3) Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af 2,144.0' S=0.0433 '/' Capacity=185.81 cfs Outflow=0.00 cfs 0.000 af
Reach 300: Northerly Analysis Point (Did Green Hill stream crossingInflow=16.01 cfs3.515 afOutflow=16.01 cfs3.515 af
Pond 1P: Surface Sand Filter Pond Discarded=0.67 cfs 0.386 af Primary=0.00	Peak Elev=194.13' Storage=5,688 cf Inflow=3.45 cfs 0.386 af cfs 0.000 af Secondary=0.00 cfs 0.000 af Outflow=0.67 cfs 0.386 af
Pond 3AP: 3AP 15.0" Ro	Peak Elev=266.66' Storage=20 cf Inflow=1.81 cfs 0.204 af ound Culvert n=0.013 L=108.0' S=0.0417 '/' Outflow=1.81 cfs 0.204 af
Pond 3BP: 3BP 24.0" F	Peak Elev=246.90' Storage=37 cf Inflow=3.93 cfs 0.470 af Round Culvert n=0.013 L=40.0' S=0.0100 '/' Outflow=3.93 cfs 0.470 af
Pond 3CP: 3CP	Peak Elev=239.32' Storage=30 cf Inflow=4.79 cfs 0.620 af Outflow=4.79 cfs 0.620 af

NH-1144.5-Existing 08-20 Prepared by Beals Associate)23 Type es, PLLC	III 24-hr 2 YR Rainfall=3.08" Printed 10/12/2023
<u>InyuloCAD® 10.20-3C S/II 01734</u>	© 2023 Hydrocad Soliware Solutions LLC	rage 0
Pond 3DP: 3DP	Peak Elev=259.35' Stora 15.0" Round Culvert n=0.013 L=55.0' S=0.0	ge=2 cf Inflow=0.58 cfs 0.041 af 200 '/' Outflow=0.58 cfs 0.041 af
Pond 3EP: CULV sta 12+40	Peak Elev=240.52' Storag 15.0" Round Culvert n=0.013 L=49.0' S=0.0	e=15 cf Inflow=1.14 cfs 0.082 af 100 '/' Outflow=1.14 cfs 0.082 af
Pond 3FB: Sed Forbay	Peak Elev=214.75' Storage=3	3,328 cf Inflow=4.79 cfs 0.620 af Outflow=4.79 cfs 0.550 af
Pond 3FP: Bioretention Pond Dis	Peak Elev=215.08' Storage=12 carded=0.16 cfs 0.433 af Primary=0.58 cfs 0.7	2,747 cf Inflow=4.96 cfs 0.584 af 151 af Outflow=0.74 cfs 0.584 af
Pond 3IP: 3IP	Peak Elev=247.17' Storage=19 24.0" Round Culvert n=0.013 L=94.0' S=0.0	9,180 cf Inflow=3.49 cfs 0.440 af 798 '/' Outflow=0.00 cfs 0.000 af
Pond DMH1: DMH 1	Peak Elev= 24.0" Round Culvert n=0.013 L=143.0' S=0.0	223.97' Inflow=4.79 cfs 0.620 af 483 '/' Outflow=4.79 cfs 0.620 af
Pond DMH1B: DMH 1B	Peak Elev= 24.0" Round Culvert n=0.013 L=138.0' S=0.0	216.97' Inflow=4.79 cfs 0.620 af 100 '/' Outflow=4.79 cfs 0.620 af
Total Runoff Ar	ea = 57.359 ac Runoff Volume = 4.845 af 84.88% Pervious = 48.687 ac	Average Runoff Depth = 1.01" 15.12% Impervious = 8.673 ac

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: To SSF	Runoff Area=139,897 sf 39.67% Impervious Runoff Depth=2.76" Flow Length=968' Tc=22.6 min CN=82 Runoff=6.65 cfs 0.738 af
Subcatchment 3: North Parcel area	Runoff Area=1,832,858 sf 12.91% Impervious Runoff Depth=2.08" Flow Length=1,703' Tc=68.0 min CN=74 Runoff=37.00 cfs 7.295 af
Subcatchment 3A: To Cistern Culv	Runoff Area=85,627 sf 20.78% Impervious Runoff Depth=2.49" Flow Length=802' Tc=22.4 min CN=79 Runoff=3.70 cfs 0.409 af
Subcatchment3B: To Culv sta 10+00	Runoff Area=144,824 sf 10.00% Impervious Runoff Depth=2.08" Flow Length=935' Tc=24.8 min CN=74 Runoff=4.93 cfs 0.576 af
Subcatchment 3C: To Culv sta 6+20	Runoff Area=22,668 sf 33.64% Impervious Runoff Depth=2.94" Flow Length=253' Tc=7.3 min CN=84 Runoff=1.71 cfs 0.128 af
Subcatchment 3D: To Culv sta 9+15	Runoff Area=10,507 sf 44.02% Impervious Runoff Depth=3.53" Tc=6.0 min CN=90 Runoff=0.97 cfs 0.071 af
Subcatchment 3E: To Culv sta 12+40	Runoff Area=12,188 sf 34.47% Impervious Runoff Depth=3.13" Tc=6.0 min CN=86 Runoff=1.02 cfs 0.073 af
Subcatchment 3F: Direct to Bioret po	nd Runoff Area=65,477 sf 0.00% Impervious Runoff Depth=0.92" Flow Length=398' Tc=11.2 min CN=57 Runoff=1.08 cfs 0.115 af
Subcatchment 3I: To CULV STA 6+90	Runoff Area=184,533 sf 20.00% Impervious Runoff Depth=2.49" Flow Length=653' Tc=28.8 min CN=79 Runoff=7.13 cfs 0.881 af
Reach 3IR: SSF THROUGH SUBCAT 3 n=0.030	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af L=667.0' S=0.0582 '/' Capacity=379.37 cfs Outflow=0.00 cfs 0.000 af
Reach 3R: Reach THROUGH SUBCAT n=0.080 L=	3) Avg. Flow Depth=0.19' Max Vel=0.98 fps Inflow=2.60 cfs 0.427 af :2,144.0' S=0.0433 '/' Capacity=185.81 cfs Outflow=1.14 cfs 0.427 af
Reach 300: Northerly Analysis Point (Did Green Hill stream crossingInflow=41.35 cfs8.575 afOutflow=41.35 cfs8.575 af
Pond 1P: Surface Sand Filter Pond Discarded=0.71 cfs 0.738 af Primary=0.00	Peak Elev=195.96' Storage=14,262 cf Inflow=6.65 cfs 0.738 af cfs 0.000 af Secondary=0.00 cfs 0.000 af Outflow=0.71 cfs 0.738 af
Pond 3AP: 3AP 15.0" Ro	Peak Elev=267.02' Storage=44 cf Inflow=3.70 cfs 0.409 af ound Culvert n=0.013 L=108.0' S=0.0417 '/' Outflow=3.69 cfs 0.409 af
Pond 3BP: 3BP 24.0" F	Peak Elev=247.44' Storage=84 cf Inflow=8.59 cfs 0.985 af Round Culvert n=0.013 L=40.0' S=0.0100 '/' Outflow=8.59 cfs 0.985 af
Pond 3CP: 3CP	Peak Elev=239.53' Storage=79 cf Inflow=10.12 cfs 1.257 af Outflow=10.12 cfs 1.257 af

NH-1144.5-Existing 08-2 Prepared by Beals Associa	023 Type III 24-hr 10 YR Rainfall=4.64" tes, PLLC Printed 10/12/2023
HydroCAD® 10.20-3c s/n 01754	© 2023 HydroCAD Software Solutions LLC Page 2
Pond 3DP: 3DP	Peak Elev=259.47' Storage=3 cf Inflow=0.97 cfs 0.071 af 15.0" Round Culvert n=0.013 L=55.0' S=0.0200 '/' Outflow=0.97 cfs 0.071 af
Pond 3EP: CULV sta 12+40	Peak Elev=240.72' Storage=27 cf Inflow=1.98 cfs 0.144 af 15.0" Round Culvert n=0.013 L=49.0' S=0.0100 '/' Outflow=1.98 cfs 0.144 af
Pond 3FB: Sed Forbay	Peak Elev=214.85' Storage=3,512 cf Inflow=10.12 cfs 1.257 af Outflow=10.11 cfs 1.187 af
Pond 3FP: Bioretention Pon Di	d Peak Elev=215.45' Storage=16,645 cf Inflow=10.96 cfs 1.302 af scarded=0.17 cfs 0.449 af Primary=7.84 cfs 0.853 af Outflow=8.01 cfs 1.302 af
Pond 3IP: 3IP	Peak Elev=250.12' Storage=19,941 cf Inflow=7.13 cfs 0.881 af 24.0" Round Culvert n=0.013 L=94.0' S=0.0798 '/' Outflow=2.60 cfs 0.427 af
Pond DMH1: DMH 1	Peak Elev=224.62' Inflow=10.12 cfs 1.257 af 24.0" Round Culvert n=0.013 L=143.0' S=0.0483 '/' Outflow=10.12 cfs 1.257 af
Pond DMH1B: DMH 1B	Peak Elev=217.62' Inflow=10.12 cfs 1.257 af 24.0" Round Culvert n=0.013 L=138.0' S=0.0100 '/' Outflow=10.12 cfs 1.257 af
Total Runoff Are	ea = 57.359 ac Runoff Volume = 10.286 af Average Runoff Depth = 2.15" 84.88% Pervious = 48.687 ac 15.12% Impervious = 8.673 ac

Summary for Subcatchment 1S: To SSF

Runoff = 6.65 cfs @ 12.31 hrs, Volume= 0.738 af, Depth= 2.76" Routed to Pond 1P : Surface Sand Filter Pond

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

A	rea (sf)	CN	Description				
	18,458	74	>75% Gras	s cover, Go	ood, HSG C		
	11,633	92	Paved road	s w/open d	itches, 50% imp, HSG C		
	56,566	94	Urban comr	mercial, 85º	% imp, HSG C		
	51,634	70	Woods, Go	od, HSG C			
	1,606	98	Roofs, HSC	S C			
1	39,897	82	Weighted A	verage			
	84,393		60.33% Per	vious Area			
	55,504		39.67% Imp	pervious Are	ea		
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
9.7	50	0.0400	0.09		Sheet Flow, Sheet		
					Woods: Light underbrush n= 0.400 P2= 3.00"		
12.9	918	0.0560	1.18		Shallow Concentrated Flow, SC to pond		
					Woodland Kv= 5.0 fps		
22.6	968	Total					

Summary for Subcatchment 3: North Parcel area

Runoff = 37.00 cfs @ 12.92 hrs, Volume= 7.295 af, Depth= 2.08" Routed to Reach 300 : Northerly Analysis Point Old Green Hill stream crossing

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

Area (sf)	CN	Description
45,998	92	Paved roads w/open ditches, 50% imp, HSG C
31,535	96	Gravel surface, HSG C
17,624	74	>75% Grass cover, Good, HSG C
25,200	65	2 acre lots, 12% imp, HSG B
92,321	77	2 acre lots, 12% imp, HSG C
42,297	68	1 acre lots, 20% imp, HSG B
113,838	80	1/2 acre lots, 25% imp, HSG C
89,867	94	Urban commercial, 85% imp, HSG C
86,235	98	Water Surface, HSG D
1,218,488	70	Woods, Good, HSG C
69,455	55	Woods, Good, HSG B
1,832,858	74	Weighted Average
1,596,216		87.09% Pervious Area
236,642		12.91% Impervious Area

Prepared by Beals Associates, PLLC HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Capacity Tc Length Slope Velocity Description (feet) (ft/ft) (ft/sec) (cfs) (min) 0.0200 0.07 12.7 Sheet Flow, Sheet 50 Woods: Light underbrush n= 0.400 P2= 3.00" 2.9 1.55 Shallow Concentrated Flow, SC on slope to wetland 266 0.0960

			Woodland Kv= 5.0 fps
23.9	800 0.0125	0.56	Shallow Concentrated Flow, SC to swamp
			Woodland Kv= 5.0 fps
28.5	587 0.0047	0.34	Shallow Concentrated Flow, SC through swamp to analysis poi
			Woodland Kv= 5.0 fps

68.0 1,703 Total

Summary for Subcatchment 3A: To Cistern Culv

Runoff	=	3.70 cfs @	12.32 hrs,	Volume=	0.409 af,	Depth= 2.49"
Routed	to Pond	3AP : 3AP				

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

A	rea (sf)	CN E	Description					
	10,052	92 F	92 Paved roads w/open ditches, 50% imp, HSG C					
	51,070	80 1	/2 acre lots	s, 25% imp	, HSG C			
	24,505	70 V	Voods, Go	od, HSG C				
	85,627	79 V	Veighted A	verage				
	67,834	7	9.22% Per	rvious Area				
17,794 20.78%			0.78% Imp	pervious Are	ea			
_		<u>.</u>		a 14	— • • •			
IC	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cts)				
12.7	50	0.0200	0.07		Sheet Flow, Sheet			
					Woods: Light underbrush n= 0.400 P2= 3.00"			
8.2	477	0.0377	0.97		Shallow Concentrated Flow, SC to lot dev area			
					Woodland Kv= 5.0 fps			
0.3	86	0.1200	5.58		Shallow Concentrated Flow, SC to swale			
					Unpaved Kv= 16.1 fps			
1.2	189	0.0310	2.64		Shallow Concentrated Flow, SC to analysis point			
					Grassed Waterway Kv= 15.0 fps			
22.4	802	Total						

Summary for Subcatchment 3B: To Culv sta 10+00

Runoff	=	4.93 cfs @	12.37 hrs,	Volume=	0.576	af, Depth=	2.08"
Routed	l to Pond	1 3BP : 3BP					

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

Prepared by Beals Associates, PLLC

HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

	<u></u>							
Area (st)	CN	Description						
7,550	92	Paved roads w/open ditches, 50% imp, HSG C						
53,529	79	1 acre lots, 20% imp, HSG C						
83,745	70	Woods, Good, HSG C						
144,824	74	Weighted Average						
130,343		90.00% Pervious Area						
14,481		10.00% Impervious Area						
c Length) (feet)	Slop (ft/	be Velocity Capacity Description ft) (ft/sec) (cfs)						

_					
	13.3	50	0.0180	0.06	Sheet Flow, Sheet Woods: Light underbrush n= 0.400 P2= 3.00"
	2.5	204	0.0730	1.35	Shallow Concentrated Flow, SC slope to wetland
	7.9	366	0.0240	0.77	Shallow Concentrated Flow, SC to lot 42
	1.1	315	0.1070	4.91	Shallow Concentrated Flow, SC to culv Grassed Waterway Kv= 15.0 fps

24.8 935 Total

Tc (min)

Summary for Subcatchment 3C: To Culv sta 6+20

Runoff = 1.71 cfs @ 12.10 hrs, Volume= Routed to Pond 3CP : 3CP 0.128 af, Depth= 2.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

	A	rea (sf)	CN	Description				
		15,250	89	Paved road	s w/open d	litches, 50% imp, HSG B		
		7,418	74	>75% Gras	s cover, Go	bod, HSG C		
		22,668	84	Weighted A	verage			
		15,043		56.36% Pei	rvious Area	l		
		7,625	;	33.64% Imp	pervious Ar	ea		
				-				
	Тс	Length	Slope	Velocity	Capacity	Description		
<u>(m</u>	in)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
6	6.8	50	0.0350	0.12		Sheet Flow, Sheet		
						Grass: Dense n= 0.240 P2= 3.00"		
C).5	203	0.1870	6.49		Shallow Concentrated Flow, SC to CB		
						Grassed Waterway Kv= 15.0 fps		
		0 - 0						

7.3 253 Total

Summary for Subcatchment 3D: To Culv sta 9+15

Runoff = 0.97 cfs @ 12.09 hrs, Volume= 0.071 af, Depth= 3.53" Routed to Pond 3DP : 3DP

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

Prepared by Beals Associates, PLLC

HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description				
	9,250	92	Paved roads w/open ditches, 50% imp, HSG C				
	1,257	74	>75% Grass cover, Good, HSG C				
	10,507	90	Weighted A	verage			
	5,882		55.98% Pervious Area				
	4,625		44.02% Impervious Area				
Tc	Length	Slope	e Velocity	Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
6.0					Direct Entry, Direct		

Summary for Subcatchment 3E: To Culv sta 12+40

Runoff = 1.02 cfs @ 12.09 hrs, Volume= 0.073 af, Depth= 3.13" Routed to Pond 3EP : CULV sta 12+40

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

A	rea (sf)	CN	Description					
	8,402	92	Paved road	Paved roads w/open ditches, 50% imp, HSG C				
	3,786	74	>75% Grass cover, Good, HSG C					
	12,188	86	Weighted A	verage				
	7,987		35.53% Pervious Area					
	4,201		34.47% Imp	pervious Are	ea			
Тс	Length	Slope	e Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)				
6.0					Direct Entry, Direct			
					-			

Summary for Subcatchment 3F: Direct to Bioret pond

Runoff = 1.08 cfs @ 12.18 hrs, Volume= 0.115 af, Depth= 0.92" Routed to Pond 3FP : Bioretention Pond

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

Area (sf)	CN	Description
18,488	61	>75% Grass cover, Good, HSG B
46,989	55	Woods, Good, HSG B
65,477	57	Weighted Average
65,477		100.00% Pervious Area

Prepare	Prepared by Beals Associates, PLLC Printed 10/12/2023								
HydroCA	D® 10.20-	3c s/n 01	754 © 202	3 HydroCAE	Software Solutions LLC Page 7				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
7.9 3.3	50 348	0.0650 0.1200	0.10 1.73		Sheet Flow, Sheet Woods: Light underbrush n= 0.400 P2= 3.00" Shallow Concentrated Flow, SC on slope to pond Woodland Kv= 5.0 fps				
11.2	398	Total							
	Summary for Subcatchment 3I: To CULV STA 6+90								
Runoff Route	Runoff = 7.13 cfs @ 12.39 hrs, Volume= 0.881 af, Depth= 2.49" Routed to Pond 3IP : 3IP								
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"									

Type III 24-hr 10 YR Rainfall=4.64"

A	rea (sf)	CN D	escription						
1	84,533	79 1	79 1 acre lots, 20% imp, HSG C						
1	147,626 80.00% Pervious Area			vious Area					
	36,907	2	0.00% Imp	pervious Ar	ea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
15.1	50	0.0130	0.06		Sheet Flow, Sheet				
13.7	603	0.0110	0.73		Woods: Light underbrush n= 0.400 P2= 3.00" Shallow Concentrated Flow, SC to CULV Short Grass Pasture Kv= 7.0 fps				
28.8	653	Total							

Summary for Reach 3IR: SSF THROUGH SUBCAT 3

Inflow Area =3.212 ac, 39.67% Impervious, Inflow Depth =0.00" for 10 YR eventInflow =0.00 cfs @0.00 hrs, Volume=0.000 afOutflow =0.00 cfs @0.00 hrs, Volume=0.000 af, Atten= 0%, Lag= 0.0 minRouted to Reach 300 : Northerly Analysis Point Old Green Hill stream crossing

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 2.00' Flow Area= 26.7 sf, Capacity= 379.37 cfs

NH-1144.5-Existing 08-2023

20.00' x 2.00' deep Parabolic Channel, n= 0.030 Earth, grassed & winding Length= 667.0' Slope= 0.0582 '/' Inlet Invert= 186.00', Outlet Invert= 147.20'

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	57.359 ac, 1	15.12% Imp	ervious,	Inflow Dept	h = 1.7	79" for 10	YR event
Inflow	=	41.35 cfs @	12.92 hrs,	Volume	= 8.	575 af		
Outflow	=	41.35 cfs @	12.92 hrs,	Volume	= 8.	575 af,	Atten= 0%,	Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 1P: Surface Sand Filter Pond

NH-1144.5-Existing 08-2023Type III 24-hr10 YR Rainfall=4.64"Prepared by Beals Associates, PLLCPrinted 10/12/2023HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLCPage 9

Inflow Area	a =	3.21	2 ac,	39.67% Imp	pervious,	Inflow	Depth =	2.7	6" for	10 Y	'R even	t	
Inflow	=	6.65	cfs @	12.31 hrs	Volume	=	0.738	af					
Outflow	=	0.71	cfs @	14.04 hrs	Volume	=	0.738	af,	Atten=	89%,	Lag= 1	03.9 mir	n
Discarded	=	0.71	cfs @	14.04 hrs	Volume	=	0.738	af			•		
Primary	=	0.00	cfs @	0.00 hrs	Volume	=	0.000	af					
Routed	Routed to Reach 3IR : SSF THROUGH SUBCAT 3												
Secondary	=	0.00	cfs @	0.00 hrs	Volume	=	0.000	af					
Routed	to Read	h 3IR	: SSF	THROUGH	SUBCA	Т З							

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 195.96' @ 14.04 hrs Surf.Area= 10,259 sf Storage= 14,262 cf Flood Elev= 197.75' Surf.Area= 12,641 sf Storage= 34,750 cf

Plug-Flow detention time= 194.0 min calculated for 0.738 af (100% of inflow) Center-of-Mass det. time= 193.9 min (1,028.8 - 834.8)

Volume	Invert	Avail.S	Storage	Storage Descript	tion			
#1	192.50'	34	,750 cf	Custom Stage I	Data (Prismatic)Liste	d below (Recalc)		
Elevatio	on Su	urf.Area V	/oids	Inc.Store	Cum.Store			
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)			
192.5	50	9,673	0.0	0	0			
193.5	50	9,673	40.0	3,869	3,869			
195.5	50	9,673	30.0	5,804	9,673			
196.0	00	10,309 1	00.0	4,996	14,669			
197.7	75	12,641 1	00.0	20,081	34,750			
Device	Routing	Inve	rt Outle	et Devices				
#1	Primary	192.00	0' 12.0 ' L= 3 Inlet n= 0	" Round Culvert 5.0' CPP, end-se / Outlet Invert= 19 013 Corrugated	: ection conforming to 1 92.00' / 186.00' S= (PE_smooth interior	fill, Ke= 0.500).1714 '/' Cc= 0.900 Flow Area= 0 79 sf		
#2	Device 1	197.00	0' 19.0 ' Limit	19.0" x 19.0" Horiz. Orifice/Grate C= 0.600				
#3	Secondary	197.50	0' 8.0' Head Coef	ong x 10.0' breadth Broad-Crested Rectangular Weir I (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60				
#4	Discarded	192.50	0' 2.98	7 in/hr Exfiltratio	n over Surface area	Phase-In= 0.01'		

Discarded OutFlow Max=0.71 cfs @ 14.04 hrs HW=195.96' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.71 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=192.50' (Free Discharge) 1=Culvert (Passes 0.00 cfs of 0.95 cfs potential flow) 2=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=192.50' (Free Discharge) —3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 3AP: 3AP

Inflow Area	=	1.966 ac, 2	0.78% Impe	ervious, Inflow De	epth =	2.49"	for 10 Y	rR event
Inflow	=	3.70 cfs @	12.32 hrs,	Volume=	0.409	af		
Outflow	=	3.69 cfs @	12.32 hrs,	Volume=	0.409	af, Atte	n= 0%,	Lag= 0.1 min
Primary	=	3.69 cfs @	12.32 hrs,	Volume=	0.409	af		•
Routed t	o Pond	3BP : 3BP						

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 267.02' @ 12.32 hrs Surf.Area= 77 sf Storage= 44 cf

Plug-Flow detention time= 0.2 min calculated for 0.409 af (100% of inflow) Center-of-Mass det. time= 0.2 min (843.2 - 843.0)

Volume	Inv	vert Avail.Sto	orage Stora	ge Description	
#1	266.	00' 4	00 cf Custo	om Stage Data (P	rismatic)Listed below (Recalc)
Elevatio	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
266.0 268.0 269.0)0)0)0	8 144 352	0 152 248	0 152 400	
Device	Routing	Invert	Outlet Devi	ces	
#1	Primary	266.00'	15.0" Rou L= 108.0' Inlet / Outle n= 0.013 C	nd Culvert CPP, square edge et Invert= 266.00' / Corrugated PE, sm	e headwall, Ke= 0.500 261.50' S= 0.0417 '/' Cc= 0.900 ooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.69 cfs @ 12.32 hrs HW=267.02' (Free Discharge) **1=Culvert** (Inlet Controls 3.69 cfs @ 3.44 fps)

Summary for Pond 3BP: 3BP

Inflow Area	=	5.290 ac, 1	4.00% Imperv	vious, Inflow De	pth = 2.	23" for 10`	YR event
Inflow	=	8.59 cfs @	12.33 hrs, Vo	olume=	0.985 af		
Outflow	=	8.59 cfs @	12.33 hrs, Vo	olume=	0.985 af,	Atten= 0%,	Lag= 0.1 min
Primary	=	8.59 cfs @	12.33 hrs, Vo	olume=	0.985 af		•
Routed	to Pond	3CP: 3CP					

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 247.44' @ 12.33 hrs Surf.Area= 105 sf Storage= 84 cf

Plug-Flow detention time= 0.2 min calculated for 0.985 af (100% of inflow) Center-of-Mass det. time= 0.2 min (852.4 - 852.2)

Volume	Invert	Avail.Storage	Storage Description
#1	246.00'	391 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Prepared by Beals Associates, PLLC

HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
246.00	12	0	0
248.00	142	154	154
249.00	332	237	391

Device	Routing
#1	Primary

246.00' 24.0" Round Culvert

L= 40.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 246.00' / 245.60' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=8.59 cfs @ 12.33 hrs HW=247.44' (Free Discharge) -1=Culvert (Barrel Controls 8.59 cfs @ 4.98 fps)

Invert Outlet Devices

Summary for Pond 3CP: 3CP

[79] Warning: Submerged Pond 3EP Primary device # 1 OUTLET by 0.02'

6.332 ac, 17.67% Impervious, Inflow Depth = 2.38" for 10 YR event Inflow Area = 10.12 cfs @ 12.32 hrs, Volume= Inflow = 1.257 af 10.12 cfs @ 12.32 hrs, Volume= Outflow = 1.257 af, Atten= 0%, Lag= 0.2 min 10.12 cfs @ 12.32 hrs, Volume= Primary 1.257 af = Routed to Pond DMH1 : DMH 1

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 239.53' @ 12.32 hrs Surf.Area= 288 sf Storage= 79 cf Flood Elev= 241.00' Surf.Area= 1,480 sf Storage= 1,280 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.1 min (842.8 - 842.7)

Volume	Invo	ert Avail.Sto	orage Storage	e Description				
#1	239.0	00' 3,2	31 cf Custon	n Stage Data (Pi	rismatic)Listed below (Recalc)			
Elevatio	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)				
239.0	00	8	0	0				
240.0	00	536	272	272				
242.0	00	2,423	2,959	3,231				
Device	Routing	Invert	Outlet Device	es				
#1	Primary	234.00'	18.0" Round L= 70.0' CP Inlet / Outlet n= 0.013 Co	d Culvert P, square edge I Invert= 234.00' / rrugated PE, sm	neadwall, Ke= 0.500 223.00' S= 0.1571 '/' Cc= 0.900 ooth interior, Flow Area= 1.77 sf			
#2	Device 1	239.00'	24.0" x 24.0' Limited to we	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads				

Primary OutFlow Max=10.11 cfs @ 12.32 hrs HW=239.53' (Free Discharge)

-1=Culvert (Passes 10.11 cfs of 18.60 cfs potential flow)

1–2=Orifice/Grate (Weir Controls 10.11 cfs @ 2.38 fps)

Summary for Pond 3DP: 3DP

Inflow Area	=	0.241 ac, 4	4.02% Impe	ervious, l	Inflow Depth =	3.5	3" for 10 \	YR event
Inflow	=	0.97 cfs @	12.09 hrs,	Volume=	= 0.071	af		
Outflow	=	0.97 cfs @	12.09 hrs,	Volume=	= 0.071	af,	Atten= 0%,	Lag= 0.0 min
Primary	=	0.97 cfs @	12.09 hrs,	Volume=	= 0.071	af		-
Routed	to Pond	3EP : CULV	sta 12+40					

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 259.47' @ 12.09 hrs Surf.Area= 8 sf Storage= 3 cf

Plug-Flow detention time= 0.2 min calculated for 0.071 af (100% of inflow) Center-of-Mass det. time= 0.2 min (793.5 - 793.3)

Volume	Inv	ert Avail.Sto	orage Sto	Storage Description			
#1	259.0	00' 4	22 cf Cus	stom Stage Data (I	Prismatic)Listed below (Recalc)		
Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc.Stor (cubic-fee	e Cum.Store	;)		
259.0 260.0 262.0 263.0)0)0)0)0	6 11 151 352	16 25	0 0 9 9 2 171 2 422			
Device	Routing	Invert	Outlet De	evices			
#1	Primary	259.00'	15.0" Ro L= 55.0' Inlet / Ou n= 0.013	CPP, square edge tlet Invert= 259.00' Corrugated PE, sr	e headwall, Ke= 0.500 / 257.90' S= 0.0200 '/' Cc= 0.900 nooth interior, Flow Area= 1.23 sf		

Primary OutFlow Max=0.96 cfs @ 12.09 hrs HW=259.46' (Free Discharge) -1=Culvert (Inlet Controls 0.96 cfs @ 2.32 fps)

Summary for Pond 3EP: CULV sta 12+40

 Inflow Area =
 0.521 ac, 38.89% Impervious, Inflow Depth =
 3.32" for 10 YR event

 Inflow =
 1.98 cfs @
 12.09 hrs, Volume=
 0.144 af

 Outflow =
 1.98 cfs @
 12.09 hrs, Volume=
 0.144 af, Atten= 0%, Lag= 0.2 min

 Primary =
 1.98 cfs @
 12.09 hrs, Volume=
 0.144 af

 Routed to Pond 3CP : 3CP
 3CP

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 240.72' @ 12.09 hrs Surf.Area= 68 sf Storage= 27 cf

Plug-Flow detention time= 0.3 min calculated for 0.144 af (100% of inflow) Center-of-Mass det. time= 0.3 min (800.8 - 800.5)

Volume	Invert	Avail.Storage	Storage Description
#1	240.00'	504 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Prepared by Beals Associates, PLLC HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Type III 24-hr 10 YR Rainfall=4.64" Printed 10/12/2023 LC Page 13

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
240.00	8	0	0
242.00	174	182	182
243.00	470	322	504

Device	Routing
#1	Primary

240.00' 15.0" Round Culvert

L= 49.0' CPP, square edge headwall, Ke= 0.500Inlet / Outlet Invert= 240.00' / 239.51' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.98 cfs @ 12.09 hrs HW=240.72' (Free Discharge) —1=Culvert (Barrel Controls 1.98 cfs @ 3.92 fps)

Invert Outlet Devices

Summary for Pond 3FB: Sed Forbay

[79] Warning: Submerged Pond DMH1B Primary device # 1 OUTLET by 0.33'

 Inflow Area =
 6.332 ac, 17.67% Impervious, Inflow Depth =
 2.38" for 10 YR event

 Inflow =
 10.12 cfs @
 12.32 hrs, Volume=
 1.257 af

 Outflow =
 10.11 cfs @
 12.33 hrs, Volume=
 1.187 af, Atten= 0%, Lag= 0.5 min

 Primary =
 10.11 cfs @
 12.33 hrs, Volume=
 1.187 af

 Routed to Pond 3FP : Bioretention Pond
 1.187 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 214.85' @ 12.33 hrs Surf.Area= 1,969 sf Storage= 3,512 cf Flood Elev= 215.00' Surf.Area= 2,071 sf Storage= 3,825 cf

Plug-Flow detention time= 44.1 min calculated for 1.187 af (94% of inflow) Center-of-Mass det. time= 14.0 min (856.8 - 842.8)

Volume	Inv	ert Avail.	Storage	Storage	Description		
#1	212.0)0' (3,825 cf	Custom	Stage Data (P	Prismatic)Listed below (Recalc)	
Elevation (feet 212.00 214.00 215.00	ו)))	Surf.Area (sq-ft) 671 1,412 2,071	Inc. (cubic	Store <u>5-feet)</u> 0 2,083 1,742	Cum.Store (cubic-feet) 0 2,083 3,825	e)) 3 5	
<u>Device</u> #1	<u>Routing</u> Primary	<u>Inve</u> 214.6	ert Outle 60' 35.0' Head 2.50	et Devices long x t l (feet) 0 3.00 3.5	5.0' breadth Br 20 0.40 0.60 50 4.00 4.50 5	Froad-Crested Rectangular Weir 0 0.80 1.00 1.20 1.40 1.60 1.80 2.00 5.00 5.50)
			2.65	2.67 2.6	6 2.68 2.70 2	2.74 2.79 2.88	

Primary OutFlow Max=10.10 cfs @ 12.33 hrs HW=214.85' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 10.10 cfs @ 1.18 fps)

Summary for Pond 3FP: Bioretention Pond

[81] Warning: Exceeded Pond 3FB by 0.66' @ 12.61 hrs

7.835 ac, 14.28% Impervious, Inflow Depth = 1.99" for 10 YR event Inflow Area = 10.96 cfs @ 12.32 hrs, Volume= Inflow = 1.302 af Outflow = 8.01 cfs @ 12.54 hrs, Volume= 1.302 af, Atten= 27%, Lag= 13.3 min Discarded = 0.17 cfs @ 12.54 hrs, Volume= 0.449 af 7.84 cfs @ 12.54 hrs, Volume= Primarv = 0.853 af Routed to Reach 300 : Northerly Analysis Point Old Green Hill stream crossing

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 215.45' @ 12.54 hrs Surf.Area= 10,843 sf Storage= 16,645 cf Flood Elev= 216.00' Surf.Area= 11,798 sf Storage= 22,868 cf

Plug-Flow detention time= 309.3 min calculated for 1.302 af (100% of inflow) Center-of-Mass det. time= 309.3 min (1,169.6 - 860.3)

Volume	Inve	ert Ava	il.Storage	Storage Descrip	tion		
#1	212.1	0'	22,868 cf	Custom Stage	Data (Conic)Listed	below (Recalc)	
Elevatior (feet	n :)	Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
212.10	C	9,445	0.0	0	0	9,445	
213.10	C	9,445	40.0	3,778	3,778	9,790	
214.60	C	9,445	30.0	4,250	8,028	10,306	
216.00	C	11,798	100.0	14,840	22,868	12,714	
Device	Routing	In	vert Out	et Devices			
#1	Primary	215	5 00' 10 ()' long x 10 0' br	eadth Broad-Crest	ted Rectangular Wei	ir

#1	Primary	215.00'	10.0' long x 10.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64
#2	Discarded	212.10'	0.680 in/hr Exfiltration over Surface area Phase-In= 0.01'

Discarded OutFlow Max=0.17 cfs @ 12.54 hrs HW=215.45' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.17 cfs)

Primary OutFlow Max=7.84 cfs @ 12.54 hrs HW=215.45' (Free Discharge) ←1=Broad-Crested Rectangular Weir (Weir Controls 7.84 cfs @ 1.74 fps)

Summary for Pond 3IP: 3IP

 Inflow Area =
 4.236 ac, 20.00% Impervious, Inflow Depth =
 2.49" for 10 YR event

 Inflow =
 7.13 cfs @
 12.39 hrs, Volume=
 0.881 af

 Outflow =
 2.60 cfs @
 12.95 hrs, Volume=
 0.427 af, Atten= 64%, Lag= 33.6 min

 Primary =
 2.60 cfs @
 12.95 hrs, Volume=
 0.427 af

 Routed to Reach 3R : Reach THROUGH SUBCAT 3)
 0.427 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 250.12' @ 12.95 hrs Surf.Area= 422 sf Storage= 19,941 cf Flood Elev= 252.00' Surf.Area= 2,256 sf Storage= 21,783 cf Plug-Flow detention time= 244.2 min calculated for 0.427 af (48% of inflow) Center-of-Mass det. time= 125.5 min (974.4 - 849.0)

Volume	Inv	vert Avail.St	orage Stora	Storage Description				
#1	149.	50' 21,	783 cf Custo	om Stage Data (P	rismatic)Listed below (Recalc)			
Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)				
149.5 250.0 251.5	50 00 50	140 256 2,256	0 19,899 1,884	0 19,899 21,783				
Device	Routing	Inver	t Outlet Devi	ces				
#1	Primary	249.50	' 24.0" Rou L= 94.0' C Inlet / Outle n= 0.013 C	nd Culvert PP, square edge et Invert= 249.50' / Corrugated PE, sm	headwall, Ke= 0.500 / 242.00' S= 0.0798 '/' Cc= 0.900 nooth interior, Flow Area= 3.14 sf			

Primary OutFlow Max=2.25 cfs @ 12.95 hrs HW=250.12' (Free Discharge) -1=Culvert (Inlet Controls 2.25 cfs @ 2.69 fps)

Summary for Pond DMH1: DMH 1

[79] Warning: Submerged Pond 3CP Primary device # 1 OUTLET by 1.62'

Inflow Area	=	6.332 ac, 1	7.67% Impe	ervious,	Inflow	Depth =	2.3	8" for 1	0 YR ev	ent
Inflow	=	10.12 cfs @	12.32 hrs,	Volume	=	1.257	af			
Outflow	=	10.12 cfs @	12.32 hrs,	Volume	=	1.257	af,	Atten= 0%	6, Lag=	0.0 min
Primary	=	10.12 cfs @	12.32 hrs,	Volume	=	1.257	af		•	
Routed to Pond DMH1B : DMH 1B										

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 224.62' @ 12.32 hrs Flood Elev= 228.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	222.90'	24.0" Round Culvert L= 143.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 222.90' / 216.00' S= 0.0483 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=10.12 cfs @ 12.32 hrs HW=224.62' (Free Discharge) **1=Culvert** (Inlet Controls 10.12 cfs @ 3.52 fps)

Summary for Pond DMH1B: DMH 1B

[79] Warning: Submerged Pond DMH1 Primary device # 1 OUTLET by 1.62'

NH-114 Prepare HydroCA	4.5-Exis d by Bea D® 10.20-3	s ting 08-2023 Is Associates, I 3c_s/n 01754 © 2	Type III 24-hr 10 YR Rainfall=4.64"PLLCPrinted 10/12/2023023 HydroCAD Software Solutions LLCPage 16				
Inflow Ar Inflow Outflow Primary Route	rea = = = = ed to Pond	6.332 ac, 17.6 10.12 cfs @ 12 10.12 cfs @ 12 10.12 cfs @ 12 10.12 cfs @ 12 3FB : Sed Forb	7% Impervious, Inflow Depth = 2.38" for 10 YR event .32 hrs, Volume= 1.257 af .32 hrs, Volume= 1.257 af, Atten= 0%, Lag= 0.0 min .32 hrs, Volume= 1.257 af ay				
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 217.62' @ 12.32 hrs Flood Elev= 220.00'							
Device	Routing	Invert	Outlet Devices				
#1	Primary	215.90'	24.0" Round Culvert L= 138.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.90' / 214.52' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf				

Primary OutFlow Max=10.12 cfs @ 12.32 hrs HW=217.62' (Free Discharge) —1=Culvert (Inlet Controls 10.12 cfs @ 3.52 fps)

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: To SSF	Runoff Area=139,897 sf 39.67% Impervious Runoff Depth=4.92" Flow Length=968' Tc=22.6 min CN=82 Runoff=11.71 cfs 1.316 af
Subcatchment 3: North Parcel area	Runoff Area=1,832,858 sf 12.91% Impervious Runoff Depth=4.04" Flow Length=1,703' Tc=68.0 min CN=74 Runoff=73.04 cfs 14.173 af
Subcatchment 3A: To Cistern Culv	Runoff Area=85,627 sf 20.78% Impervious Runoff Depth=4.58" Flow Length=802' Tc=22.4 min CN=79 Runoff=6.76 cfs 0.751 af
Subcatchment3B: To Culv sta 10+0	Runoff Area=144,824 sf 10.00% Impervious Runoff Depth=4.04" Flow Length=935' Tc=24.8 min CN=74 Runoff=9.69 cfs 1.120 af
Subcatchment3C: To Culv sta 6+20	Runoff Area=22,668 sf 33.64% Impervious Runoff Depth=5.14" Flow Length=253' Tc=7.3 min CN=84 Runoff=2.93 cfs 0.223 af
Subcatchment3D: To Culv sta 9+15	Runoff Area=10,507 sf 44.02% Impervious Runoff Depth=5.82" Tc=6.0 min CN=90 Runoff=1.55 cfs 0.117 af
Subcatchment3E: To Culv sta 12+4	0 Runoff Area=12,188 sf 34.47% Impervious Runoff Depth=5.37" Tc=6.0 min CN=86 Runoff=1.70 cfs 0.125 af
Subcatchment3F: Direct to Bioret p	Flow Length=398' Tc=11.2 min CN=57 Runoff=3.24 cfs 0.290 af
Subcatchment3I: To CULV STA 6+9	Runoff Area=184,533 sf 20.00% Impervious Runoff Depth=4.58" Flow Length=653' Tc=28.8 min CN=79 Runoff=13.08 cfs 1.618 af
Reach 3IR: SSF THROUGH SUBCAT n=0.030	T3 Avg. Flow Depth=0.12' Max Vel=2.22 fps Inflow=0.89 cfs 0.101 af L=667.0' S=0.0582 '/' Capacity=379.37 cfs Outflow=0.87 cfs 0.101 af
Reach 3R: Reach THROUGH SUBCA n=0.080	AT Avg. Flow Depth=0.46' Max Vel=1.75 fps Inflow=12.42 cfs 1.165 af L=2,144.0' S=0.0433 '/' Capacity=185.81 cfs Outflow=7.69 cfs 1.165 af
Reach 300: Northerly Analysis Point	t Old Green Hill stream crossing Inflow=86.47 cfs 17.522 af Outflow=86.47 cfs 17.522 af
Pond 1P: Surface Sand Filter Pond Discarded=0.82 cfs 1.215 af Primary=0.8	Peak Elev=197.12' Storage=27,075 cf Inflow=11.71 cfs 1.316 af 89 cfs 0.101 af Secondary=0.00 cfs 0.000 af Outflow=1.70 cfs 1.316 af
Pond 3AP: 3AP 15.0"	Peak Elev=267.93' Storage=142 cf Inflow=6.76 cfs 0.751 af Round Culvert n=0.013 L=108.0' S=0.0417 '/' Outflow=6.75 cfs 0.751 af
Pond 3BP: 3BP 24.0"	Peak Elev=248.27' Storage=200 cf Inflow=16.42 cfs 1.871 af Round Culvert n=0.013 L=40.0' S=0.0100 '/' Outflow=16.41 cfs 1.871 af
Pond 3CP: 3CP	Peak Elev=239.96' Storage=251 cf Inflow=18.90 cfs 2.336 af Outflow=18.87 cfs 2.336 af

NH-1144.5-Existing 08-2	2023	Type III 24-hr 50 YR Rainfall=7.00"					
Prepared by Beals Associa	tes, PLLC		Printed 10/	12/2023			
HydroCAD® 10.20-3c s/n 0175	4 © 2023 HydroCAD Software	e Solutions LLC		Page 2			
Pond 3DP: 3DP	Peak	Elev=259.60' Storage=5 c	f Inflow=1.55 cfs	0.117 af			
	15.0" Round Culvert n=0.	013 L=55.0' S=0.0200 '/'	Outflow=1.55 cfs	0.117 af			
Pond 3EP: CULV sta 12+40	Peak E	:lev=240.98' Storage=48 c	f Inflow=3.26 cfs	0.242 af			
	15.0" Round Culvert n=0.	013 L=49.0' S=0.0100 '/'	Outflow=3.25 cfs	0.242 af			
Pond 3FB: Sed Forbay	Peak Elev=	214.96' Storage=3,747 cf	Inflow=18.87 cfs	2.336 af			
-		(Outflow=18.86 cfs	2.266 af			
Pond 3FP: Bioretention Pon	d Peak Elev=2	15.82' Storage=20,756 cf	Inflow=21.06 cfs	2.556 af			
Disc	arded=0.18 cfs 0.472 af Prir	nary=19.92 cfs 2.084 af(Outflow=20.10 cfs	2.556 af			
Pond 3IP: 3IP	Peak Elev=2	51.21' Storage=21,179 cf	Inflow=13.08 cfs	1.618 af			
	24.0" Round Culvert n=0.0	13 L=94.0' S=0.0798 '/' (Outflow=12.42 cfs	1.165 af			
Pond DMH1: DMH 1		Peak Elev=226.40'	Inflow=18.87 cfs	2.336 af			
	24.0" Round Culvert n=0.01	3 L=143.0' S=0.0483 '/' (Outflow=18.87 cfs	2.336 af			
Pond DMH1B: DMH 1B		Peak Elev=219.40'	Inflow=18.87 cfs	2.336 af			
	24.0" Round Culvert n=0.01	3 L=138.0' S=0.0100 '/' (Outflow=18.87 cfs	2.336 af			
Total Runoff Area = 57.359 ac Runoff Volume = 19.733 af Average Runoff Depth = 4.13"							

tal Runoff Area = 57.359 ac Runoff Volume = 19.733 af Average Runoff Depth = 4.13" 84.88% Pervious = 48.687 ac 15.12% Impervious = 8.673 ac

Appendix II

Proposed Conditions Analysis

2-Year 24-Hour Summary

10-Year 24-Hour Complete

50-Year 24-Hour Summary

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.971	68	1 acre lots, 20% imp, HSG B (3)
5.465	79	1 acre lots, 20% imp, HSG C (3B, 3I)
3.786	80	1/2 acre lots, 25% imp, HSG C (3, 3A)
0.579	65	2 acre lots, 12% imp, HSG B (3)
2.119	77	2 acre lots, 12% imp, HSG C (3)
0.424	61	>75% Grass cover, Good, HSG B (3F)
3.456	74	>75% Grass cover, Good, HSG C (1.10S, 1.1S, 1.4S, 1.5S, 1.6S, 1.7S, 1.9S, 3, 3C,
		3D, 3E)
0.724	96	Gravel surface, HSG C (3)
1.194	98	Paved parking, HSG C (1.1S, 1.2S, 1.3S, 1.4S, 1.5S, 1.6S, 1.7S, 1.8S)
0.350	89	Paved roads w/open ditches, 50% imp, HSG B (3C)
2.295	92	Paved roads w/open ditches, 50% imp, HSG C (1.10S, 3, 3A, 3B, 3D, 3E)
0.621	98	Roofs, HSG C (1.4S, 1.B1, 1.B2, 1.B3, 1.B4, 1.B5, 1.B6, 1.B7, 1.B8)
0.292	94	Urban commercial, 85% imp, HSG C (3)
1.980	98	Water Surface, HSG D (3)
2.673	55	Woods, Good, HSG B (3, 3F)
30.431	70	Woods, Good, HSG C (1.10S, 1.4S, 3, 3A, 3B)
57.359	74	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
4.997	HSG B	3, 3C, 3F
50.383	HSG C	1.10S, 1.1S, 1.2S, 1.3S, 1.4S, 1.5S, 1.6S, 1.7S, 1.8S, 1.9S, 1.B1, 1.B2, 1.B3,
		1.B4, 1.B5, 1.B6, 1.B7, 1.B8, 3, 3A, 3B, 3C, 3D, 3E, 3I
1.980	HSG D	3
0.000	Other	
57.359		TOTAL AREA

NH-1144.5-Proposed

Prepared by Beals Assoc	ciates, PLLC
HydroCAD® 10.20-3c s/n 01	754 © 2023 HydroCAD Software Solutions LLC

Printed 10/16/2023 Page 4

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatch
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
 0.000	0.971	5.465	0.000	0.000	6.436	1 acre lots, 20% imp	_
0.000	0.000	3.786	0.000	0.000	3.786	1/2 acre lots, 25% imp	
0.000	0.579	2.119	0.000	0.000	2.698	2 acre lots, 12% imp	
0.000	0.424	3.456	0.000	0.000	3.880	>75% Grass cover, Good	
0.000	0.000	0.724	0.000	0.000	0.724	Gravel surface	
0.000	0.000	1.194	0.000	0.000	1.194	Paved parking	
0.000	0.350	2.295	0.000	0.000	2.645	Paved roads w/open ditches, 50%	
						imp	
0.000	0.000	0.621	0.000	0.000	0.621	1 Roofs	
0.000	0.000	0.292	0.000	0.000	0.292	Urban commercial, 85% imp	
0.000	0.000	0.000	1.980	0.000	1.980	Water Surface	
0.000	2.673	30.431	0.000	0.000	33.104	33.104 Woods, Good	
0.000	4.997	50.383	1.980	0.000	57.359	TOTAL AREA	

Ground Covers (all nodes)

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1.10S: To SSF	Runoff Area=75,595 sf 12.39% Impervious Runoff Depth=1.19" Flow Length=755' Tc=21.3 min CN=78 Runoff=1.54 cfs 0.172 af
Subcatchment1.1S: To CB1	Runoff Area=5,795 sf 90.72% Impervious Runoff Depth=2.63" Tc=6.0 min CN=96 Runoff=0.38 cfs 0.029 af
Subcatchment1.2S: To CB2	Runoff Area=6,143 sf 100.00% Impervious Runoff Depth=2.85" Tc=6.0 min CN=98 Runoff=0.42 cfs 0.033 af
Subcatchment1.3S: To CB3	Runoff Area=4,619 sf 100.00% Impervious Runoff Depth=2.85" Tc=6.0 min CN=98 Runoff=0.32 cfs 0.025 af
Subcatchment1.4S: To CB4	Runoff Area=32,490 sf 24.80% Impervious Runoff Depth=1.25" Flow Length=302' Tc=22.1 min CN=79 Runoff=0.69 cfs 0.078 af
Subcatchment1.5S: To CB5	Runoff Area=11,332 sf 59.33% Impervious Runoff Depth=1.89" Flow Length=139' Tc=11.4 min CN=88 Runoff=0.48 cfs 0.041 af
Subcatchment1.6S: To CB6	Runoff Area=24,629 sf 48.87% Impervious Runoff Depth=1.73" Flow Length=246' Tc=18.8 min CN=86 Runoff=0.79 cfs 0.082 af
Subcatchment1.7S: To CB7	Runoff Area=5,669 sf 90.51% Impervious Runoff Depth=2.63" Tc=6.0 min CN=96 Runoff=0.37 cfs 0.029 af
Subcatchment1.8S: To CB8	Runoff Area=5,647 sf 100.00% Impervious Runoff Depth=2.85" Tc=6.0 min CN=98 Runoff=0.39 cfs 0.031 af
Subcatchment1.9S: To Forebay	Runoff Area=13,764 sf 0.00% Impervious Runoff Depth=0.96" Flow Length=206' Tc=32.4 min CN=74 Runoff=0.18 cfs 0.025 af
Subcatchment1.B1: Building 1 - North	Runoff Area=2,496 sf 100.00% Impervious Runoff Depth=2.85" Tc=6.0 min CN=98 Runoff=0.17 cfs 0.014 af
Subcatchment1.B2: Building1 - South	Runoff Area=2,496 sf 100.00% Impervious Runoff Depth=2.85" Tc=6.0 min CN=98 Runoff=0.17 cfs 0.014 af
Subcatchment1.B3: Building 2 - North	Runoff Area=3,864 sf 100.00% Impervious Runoff Depth=2.85" Tc=6.0 min CN=98 Runoff=0.26 cfs 0.021 af
Subcatchment 1.B4: Building 2 - South	Runoff Area=3,864 sf 100.00% Impervious Runoff Depth=2.85" Tc=6.0 min CN=98 Runoff=0.26 cfs 0.021 af
Subcatchment1.B5: Building 3 - North	Runoff Area=2,496 sf 100.00% Impervious Runoff Depth=2.85" Tc=6.0 min CN=98 Runoff=0.17 cfs 0.014 af
Subcatchment1.B6: Building 3 - South	Runoff Area=2,496 sf 100.00% Impervious Runoff Depth=2.85" Tc=6.0 min CN=98 Runoff=0.17 cfs 0.014 af

NH-1144.5-Proposed Prepared by Beals Associates, PLLC HydroCAD® 10.20-3c s/n 01754 © 2023 Hydrocechecker	Type III 24-hr 2 YR Rainfall=3.08" Printed 10/16/2023 BroCAD Software Solutions LLC Page 6
Subcatchment 1.B7: Building 4 - North	Runoff Area=3,864 sf 100.00% Impervious Runoff Depth=2.85" Tc=6.0 min CN=98 Runoff=0.26 cfs 0.021 af
Subcatchment 1.B8: Building 4 - South	Runoff Area=3,864 sf 100.00% Impervious Runoff Depth=2.85" Tc=6.0 min CN=98 Runoff=0.26 cfs 0.021 af
Subcatchment 3: North Parcel area	Runoff Area=1,761,631 sf 9.71% Impervious Runoff Depth=0.91" low Length=1,703' Tc=68.0 min CN=73 Runoff=14.35 cfs 3.056 af
Subcatchment 3A: To Cistern Culv	Runoff Area=85,627 sf 20.78% Impervious Runoff Depth=1.25" Flow Length=802' Tc=22.4 min CN=79 Runoff=1.81 cfs 0.204 af
Subcatchment3B: To Culv sta 10+00	Runoff Area=144,824 sf 10.00% Impervious Runoff Depth=0.96" Flow Length=935' Tc=24.8 min CN=74 Runoff=2.15 cfs 0.266 af
Subcatchment3C: To Culv sta 6+20	Runoff Area=22,668 sf 33.64% Impervious Runoff Depth=1.58" Flow Length=253' Tc=7.3 min CN=84 Runoff=0.92 cfs 0.069 af
Subcatchment3D: To Culv sta 9+15	Runoff Area=10,507 sf 44.02% Impervious Runoff Depth=2.06" Tc=6.0 min CN=90 Runoff=0.58 cfs 0.041 af
Subcatchment3E: To Culv sta 12+40	Runoff Area=12,188 sf 34.47% Impervious Runoff Depth=1.73" Tc=6.0 min CN=86 Runoff=0.57 cfs 0.040 af
Subcatchment3F: Direct to Bioret pond	Runoff Area=65,477 sf 0.00% Impervious Runoff Depth=0.27" Flow Length=398' Tc=11.2 min CN=57 Runoff=0.17 cfs 0.034 af
Subcatchment3I: To CULV STA 6+90	Runoff Area=184,533 sf 20.00% Impervious Runoff Depth=1.25" Flow Length=653' Tc=28.8 min CN=79 Runoff=3.49 cfs 0.440 af
Reach 1.B1R: RD 1.B1 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.15' Max Vel=3.41 fps Inflow=0.17 cfs 0.014 af L=75.0' S=0.0200 '/' Capacity=0.86 cfs Outflow=0.17 cfs 0.014 af
Reach 1.B2R: RD - 1.B2 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.17' Max Vel=2.97 fps Inflow=0.17 cfs 0.014 af L=66.0' S=0.0136 '/' Capacity=0.71 cfs Outflow=0.17 cfs 0.014 af
Reach 1.B3R: RD - 1.B3 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.15' Max Vel=5.36 fps Inflow=0.26 cfs 0.021 af L=30.0' S=0.0500 '/' Capacity=1.36 cfs Outflow=0.26 cfs 0.021 af
Reach 1.B4R: RD - 1.B4 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.19' Max Vel=3.76 fps Inflow=0.26 cfs 0.021 af L=8.0' S=0.0188 '/' Capacity=0.83 cfs Outflow=0.26 cfs 0.021 af
Reach 1.B5R: RD - 1.B5 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.20' Max Vel=2.36 fps Inflow=0.17 cfs 0.014 af L=69.0' S=0.0072 '/' Capacity=0.52 cfs Outflow=0.17 cfs 0.014 af
Reach 1.B6R: RD - 1.B6 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.18' Max Vel=2.67 fps Inflow=0.17 cfs 0.014 af L=74.0' S=0.0101 '/' Capacity=0.61 cfs Outflow=0.17 cfs 0.014 af
Reach 1.B7R: RD - 1.B7 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.20' Max Vel=3.61 fps Inflow=0.26 cfs 0.021 af L=30.0' S=0.0167 '/' Capacity=0.78 cfs Outflow=0.26 cfs 0.021 af
Reach 1.B8R: RD - 1.B8 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.23' Max Vel=3.00 fps Inflow=0.26 cfs 0.021 af L=74.0' S=0.0101 $^{\prime\prime}$ Capacity=0.61 cfs Outflow=0.26 cfs 0.021 af

NH-1144.5-Proposed Prepared by Beals Assoc	viates, PLLC	2 <i>4-hr 2 YR Rainfall</i> =3.08" Printed 10/16/2023
HydroCAD® 10.20-3c s/n 017	754 © 2023 HydroCAD Software Solutions LLC	Page 7
Reach 3IR: SSF THROUGH	HSUBCAT 3 Avg. Flow Depth=0.00' Max Vel=0.00 n=0.030 L=667.0' S=0.0582 '/' Capacity=379.37 o) fps Inflow=0.00 cfs 0.000 af cfs Outflow=0.00 cfs 0.000 af
Reach 3R: Reach THROUG	GHSUBCAT 3) Avg. Flow Depth=0.00' Max Vel=0.00) fps Inflow=0.00 cfs 0.000 af
	n=0.080 L=2,144.0' S=0.0433 '/' Capacity=185.81 o	cfs Outflow=0.00 cfs 0.000 af
Reach 300: Northerly Anal	ysis Point Old Green Hill stream crossing	Inflow=14.35 cfs 3.208 af
-		Outflow=14.35 cfs 3.208 af
Pond 1 CB1: CB1	Peak Elev=225	5.89' Inflow=0.82 cfs 0.064 af
	12.0" Round Culvert n=0.013 L=110.0' S=0.0173	5 '/' Outflow=0.82 cfs 0.064 af
Dend 4 OD0: OD0	Deals Flave 22	4.02' Inflow=1.24 of 0.007 of
Pond 1.CB2: CB2	12.0" Round Culvert n=0.013 L=97.0' S=0.0149) '/' Outflow=1.24 cfs 0.097 af
Pond 1.CB3: CB3	Peak Elev=22().75' Inflow=2.31 cfs 0.235 af
	18.0 Round Culvent 11–0.013 E-50.0 S-0.0800	
Pond 1.CB4: CB4	Peak Elev=226	3.01' Inflow=0.86 cfs 0.112 af
	12.0" Round Culvert n=0.013 L=65.0' S=0.0615	'/' Outflow=0.86 cfs 0.112 af
Pond 1.CB5: CB5	Peak Elev=208	3.30' Inflow=3.16 cfs 0.310 af
	18.0" Round Culvert n=0.013 L=103.0' S=0.0097	' /' Outflow=3.16 cfs 0.310 af
Donald CDC: CDC	Dook Flov-20	7.28' Inflow-2.66 of 0.202 of
Pona 1.CB6: CB6	18.0" Round Culvert n=0.013 L=101.0' S=0.0198	3 // Outflow=3.66 cfs 0.392 af
Pond 1.CB7: CB7	Peak Elev=204	1.99' Inflow=0.81 cfs 0.063 af
	12.0 Round Culvent 11–0.013 E-00.0 3–0.1070	
Pond 1.CB8: CB8	Peak Elev=200).02' Inflow=4.03 cfs 0.423 af
	24.0" Round Culvert n=0.013 L=52.0' S=0.0327	'/' Outflow=4.03 cfs 0.423 af
Pond 1.DMH1: DMH1	Peak Elev=198	3.43' Inflow=4.83 cfs 0.486 af
	24.0" Round Culvert n=0.013 L=63.0' S=0.0048	'/' Outflow=4.83 cfs 0.486 af
Dond 1 DMU2 DMU2	Pook Elov-216	3 17' Inflow-2 31 of 0 0 225 of
	18.0" Round Culvert n=0.013 L=102.0' S=0.0776	5 '/' Outflow=2.31 cfs 0.235 af
Pond 1P: Sed Forbay	Peak Elev=197.61' Storage=4,69	35 cf Inflow=4.88 cfs 0.511 af
Pond 3AP: 3AP	Peak Elev=266.66' Storage=2	20 cf Inflow=1.81 cfs 0.204 af
	15.0" Round Culvert n=0.013 L=108.0' S=0.0417	'/' Outflow=1.81 cfs 0.204 af
Pond 3BP: 3BP	Peak Elev=246.90' Storade=3	37 cf Inflow=3.93 cfs 0.470 af
	24.0" Round Culvert n=0.013 L=40.0' S=0.0100) '/' Outflow=3.93 cfs 0.470 af
Dand 20Di 20D	Dook Elov-220 221 Storeson	20 of Inflow-4 70 of 0 620 of
runu 307. 308	Feak Elev-200.02 Storage-3	Outflow=4.79 cfs 0.620 af

NH-1144.5-Proposed Prepared by Beals Associate	Type III 24-hr 2 YR Rainfall=3.08" es, PLLC Printed 10/16/2023 © 2023 HydroCAD Software Solutions LLC Page 8
Pond 3DP: 3DP	Peak Elev=259.35' Storage=2 cf Inflow=0.58 cfs 0.041 af 15.0" Round Culvert n=0.013 L=55.0' S=0.0200 '/' Outflow=0.58 cfs 0.041 af
Pond 3EP: CULV sta 12+40	Peak Elev=240.52' Storage=15 cf Inflow=1.14 cfs 0.082 af 15.0" Round Culvert n=0.013 L=49.0' S=0.0100 '/' Outflow=1.14 cfs 0.082 af
Pond 3FB: Sed Forbay	Peak Elev=214.75' Storage=3,328 cf Inflow=4.79 cfs 0.620 af Outflow=4.79 cfs 0.550 af
Pond 3FP: Bioretention Pond Dis	Peak Elev=215.08' Storage=12,747 cf Inflow=4.96 cfs 0.584 af carded=0.16 cfs 0.433 af Primary=0.58 cfs 0.151 af Outflow=0.74 cfs 0.584 af
Pond 3IBP: Surface Sand Filt Discarded=0.81 cfs 0.682 af Prin	er Pond Peak Elev=195.22' Storage=10,783 cf Inflow=5.62 cfs 0.682 af hary=0.00 cfs 0.000 af Secondary=0.00 cfs 0.000 af Outflow=0.81 cfs 0.682 af
Pond 3IP: 3IP	Peak Elev=247.17' Storage=19,180 cf Inflow=3.49 cfs 0.440 af 24.0" Round Culvert n=0.013 L=94.0' S=0.0798 '/' Outflow=0.00 cfs 0.000 af
Pond DMH1: DMH 1	Peak Elev=223.97' Inflow=4.79 cfs 0.620 af 24.0" Round Culvert n=0.013 L=143.0' S=0.0483 '/' Outflow=4.79 cfs 0.620 af
Pond DMH1B: DMH 1B	Peak Elev=216.97' Inflow=4.79 cfs 0.620 af 24.0" Round Culvert n=0.013 L=138.0' S=0.0100 '/' Outflow=4.79 cfs 0.620 af
Total Runoff Ar	ea = 57.359 ac Runoff Volume = 4.834 af Average Runoff Depth = 1.01"

86.19% Pervious = 49.437 ac 13.81% Impervious = 7.923 ac

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1.10S: To SSF	Runoff Area=75,595 sf 12.39% Impervious Runoff Depth=2.41" Flow Length=755' Tc=21.3 min CN=78 Runoff=3.21 cfs 0.348 af
Subcatchment1.1S: To CB1	Runoff Area=5,795 sf 90.72% Impervious Runoff Depth=4.17" Tc=6.0 min CN=96 Runoff=0.59 cfs 0.046 af
Subcatchment1.2S: To CB2	Runoff Area=6,143 sf 100.00% Impervious Runoff Depth=4.40" Tc=6.0 min CN=98 Runoff=0.64 cfs 0.052 af
Subcatchment1.3S: To CB3	Runoff Area=4,619 sf 100.00% Impervious Runoff Depth=4.40" Tc=6.0 min CN=98 Runoff=0.48 cfs 0.039 af
Subcatchment1.4S: To CB4	Runoff Area=32,490 sf 24.80% Impervious Runoff Depth=2.49" Flow Length=302' Tc=22.1 min CN=79 Runoff=1.41 cfs 0.155 af
Subcatchment1.5S: To CB5	Runoff Area=11,332 sf 59.33% Impervious Runoff Depth=3.33" Flow Length=139' Tc=11.4 min CN=88 Runoff=0.84 cfs 0.072 af
Subcatchment1.6S: To CB6	Runoff Area=24,629 sf 48.87% Impervious Runoff Depth=3.13" Flow Length=246' Tc=18.8 min CN=86 Runoff=1.43 cfs 0.148 af
Subcatchment1.7S: To CB7	Runoff Area=5,669 sf 90.51% Impervious Runoff Depth=4.17" Tc=6.0 min CN=96 Runoff=0.58 cfs 0.045 af
Subcatchment1.8S: To CB8	Runoff Area=5,647 sf 100.00% Impervious Runoff Depth=4.40" Tc=6.0 min CN=98 Runoff=0.59 cfs 0.048 af
Subcatchment1.9S: To Forebay	Runoff Area=13,764 sf 0.00% Impervious Runoff Depth=2.08" Flow Length=206' Tc=32.4 min CN=74 Runoff=0.42 cfs 0.055 af
Subcatchment1.B1: Building 1 - North	Runoff Area=2,496 sf 100.00% Impervious Runoff Depth=4.40" Tc=6.0 min CN=98 Runoff=0.26 cfs 0.021 af
Subcatchment 1.B2: Building 1 - South	Runoff Area=2,496 sf 100.00% Impervious Runoff Depth=4.40" Tc=6.0 min CN=98 Runoff=0.26 cfs 0.021 af
Subcatchment1.B3: Building 2 - North	Runoff Area=3,864 sf 100.00% Impervious Runoff Depth=4.40" Tc=6.0 min CN=98 Runoff=0.40 cfs 0.033 af
Subcatchment 1.B4: Building 2 - South	Runoff Area=3,864 sf 100.00% Impervious Runoff Depth=4.40" Tc=6.0 min CN=98 Runoff=0.40 cfs 0.033 af
Subcatchment1.B5: Building 3 - North	Runoff Area=2,496 sf 100.00% Impervious Runoff Depth=4.40" Tc=6.0 min CN=98 Runoff=0.26 cfs 0.021 af
Subcatchment 1.B6: Building 3 - South	Runoff Area=2,496 sf 100.00% Impervious Runoff Depth=4.40" Tc=6.0 min CN=98 Runoff=0.26 cfs 0.021 af

NH-1144.5-Proposed Prepared by Beals Associates, PLLC HydroCAD® 10.20-3c s/n 01754 © 2023 Hydroce Section 2023 Hyd	Type III 24-hr 10 YR Rainfall=4.64" Printed 10/16/2023 IroCAD Software Solutions LLC Page 2
Subcatchment 1.B7: Building 4 - North	Runoff Area=3,864 sf 100.00% Impervious Runoff Depth=4.40" Tc=6.0 min CN=98 Runoff=0.40 cfs 0.033 af
Subcatchment 1.B8: Building 4 - South	Runoff Area=3,864 sf 100.00% Impervious Runoff Depth=4.40" Tc=6.0 min CN=98 Runoff=0.40 cfs 0.033 af
Subcatchment 3: North Parcel area	Runoff Area=1,761,631 sf 9.71% Impervious Runoff Depth=2.00" low Length=1,703' Tc=68.0 min CN=73 Runoff=34.06 cfs 6.747 af
Subcatchment 3A: To Cistern Culv	Runoff Area=85,627 sf 20.78% Impervious Runoff Depth=2.49" Flow Length=802' Tc=22.4 min CN=79 Runoff=3.70 cfs 0.409 af
Subcatchment3B: To Culv sta 10+00	Runoff Area=144,824 sf 10.00% Impervious Runoff Depth=2.08" Flow Length=935' Tc=24.8 min CN=74 Runoff=4.93 cfs 0.576 af
Subcatchment3C: To Culv sta 6+20	Runoff Area=22,668 sf 33.64% Impervious Runoff Depth=2.94" Flow Length=253' Tc=7.3 min CN=84 Runoff=1.71 cfs 0.128 af
Subcatchment3D: To Culv sta 9+15	Runoff Area=10,507 sf 44.02% Impervious Runoff Depth=3.53" Tc=6.0 min CN=90 Runoff=0.97 cfs 0.071 af
Subcatchment3E: To Culv sta 12+40	Runoff Area=12,188 sf 34.47% Impervious Runoff Depth=3.13" Tc=6.0 min CN=86 Runoff=1.02 cfs 0.073 af
Subcatchment 3F: Direct to Bioret pond	Runoff Area=65,477 sf 0.00% Impervious Runoff Depth=0.92" Flow Length=398' Tc=11.2 min CN=57 Runoff=1.08 cfs 0.115 af
Subcatchment3I: To CULV STA 6+90	Runoff Area=184,533 sf 20.00% Impervious Runoff Depth=2.49" Flow Length=653' Tc=28.8 min CN=79 Runoff=7.13 cfs 0.881 af
Reach 1.B1R: RD 1.B1 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.19' Max Vel=3.83 fps Inflow=0.26 cfs 0.021 af L=75.0' S=0.0200 '/' Capacity=0.86 cfs Outflow=0.26 cfs 0.021 af
Reach 1.B2R: RD - 1.B2 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.21' Max Vel=3.33 fps Inflow=0.26 cfs 0.021 af L=66.0' S=0.0136 '/' Capacity=0.71 cfs Outflow=0.26 cfs 0.021 af
Reach 1.B3R: RD - 1.B3 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.19' Max Vel=6.03 fps Inflow=0.40 cfs 0.033 af L=30.0' S=0.0500 '/' Capacity=1.36 cfs Outflow=0.40 cfs 0.033 af
Reach 1.B4R: RD - 1.B4 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.25' Max Vel=4.20 fps Inflow=0.40 cfs 0.033 af L=8.0' S=0.0188 '/' Capacity=0.83 cfs Outflow=0.40 cfs 0.033 af
Reach 1.B5R: RD - 1.B5 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.25' Max Vel=2.64 fps Inflow=0.26 cfs 0.021 af L=69.0' S=0.0072 '/' Capacity=0.52 cfs Outflow=0.26 cfs 0.021 af
Reach 1.B6R: RD - 1.B6 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.23' Max Vel=2.99 fps Inflow=0.26 cfs 0.021 af L=74.0' S=0.0101 '/' Capacity=0.61 cfs Outflow=0.26 cfs 0.021 af
Reach 1.B7R: RD - 1.B7 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.25' Max Vel=4.02 fps Inflow=0.40 cfs 0.033 af L=30.0' S=0.0167 '/' Capacity=0.78 cfs Outflow=0.40 cfs 0.033 af
Reach 1.B8R: RD - 1.B8 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.30' Max Vel=3.32 fps Inflow=0.40 cfs 0.033 af L=74.0' S=0.0101 '/' Capacity=0.61 cfs Outflow=0.40 cfs 0.033 af

NH-1144.5-Proposed Prepared by Beals Associate HydroCAD® 10.20-3c s/n 01754	Type III : es, PLLC © 2023 HydroCAD Software Solutions LLC	2 <i>4-hr 10 YR Rainfall=4.64"</i> Printed 10/16/2023 Page 3
		-
Reach 3IR: SSF THROUGH S	UBCAT 3 Avg. Flow Depth=0.00' Max Vel=0.0 n=0.030 L=667.0' S=0.0582 '/' Capacity=379.37	00 fps Inflow=0.00 cfs 0.000 af ′ cfs Outflow=0.00 cfs 0.000 af
Reach 3R: Reach THROUGH	SUBCAT 3) Avg. Flow Depth=0.19' Max Vel=0.9 0.080 L=2,144.0' S=0.0433 '/' Capacity=185.81	98 fps Inflow=2.60 cfs 0.427 af cfs Outflow=1.14 cfs 0.427 af
Reach 300: Northerly Analys	s Point Old Green Hill stream crossing	Inflow=38.40 cfs 8.026 af Outflow=38.40 cfs 8.026 af
Pond 1.CB1: CB1	Peak Elev=2 12.0" Round Culvert n=0.013 L=110.0' S=0.017	26.03' Inflow=1.25 cfs 0.100 af ′3 '/' Outflow=1.25 cfs 0.100 af
Pond 1.CB2: CB2	Peak Elev=2: 12.0" Round Culvert n=0.013 L=97.0' S=0.014	24.23' Inflow=1.89 cfs 0.152 af I9 '/' Outflow=1.89 cfs 0.152 af
Pond 1.CB3: CB3	Peak Elev=2: 18.0" Round Culvert n=0.013 L=56.0' S=0.080	21.00' Inflow=3.76 cfs 0.399 af)0 '/' Outflow=3.76 cfs 0.399 af
Pond 1.CB4: CB4	Peak Elev=2 12.0" Round Culvert n=0.013 L=65.0' S=0.061	26.26' Inflow=1.68 cfs 0.209 af 5 '/' Outflow=1.68 cfs 0.209 af
Pond 1.CB5: CB5	Peak Elev=2 18.0" Round Culvert n=0.013 L=103.0' S=0.009	08.63' Inflow=5.15 cfs 0.525 af 97 '/' Outflow=5.15 cfs 0.525 af
Pond 1.CB6: CB6	Peak Elev=2 18.0" Round Culvert n=0.013 L=101.0' S=0.019	07.70' Inflow=6.10 cfs 0.672 af 08 '/' Outflow=6.10 cfs 0.672 af
Pond 1.CB7: CB7	Peak Elev=20 12.0" Round Culvert n=0.013 L=66.0' S=0.107	05.13' Inflow=1.24 cfs 0.099 af '6 '/' Outflow=1.24 cfs 0.099 af
Pond 1.CB8: CB8	Peak Elev=20 24.0" Round Culvert n=0.013 L=52.0' S=0.032	00.32' Inflow=6.66 cfs 0.720 af 27 '/' Outflow=6.66 cfs 0.720 af
Pond 1.DMH1: DMH1	Peak Elev=1 24.0" Round Culvert n=0.013 L=63.0' S=0.004	98.82' Inflow=7.88 cfs 0.819 af I8 '/' Outflow=7.88 cfs 0.819 af
Pond 1.DMH2: DMH2	Peak Elev=2 18.0" Round Culvert n=0.013 L=102.0' S=0.077	16.42' Inflow=3.76 cfs 0.399 af ′6 '/' Outflow=3.76 cfs 0.399 af
Pond 1P: Sed Forbay	Peak Elev=197.76' Storage=5,0	091 cf Inflow=8.03 cfs 0.874 af Outflow=7.67 cfs 0.874 af
Pond 3AP: 3AP	Peak Elev=267.02' Storage 15.0" Round Culvert n=0.013 L=108.0' S=0.041	=44 cf Inflow=3.70 cfs 0.409 af 7 '/' Outflow=3.69 cfs 0.409 af
Pond 3BP: 3BP	Peak Elev=247.44' Storage 24.0" Round Culvert n=0.013 L=40.0' S=0.010	=84 cf Inflow=8.59 cfs 0.985 af)0 '/' Outflow=8.59 cfs 0.985 af
Pond 3CP: 3CP	Peak Elev=239.53' Storage=	79 cf Inflow=10.12 cfs 1.257 af Outflow=10.12 cfs 1.257 af

NH-1144.5-Proposed	Type III 24-hr 10 YR Rainfall=4.64"
Prepared by Beals Associat	es, PLLC Printed 10/16/2023
HydroCAD® 10.20-3c s/n 01754	© 2023 HydroCAD Software Solutions LLC Page 4
Pond 3DP: 3DP	Peak Elev=259.47' Storage=3 cf Inflow=0.97 cfs 0.071 af
	15.0" Round Culvert n=0.013 L=55.0' S=0.0200 '/' Outflow=0.97 cfs 0.071 af
Pond 3EP: CULV sta 12+40	Peak Elev=240.72' Storage=27 cf Inflow=1.98 cfs 0.144 af
	15.0" Round Culvert n=0.013 L=49.0' S=0.0100 '/' Outflow=1.98 cfs 0.144 af
Pond 3FB: Sed Forbay	Peak Elev=214.85' Storage=3,512 cf Inflow=10.12 cfs 1.257 af
	Outflow=10.11 cfs 1.187 af
Pond 3FP: Bioretention Pond	Peak Elev=215.45' Storage=16,645 cf Inflow=10.96 cfs 1.302 af
Dis	scarded=0.17 cts 0.449 at Primary=7.84 cts 0.853 at Outflow=8.01 cts 1.302 at
Pond 3IBP: Surface Sand Filt Discarded=0.93 cfs 1.222 af Prir	Peak Elev=196.52' Storage=24,612 cf Inflow=9.99 cfs 1.222 af nary=0.00 cfs 0.000 af Secondary=0.00 cfs 0.000 af Outflow=0.93 cfs 1.222 af
Pond 3IP: 3IP	Peak Elev=250.12' Storage=19,941 cf Inflow=7.13 cfs 0.881 af
	24.0" Round Culvert n=0.013 L=94.0' S=0.0798 '/' Outflow=2.60 cfs 0.427 af
Pond DMH1: DMH 1	Peak Elev=224.62' Inflow=10.12 cfs 1.257 af
	24.0" Round Culvert n=0.013 L=143.0' S=0.0483 '/' Outflow=10.12 cfs 1.257 af
Pond DMH1B: DMH 1B	Peak Elev=217.62' Inflow=10.12 cfs 1.257 af
	24.0" Round Culvert_n=0.013 L=138.0' S=0.0100 '/' Outflow=10.12 cfs_1.257 af
Total Runoff Are	a = 57.359 ac Runoff Volume = 10.221 af Average Runoff Depth = 2.14" 86.19% Pervious = 49.437 ac 13.81% Impervious = 7.923 ac

Summary for Subcatchment 1.10S: To SSF

Runoff = 3.21 cfs @ 12.29 hrs, Volume= 0.348 af, Depth= 2.41" Routed to Pond 3IBP : Surface Sand Filter Pond

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

A	rea (sf)	CN E	Description		
	52,469	74 >	75% Gras	s cover, Go	ood, HSG C
	4,393	70 V	Voods, Go	od, HSG C	
	18,733	92 F	Paved road	s w/open d	itches, 50% imp, HSG C
	75,595	78 V	Veighted A	verage	
	66,229	8	7.61% Per	vious Area	
	9,367	1	2.39% Imp	pervious Are	ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.5	50	0.0210	0.07		Sheet Flow, Sheet
					Woods: Light underbrush n= 0.400 P2= 3.00"
1.0	139	0.1150	2.37		Shallow Concentrated Flow, Grass flow
					Short Grass Pasture Kv= 7.0 fps
2.3	155	0.0520	1.14		Shallow Concentrated Flow,
		0 0000	4.05		Woodland Kv= 5.0 fps
5.5	411	0.0320	1.25		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 tps
21.3	755	Total			

Summary for Subcatchment 1.1S: To CB1

Runoff = 0.59 cfs @ 12.08 hrs, Volume= 0.046 af, Depth= 4.17" Routed to Pond 1.CB1 : CB1

A	rea (sf)	CN	Description				
	538	74	>75% Gras	s cover, Go	od, HSG C		
	5,257	98	Paved park	ing, HSG C			
	0	70	Woods, Good, HSG C				
	5,795	96	Weighted A	verage			
	538	9.28% Pervious Area					
	5,257		90.72% Impervious Area				
_							
Tc	Length	Slope	Velocity	Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)			
6.0					Direct Entry,		

Summary for Subcatchment 1.2S: To CB2

Runoff = 0.64 cfs @ 12.08 hrs, Volume= 0.052 af, Depth= 4.40" Routed to Pond 1.CB2 : CB2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

Α	rea (sf)	CN	Description					
	0	74	>75% Gras	s cover, Go	ood, HSG C			
	6,143	98	Paved park	ing, HSG C	C			
	0	70	Woods, Go	Woods, Good, HSG C				
	6,143	98	Weighted A	verage				
	6,143		100.00% In	npervious A	Area			
				-				
Тс	Length	Slope	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment 1.3S: To CB3

Runoff = 0.48 cfs @ 12.08 hrs, Volume= Routed to Pond 1.CB3 : CB3 0.039 af, Depth= 4.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

A	rea (sf)	CN	Description				
	0	74	>75% Gras	s cover, Go	bod, HSG C		
	4,619	98	Paved parking, HSG C				
	0	70	Woods, Go	od, HSG C			
	4,619	98	Weighted A	verage			
	4,619		100.00% In	npervious A	Area		
_							
Tc	Length	Slope	e Velocity	Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)			
6.0					Direct Entry,		

Summary for Subcatchment 1.4S: To CB4

Runoff = 1.41 cfs @ 12.30 hrs, Volume= 0.155 af, Depth= 2.49" Routed to Pond 1.CB4 : CB4

NH-1144.5-Proposed Prepared by Beals Associates, PLLC

Type III 24-hr 10 YR Rainfall=4.64" Printed 10/16/2023 HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC Page 7

	A	rea (sf)	CN E	Description		
*		18,365	74 >	75% Gras	s cover, Go	ood, HSG C
		6,451	98 F	aved park	ing, HSG C	;
		6,068	70 V	Voods, Go	od, HSG C	
_		1,606	98 F	Roofs, HSG	S C	
		32,490	79 V	Veighted A	verage	
		24,433	7	5.20% Per	vious Area	
		8,057	2	4.80% Imp	pervious Are	ea
	_		<u>.</u>		.	–
	IC	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(CTS)	
	7.4	40	0.0500	0.09		Sheet Flow, pl
						Woods: Light underbrush n= 0.400 P2= 3.00"
	14.4	201	0.0850	0.23		Sheet Flow, SC TO PAVE
						Grass: Dense n= 0.240 P2= 3.00"
	0.3	61	0.0330	3.69		Shallow Concentrated Flow, PARKING LOT TO CB
_						Paved Kv= 20.3 fps
	22.1	302	Total			

Summary for Subcatchment 1.5S: To CB5

0.84 cfs @ 12.15 hrs, Volume= Runoff = Routed to Pond 1.CB5 : CB5

0.072 af, Depth= 3.33"

	A	rea (sf)	CN [Description		
*		4,609	74 >	>75% Gras	s cover, Go	ood, HSG C
		6,723	98 F	Paved park	ing, HSG C	
		0	70 \	Noods, Go	od, HSG C	
		0	98 F	Roofs, HSC	S C	
		11,332	88 \	Neighted A	verage	
		4,609	2	10.67% Per	vious Area	
		6,723	Ę	59.33% Imp	pervious Are	ea
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	3.9	50	0.1400	0.21		Sheet Flow, pl
						Grass: Dense n= 0.240 P2= 3.00"
	7.4	61	0.0410	0.14		Sheet Flow, SC TO PAVE
						Grass: Dense n= 0.240 P2= 3.00"
	0.1	28	0.0350	3.80		Shallow Concentrated Flow, PARKING LOT TO CB
						Paved Kv= 20.3 fps
	11.4	139	Total			

Summary for Subcatchment 1.6S: To CB6

Runoff = 1.43 cfs @ 12.26 hrs, Volume= 0.148 af, Depth= 3.13" Routed to Pond 1.CB6 : CB6

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

_	A	rea (sf)	CN [Description		
*		12,592	74 >	-75% Gras	s cover, Go	ood, HSG C
		12,037	98 F	Paved park	ing, HSG C	;
		0	70 V	Voods, Go	od, HSG C	
		0	98 F	Roofs, HSG	G C	
		24,629	86 V	Veighted A	verage	
12,592 51.1			51.13% Per	vious Area		
12,037 48.87% Impervio			18.87% Imp	pervious Are	ea	
	_		_ .			
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.4	50	0.1100	0.13		Sheet Flow, pl
						Woods: Light underbrush n= 0.400 P2= 3.00"
	12.3	168	0.0890	0.23		Sheet Flow, SC TO PAVE
						Grass: Dense n= 0.240 P2= 3.00"
	0.1	28	0.0350	3.80		Shallow Concentrated Flow, PARKING LOT TO CB
						Paved Kv= 20.3 fps
	18.8	246	Total			

Summary for Subcatchment 1.7S: To CB7

Runoff = 0.58 cfs @ 12.08 hrs, Volume= Routed to Pond 1.CB7 : CB7 0.045 af, Depth= 4.17"

A	rea (sf)	CN	Description		
	538	74	>75% Gras	s cover, Go	ood, HSG C
	5,131	98	Paved park	ing, HSG C	C
	0	70	Woods, Go	od, HSG C	
	5,669	96	Weighted A	verage	
	538		9.49% Perv	vious Area	
	5,131		90.51% Imp	pervious Are	rea
Tc	Length	Slop	e Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/f	t) (ft/sec)	(cfs)	
6.0					Direct Entry,

Summary for Subcatchment 1.8S: To CB8

Runoff = 0.59 cfs @ 12.08 hrs, Volume= 0.048 af, Depth= 4.40" Routed to Pond 1.CB8 : CB8

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

A	rea (sf)	CN	Description					
	0	74	>75% Gras	s cover, Go	ood, HSG C			
	5,647	98	Paved park	ing, HSG C	C			
	0	70	Woods, Go	Woods, Good, HSG C				
	5,647	98	Weighted A	verage				
	5,647		100.00% In	npervious A	Area			
				-				
Тс	Length	Slope	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment 1.9S: To Forebay

Runoff = 0.42 cfs @ 12.46 hrs, Volume= Routed to Pond 1P : Sed Forbay 0.055 af, Depth= 2.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

	A	rea (sf)	CN	Description		
*		13,764	74	>75% Gras	s cover, Go	bod, HSG C
		0	98	Paved park	ing, HSG C	
		0	70	Woods, Go	od, HSG C	
		0	98	Roofs, HSC	G C	
		13,764	74	Weighted A	verage	
		13,764		100.00% P	ervious Are	a
	Тс	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	3.9	50	0.1400	0.21		Sheet Flow, pl
						Grass: Dense n= 0.240 P2= 3.00"
	28.5	156	0.0260	0.09		Sheet Flow, to Forebay
						Woods: Light underbrush n= 0.400 P2= 3.00"
	20 1	206	Total			

32.4 206 Total

Summary for Subcatchment 1.B1: Building 1 - North

Runoff = 0.26 cfs @ 12.08 hrs, Volume= 0.021 af, Depth= 4.40" Routed to Reach 1.B1R : RD 1.B1

Area (sf) CN Description									
2,496 98 Roofs, HSG C									
2,496 100.00% Impervious Area									
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)									
6.0 Direct Entry, Direct									
Summary for Subcatchment 1.B2: Building 1 - South									
Runoff = 0.26 cfs @ 12.08 hrs, Volume= 0.021 af, Depth= 4.40" Routed to Reach 1.B2R : RD - 1.B2									
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"									
Area (sf) CN Description									
2,496 98 Roofs, HSG C									
2,496 100.00% Impervious Area									
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)									
6.0 Direct Entry, Direct									
Summary for Subcatchment 1.B3: Building 2 - North									
Runoff = 0.40 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 4.40" Routed to Reach 1.B3R : RD - 1.B3									
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"									
Area (sf) CN Description									
3,864 98 Roofs, HSG C									
3,864 100.00% Impervious Area									
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)									
6.0 Direct Entry, Direct									
Summary for Subcatchment 1.B4: Building 2 - South									

Runoff = 0.40 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 4.40" Routed to Reach 1.B4R : RD - 1.B4

NH-1144.5-Proposed Prepared by Beals Associates PLLC

 Type III 24-hr
 10 YR Rainfall=4.64"

 Printed
 10/16/2023

 LC
 Page 11

r roparoa by Board / toooorat	
HydroCAD® 10.20-3c s/n 01754	© 2023 HydroCAD Software Solutions LLC

A	rea (sf)	CN I	Description		
	3,864	98	Roofs, HSG	G C	
	3,864		100.00% In	npervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, Direct

Summary for Subcatchment 1.B5: Building 3 - North

Runoff = 0.26 cfs @ 12.08 hrs, Volume= 0.021 af, Depth= 4.40" Routed to Reach 1.B5R : RD - 1.B5

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

A	rea (sf)	CN	Description			
	2,496	98	Roofs, HSG	G C		
	2,496		100.00% In	npervious A	Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry, Direct	

Summary for Subcatchment 1.B6: Building 3 - South

Runoff = 0.26 cfs @ 12.08 hrs, Volume= Routed to Reach 1.B6R : RD - 1.B6 0.021 af, Depth= 4.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

Ar	ea (sf)	CN	Description					
	2,496	98	Roofs, HSG C					
	2,496	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, Direct			

Summary for Subcatchment 1.B7: Building 4 - North

Runoff = 0.40 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 4.40" Routed to Reach 1.B7R : RD - 1.B7

NH-1144.5-Proposed

Type III 24-hr 10 YR Rainfall=4.64" Printed 10/16/2023 LC Page 12

HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC	;

A	rea (sf)	CN	Description		
	3,864	98	Roofs, HSC	G C	
	3,864		100.00% In	npervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, Direct

Summary for Subcatchment 1.B8: Building 4 - South

Runoff = 0.40 cfs @ 12.08 hrs, Volume= 0.033 af, Depth= 4.40" Routed to Reach 1.B8R : RD - 1.B8

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

Α	rea (sf)	CN	Description					
	3,864	98	Roofs, HSG C					
	3,864		100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, Direct			

Summary for Subcatchment 3: North Parcel area

Runoff = 34.06 cfs @ 12.92 hrs, Volume= 6.747 af, Depth= 2.00" Routed to Reach 300 : Northerly Analysis Point Old Green Hill stream crossing

Area (sf)	CN	Description				
45,998	92	Paved roads w/open ditches, 50% imp, HSG C				
31,535	96	ravel surface, HSG C				
35,187	74	>75% Grass cover, Good, HSG C				
25,200	65	2 acre lots, 12% imp, HSG B				
92,321	77	2 acre lots, 12% imp, HSG C				
42,297	68	l acre lots, 20% imp, HSG B				
113,838	80	1/2 acre lots, 25% imp, HSG C				
12,722	94	Urban commercial, 85% imp, HSG C				
86,235	98	Water Surface, HSG D				
1,206,843	70	Woods, Good, HSG C				
69,455	55	Woods, Good, HSG B				
1,761,631	73	Weighted Average				
1,590,562		90.29% Pervious Area				
171,069		9.71% Impervious Area				

NH-1144.5-Proposed Prepared by Beals Associates, PLLC

Type III 24-hr 10 YR Rainfall=4.64" Printed 10/16/2023 HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC Page 13

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.7	50	0.0200	0.07		Sheet Flow, Sheet
					Woods: Light underbrush n= 0.400 P2= 3.00"
2.9	266	0.0960	1.55		Shallow Concentrated Flow, SC on slope to wetland
					Woodland Kv= 5.0 fps
23.9	800	0.0125	0.56		Shallow Concentrated Flow, SC to swamp
					Woodland Kv= 5.0 fps
28.5	587	0.0047	0.34		Shallow Concentrated Flow, SC through swamp to analysis poi
					Woodland Kv= 5.0 fps

68.0 1,703 Total

Summary for Subcatchment 3A: To Cistern Culv

Runoff	=	3.70 cfs @	12.32 hrs,	Volume=	0.409 af,	Depth= 2.49"
Routed	to Pond	3AP : 3AP				

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

 A	rea (sf)	CN E	Description						
	10,052	92 F	92 Paved roads w/open ditches, 50% imp, HSG C						
	51,070	80 1	80 1/2 acre lots, 25% imp, HSG C						
	24,505	70 V	Voods, Go	od, HSG C					
	85,627	79 V	Veighted A	verage					
	67,834	7	'9.22% Per	vious Area					
	17,794	2	0.78% Imp	pervious Are	ea				
Tc	Length	Slope	Velocity	Capacity	Description				
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·				
12.7	50	0.0200	0.07		Sheet Flow, Sheet				
					Woods: Light underbrush n= 0.400 P2= 3.00"				
8.2	477	0.0377	0.97		Shallow Concentrated Flow, SC to lot dev area				
					Woodland Kv= 5.0 fps				
0.3	86	0.1200	5.58		Shallow Concentrated Flow, SC to swale				
					Unpaved Kv= 16.1 fps				
1.2	189	0.0310	2.64		Shallow Concentrated Flow, SC to analysis point				
					Grassed Waterway Kv= 15.0 fps				
22.4	802	Total							
22.7	002	Total							

Summary for Subcatchment 3B: To Culv sta 10+00

Runoff	=	4.93 cfs @	12.37 hrs,	Volume=	0.576 af,	Depth= 2.08"
Routed	l to Pond	1 3BP : 3BP				

NH-1144.5-Proposed

Prepared by Beals Associates, PLLC

Type III 24-hr 10 YR Rainfall=4.64" Printed 10/16/2023 HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC Page 14

А	rea (sf)	CN D	escription						
	7,550	92 P	92 Paved roads w/open ditches, 50% imp, HSG C						
	53,529	79 1	acre lots,	20% imp, H	ISG C				
	83,745	70 V	Voods, Go	od, HSG C					
1	44,824	74 V	Veighted A	verage					
1	30,343	9	0.00% Per	vious Area					
	14,481	1	0.00% Imp	pervious Are	ea				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(leet)		(IL/Sec)	(CIS)					
13.3	50	0.0180	0.06		Sheet Flow, Sheet				
2.5	204	0.0730	1.35		Shallow Concentrated Flow, SC slope to wetland Woodland Ky= 5.0 fps				
7.9	366	0.0240	0.77		Shallow Concentrated Flow. SC to lot 42				
					Woodland Kv= 5.0 fps				
1.1	315	0.1070	4.91		Shallow Concentrated Flow, SC to culv				
					Grassed Waterway Kv= 15.0 fps				
24.8	935	Total							

Summary for Subcatchment 3C: To Culv sta 6+20

1.71 cfs @ 12.10 hrs, Volume= Runoff = Routed to Pond 3CP : 3CP

0.128 af, Depth= 2.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

A	rea (sf)	CN E	Description		
	15,250	89 F	aved road	s w/open d	itches, 50% imp, HSG B
	7,418	74 >	75% Gras	s cover, Go	bod, HSG C
	22,668	84 V	Veighted A	verage	
	15,043	6	6.36% Per	vious Area	
	7,625	3	3.64% Imp	pervious Are	ea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.8	50	0.0350	0.12		Sheet Flow, Sheet
					Grass: Dense n= 0.240 P2= 3.00"
0.5	203	0.1870	6.49		Shallow Concentrated Flow, SC to CB
					Grassed Waterway Kv= 15.0 fps

7.3 253 Total

Summary for Subcatchment 3D: To Culv sta 9+15

0.071 af, Depth= 3.53" Runoff = 0.97 cfs @ 12.09 hrs, Volume= Routed to Pond 3DP : 3DP

NH-1144.5-Proposed

 Type III 24-hr
 10 YR Rainfall=4.64"

 Printed
 10/16/2023

 LLC
 Page 15

Prepared by Beals Associate	es, PLLC
HydroCAD® 10.20-3c s/n 01754	© 2023 HydroCAD Software Solutions LL

A	rea (sf)	CN	Description				
	9,250	92	Paved road	s w/open d	litches, 50% imp, HSG C		
	1,257	74	>75% Gras	s cover, Go	ood, HSG C		
	10,507 5,882 4,625	90	Weighted Average 55.98% Pervious Area 44.02% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry, Direct		

Summary for Subcatchment 3E: To Culv sta 12+40

Runoff = 1.02 cfs @ 12.09 hrs, Volume= 0.073 af, Depth= 3.13" Routed to Pond 3EP : CULV sta 12+40

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.64"

A	rea (sf)	CN	Description							
	8,402	92	Paved road	s w/open d	litches, 50% imp, HSG C					
	3,786	74	>75% Gras	s cover, Go	bod, HSG C					
	12,188	86	Weighted A	verage						
	7,987		65.53% Per	5.53% Pervious Area						
	4,201		34.47% Imp	pervious Are	ea					
Тс	Length	Slope	e Velocity	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)						
6.0					Direct Entry, Direct					
					-					

Summary for Subcatchment 3F: Direct to Bioret pond

Runoff = 1.08 cfs @ 12.18 hrs, Volume= 0.115 af, Depth= 0.92" Routed to Pond 3FP : Bioretention Pond

Area (sf)	CN	Description
18,488	61	>75% Grass cover, Good, HSG B
46,989	55	Woods, Good, HSG B
65,477	57	Weighted Average
65,477		100.00% Pervious Area

NH-1144.5-Proposed					Type III 24-hr 10 YR Rainfall=4.64				
Prepare	d by Bea	als Asso	ciates, PL	LC	Printed 10/16/202				
HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD					Software Solutions LLC Page 16				
					-				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
7.9	50	0.0650	0.10		Sheet Flow, Sheet				
					Woods: Light underbrush n= 0.400 P2= 3.00"				
3.3	348	0.1200	1.73		Shallow Concentrated Flow, SC on slope to pond				
					Woodland Kv= 5.0 fps				
11.2	398	Total							
		Sun	nmarv fo	r Subcat	chment 3I: To CULV STA 6+90				
		••••							
Runoff	=	7.13 cf	s@ 12.3	9 hrs, Volu	ıme= 0.881 af, Depth= 2.49"				
Route	ed to Pon	d 3IP : 3I	P						
Runoff b	Y SCS TH	R-20 met	nod, UH=S	SCS, Weigh	ted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs				
Type III 2	24-hr 10	YR Raint	all=4.64"						
	()								
A	rea (st)	CN L	escription						
1	84,533	79 1	acre lots,	<u>20% imp, F</u>	ISG C				
1	47,626	8	0.00% Pei	vious Area					
	36,907	2	0.00% Imp	pervious Are	ea				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
15.1	50	0.0130	0.06		Sheet Flow, Sheet				
					Woods: Light underbrush n= 0.400 P2= 3.00"				

28.8 653 Total

603 0.0110

13.7

0.73

Summary for Reach 1.B1R: RD 1.B1

Shallow Concentrated Flow, SC to CULV

Short Grass Pasture Kv= 7.0 fps

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.057 ac,100.00% Impervious, Inflow Depth =
 4.40" for 10 YR event

 Inflow =
 0.26 cfs @
 12.08 hrs, Volume=
 0.021 af

 Outflow =
 0.26 cfs @
 12.09 hrs, Volume=
 0.021 af, Atten= 0%, Lag= 0.6 min

 Routed to Pond 1.CB1 : CB1
 Comparison
 Comparison
 Comparison

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Max. Velocity= 3.83 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.28 fps, Avg. Travel Time= 1.0 min

Peak Storage= 5 cf @ 12.09 hrs Average Depth at Peak Storage= 0.19' , Surface Width= 0.48' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.86 cfs

6.0" Round Pipe n= 0.012 Corrugated PP, smooth interior Length= 75.0' Slope= 0.0200 '/' Inlet Invert= 227.00', Outlet Invert= 225.50'

Summary for Reach 1.B2R: RD - 1.B2

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.057 ac,100.00% Impervious, Inflow Depth =
 4.40" for 10 YR event

 Inflow =
 0.26 cfs @
 12.08 hrs, Volume=
 0.021 af

 Outflow =
 0.26 cfs @
 12.09 hrs, Volume=
 0.021 af, Atten= 0%, Lag= 0.6 min

 Routed to Pond 1.CB4 : CB4
 CB4
 Comparison
 Comparison

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Max. Velocity= 3.33 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.11 fps, Avg. Travel Time= 1.0 min

Peak Storage= 5 cf @ 12.09 hrs Average Depth at Peak Storage= 0.21', Surface Width= 0.49' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.71 cfs

6.0" Round Pipe n= 0.012 Corrugated PP, smooth interior Length= 66.0' Slope= 0.0136 '/' Inlet Invert= 227.00', Outlet Invert= 226.10'

Summary for Reach 1.B3R: RD - 1.B3

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.089 ac,100.00% Impervious, Inflow Depth =
 4.40" for 10 YR event

 Inflow =
 0.40 cfs @
 12.08 hrs, Volume=
 0.033 af

 Outflow =
 0.40 cfs @
 12.09 hrs, Volume=
 0.033 af, Atten= 0%, Lag= 0.1 min

 Routed to Pond 1.CB1 : CB1
 CB1
 CB1
 CB1

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Max. Velocity= 6.03 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.01 fps, Avg. Travel Time= 0.2 min

Peak Storage= 2 cf @ 12.08 hrs Average Depth at Peak Storage= 0.19', Surface Width= 0.48' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 1.36 cfs 6.0" Round Pipe n= 0.012 Corrugated PP, smooth interior Length= 30.0' Slope= 0.0500 '/' Inlet Invert= 227.00', Outlet Invert= 225.50'

Summary for Reach 1.B4R: RD - 1.B4

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.089 ac,100.00% Impervious, Inflow Depth =
 4.40" for 10 YR event

 Inflow =
 0.40 cfs @
 12.08 hrs, Volume=
 0.033 af

 Outflow =
 0.40 cfs @
 12.08 hrs, Volume=
 0.033 af, Atten= 0%, Lag= 0.1 min

 Routed to Pond 1.CB4 : CB4
 CB4
 CB4
 CB4

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Max. Velocity= 4.20 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.42 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.08 hrs Average Depth at Peak Storage= 0.25' , Surface Width= 0.50' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.83 cfs

6.0" Round Pipe n= 0.012 Corrugated PP, smooth interior Length= 8.0' Slope= 0.0188 '/' Inlet Invert= 226.25', Outlet Invert= 226.10'

Summary for Reach 1.B5R: RD - 1.B5

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.057 ac,100.00% Impervious, Inflow Depth = 4.40" for 10 YR event

 Inflow =
 0.26 cfs @ 12.08 hrs, Volume=
 0.021 af

 Outflow =
 0.26 cfs @ 12.10 hrs, Volume=
 0.021 af, Atten= 0%, Lag= 0.8 min

 Routed to Pond 1.CB7 : CB7
 CB7

NH-1144.5-Proposed *Typ* Prepared by Beals Associates, PLLC HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions LLC

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Max. Velocity= 2.64 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.89 fps, Avg. Travel Time= 1.3 min

Peak Storage= 7 cf @ 12.09 hrs Average Depth at Peak Storage= 0.25' , Surface Width= 0.50' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.52 cfs

6.0" Round Pipe n= 0.012 Corrugated PP, smooth interior Length= 69.0' Slope= 0.0072 '/' Inlet Invert= 210.00', Outlet Invert= 209.50'

Summary for Reach 1.B6R: RD - 1.B6

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.057 ac,100.00% Impervious, Inflow Depth =
 4.40" for 10 YR event

 Inflow =
 0.26 cfs @
 12.08 hrs, Volume=
 0.021 af

 Outflow =
 0.26 cfs @
 12.10 hrs, Volume=
 0.021 af, Atten= 0%, Lag= 0.7 min

 Routed to Pond 1.CB5 : CB5
 CB5
 CB5

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Max. Velocity= 2.99 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.00 fps, Avg. Travel Time= 1.2 min

Peak Storage= 6 cf @ 12.09 hrs Average Depth at Peak Storage= 0.23', Surface Width= 0.50' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n= 0.012 Corrugated PP, smooth interior Length= 74.0' Slope= 0.0101 '/' Inlet Invert= 227.00', Outlet Invert= 226.25'

Summary for Reach 1.B7R: RD - 1.B7

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.089 ac,100.00% Impervious, Inflow Depth =
 4.40" for 10 YR event

 Inflow =
 0.40 cfs @
 12.08 hrs, Volume=
 0.033 af

 Outflow =
 0.40 cfs @
 12.09 hrs, Volume=
 0.033 af, Atten= 0%, Lag= 0.2 min

 Routed to Pond 1.CB7 : CB7
 CB7
 CB7

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Max. Velocity= 4.02 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.36 fps, Avg. Travel Time= 0.4 min

Peak Storage= 3 cf @ 12.08 hrs Average Depth at Peak Storage= 0.25' , Surface Width= 0.50' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.78 cfs

6.0" Round Pipe n= 0.012 Corrugated PP, smooth interior Length= 30.0' Slope= 0.0167 '/' Inlet Invert= 210.00', Outlet Invert= 209.50'

Summary for Reach 1.B8R: RD - 1.B8

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.089 ac,100.00% Impervious, Inflow Depth =
 4.40" for 10 YR event

 Inflow =
 0.40 cfs @
 12.08 hrs, Volume=
 0.033 af

 Outflow =
 0.40 cfs @
 12.09 hrs, Volume=
 0.033 af, Atten= 0%, Lag= 0.7 min

 Routed to Pond 1.CB5 : CB5
 CB5
 CB5
 CB5

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Max. Velocity= 3.32 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.14 fps, Avg. Travel Time= 1.1 min

Peak Storage= 9 cf @ 12.09 hrs Average Depth at Peak Storage= 0.30', Surface Width= 0.49' Bank-Full Depth= 0.50' Flow Area= 0.2 sf, Capacity= 0.61 cfs

6.0" Round Pipe n= 0.012 Corrugated PP, smooth interior Length= 74.0' Slope= 0.0101 '/' Inlet Invert= 227.00', Outlet Invert= 226.25'

Summary for Reach 3IR: SSF THROUGH SUBCAT 3

Inflow Area = 4.847 ac, 41.88% Impervious, Inflow Depth = 0.00" for 10 YR event Inflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min Routed to Reach 300 : Northerly Analysis Point Old Green Hill stream crossing

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 2.00' Flow Area= 26.7 sf, Capacity= 379.37 cfs

20.00' x 2.00' deep Parabolic Channel, n= 0.030 Earth, grassed & winding Length= 667.0' Slope= 0.0582 '/' Inlet Invert= 186.00', Outlet Invert= 147.20'

Summary for Reach 3R: Reach THROUGH SUBCAT 3)

Inflow Area = 4.236 ac, 20.00% Impervious, Inflow Depth = 1.21" for 10 YR event Inflow = 2.60 cfs @ 12.95 hrs, Volume= 0.427 af Outflow = 1.14 cfs @ 14.22 hrs, Volume= 0.427 af, Atten= 56%, Lag= 76.1 min Routed to Reach 300 : Northerly Analysis Point Old Green Hill stream crossing

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Max. Velocity= 0.98 fps, Min. Travel Time= 36.6 min Avg. Velocity = 0.41 fps, Avg. Travel Time= 88.1 min

Peak Storage= 2,511 cf @ 13.61 hrs Average Depth at Peak Storage= 0.19', Surface Width= 9.24' Bank-Full Depth= 2.00' Flow Area= 40.0 sf, Capacity= 185.81 cfs

30.00' x 2.00' deep Parabolic Channel, n= 0.080 Earth, long dense weeds Length= 2,144.0' Slope= 0.0433 '/' Inlet Invert= 240.00', Outlet Invert= 147.20'

Summary for Reach 300: Northerly Analysis Point Old Green Hill stream crossing

[40] Hint: Not Described (Outflow=Inflow)

Inflow /	Area	=	57.359 ac,	13.81% Imp	ervious,	Inflow	Depth =	1.6	68" for	· 10	YR eve	nt
Inflow	:	=	38.40 cfs @	12.92 hrs,	Volume	=	8.026	af				
Outflov	v :	=	38.40 cfs @	12.92 hrs,	Volume	=	8.026	af,	Atten=	0%,	Lag= 0).0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Summary for Pond 1.CB1: CB1

[62] Hint: Exceeded Reach 1.B1R OUTLET depth by 0.34' @ 12.09 hrs [62] Hint: Exceeded Reach 1.B3R OUTLET depth by 0.35' @ 12.09 hrs

0.279 ac, 95.57% Impervious, Inflow Depth = 4.29" Inflow Area = for 10 YR event Inflow = 1.25 cfs @ 12.09 hrs, Volume= 0.100 af 0.100 af, Atten= 0%, Lag= 0.0 min Outflow = 1.25 cfs @ 12.09 hrs, Volume= 1.25 cfs @ 12.09 hrs, Volume= 0.100 af Primary = Routed to Pond 1.CB2 : CB2

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 226.03' @ 12.09 hrs Flood Elev= 228.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	225.40'	12.0" Round Culvert L= 110.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 225.40' / 223.50' S= 0.0173 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.25 cfs @ 12.09 hrs HW=226.03' (Free Discharge) —1=Culvert (Inlet Controls 1.25 cfs @ 2.39 fps)

Summary for Pond 1.CB2: CB2

[79] Warning: Submerged Pond 1.CB1 Primary device # 1 OUTLET by 0.72'

 Inflow Area =
 0.420 ac, 97.06% Impervious, Inflow Depth = 4.33" for 10 YR event

 Inflow =
 1.89 cfs @
 12.09 hrs, Volume=
 0.152 af

 Outflow =
 1.89 cfs @
 12.09 hrs, Volume=
 0.152 af, Atten= 0%, Lag= 0.0 min

 Primary =
 1.89 cfs @
 12.09 hrs, Volume=
 0.152 af

 Routed to Pond 1.CB3 : CB3
 CB3
 0.152 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 224.23' @ 12.09 hrs Flood Elev= 227.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	223.40'	12.0" Round Culvert
			L= 97.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 223.40' / 221.95' S= 0.0149 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.89 cfs @ 12.09 hrs HW=224.22' (Free Discharge) —1=Culvert (Inlet Controls 1.89 cfs @ 2.73 fps)

Summary for Pond 1.CB3: CB3

Inflow Area	=	1.418 ac, 5	9.57% Imp	ervious, Inflow	Depth = 3.3	38" for 10`	YR event
Inflow	=	3.76 cfs @	12.09 hrs,	Volume=	0.399 af		
Outflow	=	3.76 cfs @	12.09 hrs,	Volume=	0.399 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	3.76 cfs @	12.09 hrs,	Volume=	0.399 af		•
Routed t	to Pond	1.DMH2 : DM	MH2				

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 221.00' @ 12.09 hrs Flood Elev= 227.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	220.00'	18.0" Round Culvert L= 56.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 220.00' / 215.52' S= 0.0800 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=3.76 cfs @ 12.09 hrs HW=221.00' (Free Discharge) -1=Culvert (Inlet Controls 3.76 cfs @ 3.00 fps)

Summary for Pond 1.CB4: CB4

[62] Hint: Exceeded Reach 1.B2R OUTLET depth by 0.03' @ 12.30 hrs [62] Hint: Exceeded Reach 1.B4R OUTLET depth by 0.01' @ 12.30 hrs

Inflow Area	a =	0.892 ac, 3	7.11% Imp	ervious,	Inflow De	epth =	2.8	1" for	10 Y	R event	
Inflow	=	1.68 cfs @	12.28 hrs,	Volume	=	0.209	af				
Outflow	=	1.68 cfs @	12.28 hrs,	Volume	=	0.209	af, .	Atten= 0	1%,	Lag= 0.0) min
Primary	=	1.68 cfs @	12.28 hrs,	Volume	=	0.209	af			•	
Routed	to Pond	1.CB3 : CB3									
Routing by	Stor-Ind	method. Tim	ne Span= 0.	.00-72.0	0 hrs. dt=	0.01 h	rs				

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 226.26' @ 12.28 hrs Flood Elev= 229.10'

Device	Routing	Invert	Outlet Devices
#1	Primary	225.50'	12.0" Round Culvert

L= 65.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 225.50' / 221.50' S= 0.0615 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.68 cfs @ 12.28 hrs HW=226.26' (Free Discharge) -1=Culvert (Inlet Controls 1.68 cfs @ 2.62 fps)

Summary for Pond 1.CB5: CB5

[79] Warning: Submerged Pond 1.DMH2 Primary device # 1 OUTLET by 1.13'

 Inflow Area =
 1.824 ac, 62.77% Impervious, Inflow Depth =
 3.45" for 10 YR event

 Inflow =
 5.15 cfs @
 12.10 hrs, Volume=
 0.525 af

 Outflow =
 5.15 cfs @
 12.10 hrs, Volume=
 0.525 af, Atten= 0%, Lag= 0.0 min

 Primary =
 5.15 cfs @
 12.10 hrs, Volume=
 0.525 af

 Routed to Pond 1.CB6 : CB6
 CB6
 0.525 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 208.63' @ 12.10 hrs Flood Elev= 213.90'

Device	Routing	Invert	Outlet Devices
#1	Primary	207.40'	18.0" Round Culvert L= 103.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 207.40' / 206.40' S= 0.0097 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=5.15 cfs @ 12.10 hrs HW=208.63' (Free Discharge) -1=Culvert (Inlet Controls 5.15 cfs @ 3.33 fps)

Summary for Pond 1.CB6: CB6

[79] Warning: Submerged Pond 1.CB5 Primary device # 1 INLET by 0.30'

2.390 ac, 59.48% Impervious, Inflow Depth = 3.38" Inflow Area = for 10 YR event 6.10 cfs @ 12.11 hrs, Volume= Inflow 0.672 af = Outflow = 6.10 cfs @ 12.11 hrs, Volume= 0.672 af, Atten= 0%, Lag= 0.0 min 6.10 cfs @ 12.11 hrs, Volume= 0.672 af Primary = Routed to Pond 1.CB8 : CB8

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 207.70' @ 12.11 hrs Flood Elev= 210.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	206.30'	18.0" Round Culvert L= 101.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= $206.30' / 204.30'$ S= $0.0198 '/$ Cc= 0.900 n= 0.013 Corrugated PE smooth interior. Flow Area= 1.77 sf
			n= 0.013 Corrugated PE, smooth Interior, Flow Area= 1.77 st

Primary OutFlow Max=6.10 cfs @ 12.11 hrs HW=207.70' (Free Discharge)

Summary for Pond 1.CB7: CB7

Inflow Area = 0.276 ac, 95.53% Impervious, Inflow Depth = 4.30" for 10 YR event Inflow 1.24 cfs @ 12.09 hrs. Volume= 0.099 af = 1.24 cfs @ 12.09 hrs, Volume= Outflow = 0.099 af, Atten= 0%, Lag= 0.0 min 1.24 cfs @ 12.09 hrs, Volume= Primary = 0.099 af Routed to Pond 1.DMH1 : DMH1 Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 205.13' @ 12.09 hrs Flood Elev= 211.85' Device Routing Invert Outlet Devices #1 Primary 204.50' 12.0" Round Culvert L= 66.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 204.50' / 197.40' S= 0.1076 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.23 cfs @ 12.09 hrs HW=205.13' (Free Discharge) -1=Culvert (Inlet Controls 1.23 cfs @ 2.38 fps)

Summary for Pond 1.CB8: CB8

 Inflow Area =
 2.519 ac, 61.57% Impervious, Inflow Depth =
 3.43" for 10 YR event

 Inflow =
 6.66 cfs @
 12.11 hrs, Volume=
 0.720 af

 Outflow =
 6.66 cfs @
 12.11 hrs, Volume=
 0.720 af, Atten= 0%, Lag= 0.0 min

 Primary =
 6.66 cfs @
 12.11 hrs, Volume=
 0.720 af

 Routed to Pond 1.DMH1 : DMH1
 DMH1

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 200.32' @ 12.11 hrs Flood Elev= 210.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	199.10'	24.0" Round Culvert L= 52.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 199.10' / 197.40' S= 0.0327 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=6.66 cfs @ 12.11 hrs HW=200.32' (Free Discharge) **1=Culvert** (Inlet Controls 6.66 cfs @ 3.32 fps)

Summary for Pond 1.DMH1: DMH1

[79] Warning: Submerged Pond 1.CB7 Primary device # 1 OUTLET by 1.42' [79] Warning: Submerged Pond 1.CB8 Primary device # 1 OUTLET by 1.42'

NH-1144.5-Proposed Prepared by Beals Associates, PLLC HydroCAD® 10.20-3c s/n 01754 © 2023 HydroCAD Software Solutions	Type III 24-hr 10 YR Rainfall=4.64" Printed 10/16/2023 LLC Page 26
Inflow Area = 2.795 ac, 64.92% Impervious, Inflow Depth = Inflow = 7.88 cfs @ 12.10 hrs, Volume= 0.819 Outflow = 7.88 cfs @ 12.10 hrs, Volume= 0.819 Primary = 7.88 cfs @ 12.10 hrs, Volume= 0.819 Routed to Pond 1P : Sed Forbay 7.88 cfs @ 12.10 hrs, Volume= 0.819	3.52" for 10 YR event 9 af 9 af, Atten= 0%, Lag= 0.0 min 9 af
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 Peak Elev= 198.82' @ 12.10 hrs Flood Elev= 201.00'	hrs
Device Routing Invert Outlet Devices	
 #1 Primary 197.30' 24.0" Round Culvert L= 63.0' CPP, mitered to confinite / Outlet Invert= 197.30' / 1 n= 0.013 Corrugated PE, smoother the state of the state of	orm to fill, Ke= 0.700 97.00' S= 0.0048 '/' Cc= 0.900 oth interior, Flow Area= 3.14 sf Discharge)
Summary for Pond 1.DMH2:	DMH2
[58] Hint: Peaked 15.42' above defined flood level [79] Warning: Submerged Pond 1.CB3 Primary device # 1 OUTLE	Г by 0.90'
Inflow Area = 1.418 ac, 59.57% Impervious, Inflow Depth = Inflow = 3.76 cfs @ 12.09 hrs, Volume= 0.399 Outflow = 3.76 cfs @ 12.09 hrs, Volume= 0.399 Primary = 3.76 cfs @ 12.09 hrs, Volume= 0.399 Routed to Pond 1.CB5 : CB5 0.399 0.399	3.38" for 10 YR event 9 af 9 af, Atten= 0%, Lag= 0.0 min 9 af
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 Peak Elev= 216.42' @ 12.09 hrs Flood Elev= 201.00'	hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	215.42'	18.0" Round Culvert L= 102.0' CPP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 215.42' / 207.50' S= 0.0776 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=3.76 cfs @ 12.09 hrs HW=216.42' (Free Discharge) —1=Culvert (Inlet Controls 3.76 cfs @ 3.00 fps)

Summary for Pond 1P: Sed Forbay

[79] Warning: Submerged Pond 1.DMH1 Primary device # 1 INLET by 0.46'

Inflow Area	=	3.111 ac, 5	58.33% Impei	rvious, Inflow D	Depth = 3.37	" for 10`	YR event
Inflow	=	8.03 cfs @	12.10 hrs, \	√olume=	0.874 af		
Outflow	=	7.67 cfs @	12.14 hrs, \	√olume=	0.874 af, A	Atten= 4%,	Lag= 2.2 min
Primary	=	7.67 cfs @	12.14 hrs, \	√olume=	0.874 af		-
Routed	to Pond	3IBP : Surfa	ce Sand Filte	er Pond			

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Starting Elev= 196.00' Surf.Area= 1,598 sf Storage= 1,338 cf Peak Elev= 197.76' @ 12.14 hrs Surf.Area= 2,662 sf Storage= 5,091 cf (3,754 cf above start) Flood Elev= 198.50' Surf.Area= 3,145 sf Storage= 7,228 cf (5,891 cf above start)

Plug-Flow detention time= 118.7 min calculated for 0.843 af (96% of inflow) Center-of-Mass det. time= 82.6 min (874.0 - 791.4)

Volume	Inv	ert Avail.Sto	orage Storag	ge Description	
#1	195.0	00' 7,2	28 cf Custo	om Stage Data (Prisr	natic)Listed below (Recalc)
Elevatio	on	Surf.Area	Inc.Store	Cum.Store	
(166	et)	(sq-π)	(cubic-teet)	(cubic-feet)	
195.0	00	1,077	0	0	
196.0	00	1,598	1,338	1,338	
198.0	00	2.805	4,403	5.741	
198.5	50	3,145	1,488	7,228	
Device	Routing	Invert	Outlet Devid	ces	
#1	Primary	196.00'	24.0" Rour	nd Culvert	
			L= 30.0' C	PP, mitered to confor	m to fill, $Ke= 0.700$
			Inlet / Outle	t Invert= 196.00' / 19	5.50' S= 0.0167 '/' Cc= 0.900
			n= 0.013 C	orrugated PE, smoot	h interior, Flow Area= 3.14 sf
#2	Device 1	197.25'	24.0" Horiz	. Orifice/Grate C= 0	0.600
			Limited to w	eir flow at low heads	
#3	Device 1	196.00'	2.0" Vert. C	Drifice/Grate C= 0.6	00 Limited to weir flow at low heads

Primary OutFlow Max=7.67 cfs @ 12.14 hrs HW=197.76' (Free Discharge)

-1=Culvert (Passes 7.67 cfs of 11.69 cfs potential flow)

2=Orifice/Grate (Weir Controls 7.54 cfs @ 2.34 fps)

-3=Orifice/Grate (Orifice Controls 0.14 cfs @ 6.24 fps)

Summary for Pond 3AP: 3AP

 Inflow Area =
 1.966 ac, 20.78% Impervious, Inflow Depth =
 2.49" for 10 YR event

 Inflow =
 3.70 cfs @
 12.32 hrs, Volume=
 0.409 af

 Outflow =
 3.69 cfs @
 12.32 hrs, Volume=
 0.409 af, Atten= 0%, Lag= 0.1 min

 Primary =
 3.69 cfs @
 12.32 hrs, Volume=
 0.409 af

 Routed to Pond 3BP : 3BP
 3BP
 12.32 hrs, Volume=

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 267.02' @ 12.32 hrs Surf.Area= 77 sf Storage= 44 cf

Plug-Flow detention time= 0.2 min calculated for 0.409 af (100% of inflow) Center-of-Mass det. time= 0.2 min (843.2 - 843.0)

Volume	Invert	Avail.Storage	Storage Description
#1	266.00'	400 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

NH-1144.5-Proposed

Type III 24-hr	10 YR Rainfall=4.64"			
	Printed	10/16/2023		
LC		Page 28		

Prepared by Beals Associate	es, PLLC
HydroCAD® 10.20-3c s/n 01754	© 2023 HydroCAD Software Solutions I

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
266.00	8	0	0
268.00	144	152	152
269.00	352	248	400

Device	Routing	Invert	Outlet Devices
#1	Primary	266.00'	15.0" Round (

6.00' 15.0" Round Culvert

L= 108.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 266.00' / 261.50' S= 0.0417 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=3.69 cfs @ 12.32 hrs HW=267.02' (Free Discharge) **1=Culvert** (Inlet Controls 3.69 cfs @ 3.44 fps)

Summary for Pond 3BP: 3BP

Inflow Area	=	5.290 ac, 1	4.00% Impe	ervious, Inflov	v Depth =	2.23"	for 10	/R event
Inflow	=	8.59 cfs @	12.33 hrs,	Volume=	0.985	af		
Outflow	=	8.59 cfs @	12.33 hrs,	Volume=	0.985	af, Atte	en= 0%,	Lag= 0.1 min
Primary	=	8.59 cfs @	12.33 hrs,	Volume=	0.985	af		•
Routed	to Pond	3CP : 3CP						

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 247.44' @ 12.33 hrs Surf.Area= 105 sf Storage= 84 cf

Plug-Flow detention time= 0.2 min calculated for 0.985 af (100% of inflow) Center-of-Mass det. time= 0.2 min (852.4 - 852.2)

Volume	Inv	ert Avail.	Storage	Storage D	escription		
#1	246.	00'	391 cf	Custom S	Stage Data (Pr	i smatic) Listed below (Recalc)	
Elevatio	on et)	Surf.Area (sq-ft)	Inc (cubio	.Store c-feet)	Cum.Store (cubic-feet)		
246.0	00	12		0	0		
248.0	00	142		154	154		
249.0	00	332		237	391		
Device	Routing	Inve	ert Outle	et Devices			
#1	Primary	246.00' 24.0" Round Culvert L= 40.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 246.00' / 245.60' S= 0.0100 '/' Cc= 0.900					

n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=8.59 cfs @ 12.33 hrs HW=247.44' (Free Discharge) **1=Culvert** (Barrel Controls 8.59 cfs @ 4.98 fps)

Summary for Pond 3CP: 3CP

[79] Warning: Submerged Pond 3EP Primary device # 1 OUTLET by 0.02'

 Inflow Area =
 6.332 ac, 17.67% Impervious, Inflow Depth =
 2.38" for 10 YR event

 Inflow =
 10.12 cfs @
 12.32 hrs, Volume=
 1.257 af

 Outflow =
 10.12 cfs @
 12.32 hrs, Volume=
 1.257 af, Atten= 0%, Lag= 0.2 min

 Primary =
 10.12 cfs @
 12.32 hrs, Volume=
 1.257 af

 Routed to Pond DMH1 : DMH 1
 1

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 239.53' @ 12.32 hrs Surf.Area= 288 sf Storage= 79 cf Flood Elev= 241.00' Surf.Area= 1,480 sf Storage= 1,280 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.1 min (842.8 - 842.7)

Volume	Inv	ert Avail.Sto	orage	Storage I	Description			
#1	239.	00' 3,2	231 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)		
Elevatio (fee	on et)	Surf.Area (sg-ft)	Inc. (cubic	Store	Cum.Store (cubic-feet)			
239.0 240.0 242.0	20 20 20 20	8 536 2,423	(00.010	0 272 2,959	0 272 3,231			
Device	Routing	Invert	Outle	et Devices				
#1	Primary	234.00'	18.0' L= 70 Inlet n= 0.	' Round 0.0' CPP / Outlet In .013 Corr	Culvert , square edge vert= 234.00' / ugated PE, sm	headwall, Ke= 0.500 223.00' S= 0.1571 '/' Cc= 0.900 ooth interior, Flow Area= 1.77 sf		
#2	Device 1	239.00'	24.0' Limit	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads				

Primary OutFlow Max=10.11 cfs @ 12.32 hrs HW=239.53' (Free Discharge) **1=Culvert** (Passes 10.11 cfs of 18.60 cfs potential flow)

2=Orifice/Grate (Weir Controls 10.11 cfs @ 2.38 fps)

Summary for Pond 3DP: 3DP

Inflow Area	=	0.241 ac,	44.02% Imp	ervious, Ir	nflow Depth =	3.53"	for 10	YR event
Inflow	=	0.97 cfs @	12.09 hrs,	Volume=	0.071	af		
Outflow	=	0.97 cfs @	12.09 hrs,	Volume=	0.071	af, Atte	en= 0%,	Lag= 0.0 min
Primary	=	0.97 cfs @	12.09 hrs,	Volume=	0.071	af		•
Routed	to Pond	3EP : CUL	√ sta 12+40					

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 259.47' @ 12.09 hrs Surf.Area= 8 sf Storage= 3 cf

Plug-Flow detention time= 0.2 min calculated for 0.071 af (100% of inflow) Center-of-Mass det. time= 0.2 min (793.5 - 793.3)
NH-1144.5-Proposed

Type III 24-hr	10 YR Ra	infall=4.64"
	Printed	10/16/2023
LC		Page 30

Prepared by Beals As	sociates, PLLC	
HydroCAD® 10.20-3c s/n	01754 © 2023 HydroCAD	Software Solutions LLC

Volume	Inv	vert Avail.St	orage	Storage D	escription	
#1	259.	00' 4	422 cf	Custom S	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc. (cubic	Store -feet)	Cum.Store (cubic-feet)	
259.0	00	6		0	0	
260.0	00	11		9	9	
262.0	00	151		162	171	
263.0	00	352		252	422	
Device	Routing	Invert	Outle	t Devices		
#1	Primary	259.00	15.0" Round Culvert L= 55.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 259.00' / 257.90' S= 0.0200 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf		headwall, Ke= 0.500 257.90' S= 0.0200 '/' Cc= 0.900 nooth interior, Flow Area= 1.23 sf	

Primary OutFlow Max=0.96 cfs @ 12.09 hrs HW=259.46' (Free Discharge) ☐ 1=Culvert (Inlet Controls 0.96 cfs @ 2.32 fps)

Summary for Pond 3EP: CULV sta 12+40

Inflow Area	a =	0.521 ac, 3	8.89% Impe	ervious, In	flow Depth =	3.32'	" for 10 \	/R event
Inflow	=	1.98 cfs @	12.09 hrs,	Volume=	0.144	af		
Outflow	=	1.98 cfs @	12.09 hrs,	Volume=	0.144	af, A	tten= 0%,	Lag= 0.2 min
Primary	=	1.98 cfs @	12.09 hrs,	Volume=	0.144	af		-
Routed	to Pond	3CP : 3CP						

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 240.72' @ 12.09 hrs Surf.Area= 68 sf Storage= 27 cf

Plug-Flow detention time= 0.3 min calculated for 0.144 af (100% of inflow) Center-of-Mass det. time= 0.3 min (800.8 - 800.5)

Volume	Inv	ert Avail.Sto	orage Storage	e Description	
#1	240.	00' 5	04 cf Custon	n Stage Data (Pri	smatic) Listed below (Recalc)
Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
240.0 242.0 243.0	00 00 00	8 174 470	0 182 322	0 182 504	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	240.00'	15.0" Round L= 49.0' CP Inlet / Outlet n= 0.013 Co	d Culvert P, square edge h Invert= 240.00' / 2 rrugated PE, smo	eadwall, Ke= 0.500 239.51' S= 0.0100 '/' Cc= 0.900 oth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.98 cfs @ 12.09 hrs HW=240.72' (Free Discharge) ☐ 1=Culvert (Barrel Controls 1.98 cfs @ 3.92 fps)

Summary for Pond 3FB: Sed Forbay

[79] Warning: Submerged Pond DMH1B Primary device # 1 OUTLET by 0.33'

 Inflow Area =
 6.332 ac, 17.67% Impervious, Inflow Depth =
 2.38" for 10 YR event

 Inflow =
 10.12 cfs @
 12.32 hrs, Volume=
 1.257 af

 Outflow =
 10.11 cfs @
 12.33 hrs, Volume=
 1.187 af, Atten= 0%, Lag= 0.5 min

 Primary =
 10.11 cfs @
 12.33 hrs, Volume=
 1.187 af

 Routed to Pond 3FP : Bioretention Pond
 1.187 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 214.85' @ 12.33 hrs Surf.Area= 1,969 sf Storage= 3,512 cf Flood Elev= 215.00' Surf.Area= 2,071 sf Storage= 3,825 cf

Plug-Flow detention time= 44.1 min calculated for 1.187 af (94% of inflow) Center-of-Mass det. time= 14.0 min (856.8 - 842.8)

Volume	١nv	ert Avail.	Storage	Storage D	Description	
#1	212.	00' 3	3,825 cf	Custom \$	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc (cubio	.Store c-feet)	Cum.Store (cubic-feet)	
212.0 214.0 215.0)0)0)0	671 1,412 2,071		0 2,083 1,742	0 2,083 3,825	
Device	Routing	Inve	ert Outle	et Devices		
#1	Primary	214.6	0' 35.0 ' Head 2.50 Coef 2.65	long x 5. d (feet) 0.2 3.00 3.50 . (English) 2.67 2.66	.0' breadth Br 20 0.40 0.60 0 4.00 4.50 5 2.34 2.50 2 6 2.68 2.70 2	oad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 5.00 5.50 .70 2.68 2.66 2.65 2.65 2.65 2.74 2.79 2.88

Primary OutFlow Max=10.10 cfs @ 12.33 hrs HW=214.85' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 10.10 cfs @ 1.18 fps)

Summary for Pond 3FP: Bioretention Pond

[81] Warning: Exceeded Pond 3FB by 0.66' @ 12.61 hrs

Inflow Area = 7.835 ac, 14.28% Impervious, Inflow Depth = 1.99" for 10 YR event 1.302 af Inflow 10.96 cfs @ 12.32 hrs, Volume= = 8.01 cfs @ 12.54 hrs, Volume= Outflow 1.302 af, Atten= 27%, Lag= 13.3 min = Discarded = 0.17 cfs @ 12.54 hrs, Volume= 0.449 af 7.84 cfs @ 12.54 hrs, Volume= 0.853 af Primary = Routed to Reach 300 : Northerly Analysis Point Old Green Hill stream crossing

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 215.45' @ 12.54 hrs Surf.Area= 10,843 sf Storage= 16,645 cf Flood Elev= 216.00' Surf.Area= 11,798 sf Storage= 22,868 cf

Plug-Flow detention time= 309.3 min calculated for 1.302 af (100% of inflow)

Volume	Inve	rt Ava	il.Storage	orage Storage Description		
#1	212.10)'	22,868 c	f Custom Stage	Data (Conic)Listed	d below (Recalc)
Elevation (feet) 212.10	ç	Surf.Area (sq-ft) 9,445	Voids (%) 0.0	Inc.Store (cubic-feet) 0	Cum.Store (cubic-feet) 0	Wet.Area <u>(sq-ft)</u> 9,445
213.10 214.60 216.00		9,445 9,445 11,798	40.0 30.0 100.0	3,778 4,250 14,840	3,778 8,028 22,868	9,790 10,306 12,714
Device I	Routing	In	vert Ou	utlet Devices		
#1 F	Primary Discardeo	215 1 212	5.00' 10 He Co 2.10' 0. 0	10.0' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 0.680 in/hr Exfiltration over Surface area Phase-In= 0.01'		
Discarded OutFlow Max=0.17 cfs @ 12.54 hrs HW=215.45' (Free Discharge)						

Center-of-Mass det. time= 309.3 min (1,169.6 - 860.3)

2=Exfiltration (Exfiltration Controls 0.17 cfs) Primary OutFlow Max=7.84 cfs @ 12.54 hrs HW=215.45' (Free Discharge)

1=Broad-Crested Rectangular Weir (Weir Controls 7.84 cfs @ 1.74 fps)

Summary for Pond 3IBP: Surface Sand Filter Pond

[79] Warning: Submerged Pond 1P Primary device # 1 INLET by 0.52'

Inflow Area = 4.847 ac, 41.88% Impervious, Inflow Depth = 3.03" for 10 YR event Inflow 9.99 cfs @ 12.17 hrs, Volume= = 1.222 af Outflow = 0.93 cfs @ 14.44 hrs, Volume= 1.222 af, Atten= 91%, Lag= 136.3 min 0.93 cfs @ 14.44 hrs, Volume= 1.222 af Discarded = $0.00 \text{ cfs} (\overline{a}) = 0.00 \text{ hrs}, \text{ Volume}=$ Primarv = 0.000 af Routed to Reach 3IR : SSF THROUGH SUBCAT 3 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routed to Reach 3IR : SSF THROUGH SUBCAT 3

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 196.52' @ 14.44 hrs Surf.Area= 13.422 sf Storage= 24.612 cf Flood Elev= 197.75' Surf.Area= 15,413 sf Storage= 42,366 cf

Plug-Flow detention time= 259.8 min calculated for 1.222 af (100% of inflow) Center-of-Mass det. time= 259.8 min (1,125.4 - 865.7)

Volume	Invert	Avail.Storage	Storage Description
#1	192.50'	42,366 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

NH-1144.5-Proposed

Prepared by Beals Associates, PLLC

_		~			a a		
Elevation	on	Surf.Area	Void	ls Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(%	6) (cubic-feet)	(cubic-feet)		
192.	50	11,778	0.	.0 0	0		
193.	50	11,778	40.	.0 4.711	4.711		
195.	50	11,778	30.	0 7.067	11,778		
196.	00	12,584	100	.0 6.091	17,869		
197	75	15 413	100	0 24 497	42,366		
107.		10,110	100.	21,107	12,000		
Device	Routing	In	vert	Outlet Devices			
#1	Primary	192	2.00'	12.0" Round Culvert			
	,			L= 35.0' CPP, end	-section conforming	y to fill, Ke= 0.500	
				Inlet / Outlet Invert=	: 192.00' / 186.00'	S= 0.1714 '/' Cc= 0.900	
				n= 0.013 Corrugate	ed PE, smooth inter	ior. Flow Area= 0.79 sf	
#2	Device 1	197	' 00'	19.0" x 19.0" Horiz	Orifice/Grate C=	= 0 600	
	Derice			I imited to weir flow	at low heads	0.000	
#3	Seconda	rv 197	50'	8 0' long x 10 0' bi	readth Broad-Cres	ted Rectangular Weir	
110	Coconda	.,	.00	Head (feet) 0.20 0		1 20 1 40 1 60	
				Coef (English) 2.40 2.56 2.70 2.60 2.68 2.60 2.67 2.64			
<i>#</i> Λ	Discarde	d 102	50'	2 987 in/hr Exfiltra	tion over Surface	area Phase-In= $0.01'$	
11-1	Discalue	u 192					

Discarded OutFlow Max=0.93 cfs @ 14.44 hrs HW=196.52' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.93 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=192.50' (Free Discharge) **1=Culvert** (Passes 0.00 cfs of 0.95 cfs potential flow) **2=Orifice/Grate** (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=192.50' (Free Discharge) -3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 3IP: 3IP

Inflow Area = 4.236 ac, 20.00% Impervious, Inflow Depth = 2.49" for 10 YR event 7.13 cfs @ 12.39 hrs, Volume= Inflow 0.881 af = Outflow 2.60 cfs @ 12.95 hrs, Volume= 0.427 af, Atten= 64%, Lag= 33.6 min = Primarv = 2.60 cfs @ 12.95 hrs, Volume= 0.427 af Routed to Reach 3R : Reach THROUGH SUBCAT 3)

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 250.12' @ 12.95 hrs Surf.Area= 422 sf Storage= 19,941 cf Flood Elev= 252.00' Surf.Area= 2,256 sf Storage= 21,783 cf

Plug-Flow detention time= 244.2 min calculated for 0.427 af (48% of inflow) Center-of-Mass det. time= 125.5 min (974.4 - 849.0)

Volume	Invert	Avail.Storage	Storage Description
#1	149.50'	21,783 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

NH-1144.5-Proposed

Type III 24-hr	10 YR Ra	infall=4.64"
	Printed	10/16/2023
LC		Page 34

Prepared by Beals Associate	es, PLLC
HydroCAD® 10.20-3c s/n 01754	© 2023 HydroCAD Software Solutions

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
149.50	140	0	0
250.00	256	19,899	19,899
251.50	2,256	1,884	21,783

Device	Routing	Invert	Outlet Devices
#1	Primary	249.50'	24.0" Round Culvert
	-		L= 94.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 249.50' / 242.00' S= 0.0798 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=2.25 cfs @ 12.95 hrs HW=250.12' (Free Discharge) ←1=Culvert (Inlet Controls 2.25 cfs @ 2.69 fps)

Summary for Pond DMH1: DMH 1

[79] Warning: Submerged Pond 3CP Primary device # 1 OUTLET by 1.62'

Inflow Area = 6.332 ac, 17.67% Impervious, Inflow Depth = 2.38" for 10 YR event 10.12 cfs @ 12.32 hrs, Volume= 1.257 af Inflow = 10.12 cfs @ 12.32 hrs, Volume= 1.257 af, Atten= 0%, Lag= 0.0 min Outflow = 10.12 cfs @ 12.32 hrs, Volume= Primary 1.257 af = Routed to Pond DMH1B : DMH 1B

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 224.62' @ 12.32 hrs Flood Elev= 228.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	222.90'	24.0" Round Culvert L= 143.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 222.90' / 216.00' S= 0.0483 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=10.12 cfs @ 12.32 hrs HW=224.62' (Free Discharge) -1=Culvert (Inlet Controls 10.12 cfs @ 3.52 fps)

Summary for Pond DMH1B: DMH 1B

[79] Warning: Submerged Pond DMH1 Primary device # 1 OUTLET by 1.62'

 Inflow Area =
 6.332 ac, 17.67% Impervious, Inflow Depth =
 2.38" for 10 YR event

 Inflow =
 10.12 cfs @
 12.32 hrs, Volume=
 1.257 af

 Outflow =
 10.12 cfs @
 12.32 hrs, Volume=
 1.257 af, Atten= 0%, Lag= 0.0 min

 Primary =
 10.12 cfs @
 12.32 hrs, Volume=
 1.257 af

 Routed to Pond 3FB : Sed Forbay
 12.32 hrs, Volume=
 1.257 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Peak Elev= 217.62' @ 12.32 hrs Flood Elev= 220.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	215.90'	24.0" Round Culvert L= 138.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 215.90' / 214.52' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
Driman		Max-10 12 cfc	@ 12.32 hrs. HW/-217.62' (Eree Discharge)

Primary OutFlow Max=10.12 cfs @ 12.32 hrs HW=217.62' (Free Discharge) -1=Culvert (Inlet Controls 10.12 cfs @ 3.52 fps) Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1.10S: To SSF	Runoff Area=75,595 sf 12.39% Impervious Runoff Depth=4.47" Flow Length=755' Tc=21.3 min CN=78 Runoff=5.97 cfs 0.647 af
Subcatchment1.1S: To CB1	Runoff Area=5,795 sf 90.72% Impervious Runoff Depth=6.52" Tc=6.0 min CN=96 Runoff=0.91 cfs 0.072 af
Subcatchment1.2S: To CB2	Runoff Area=6,143 sf 100.00% Impervious Runoff Depth=6.76" Tc=6.0 min CN=98 Runoff=0.97 cfs 0.079 af
Subcatchment1.3S: To CB3	Runoff Area=4,619 sf 100.00% Impervious Runoff Depth=6.76" Tc=6.0 min CN=98 Runoff=0.73 cfs 0.060 af
Subcatchment1.4S: To CB4	Runoff Area=32,490 sf 24.80% Impervious Runoff Depth=4.58" Flow Length=302' Tc=22.1 min CN=79 Runoff=2.58 cfs 0.285 af
Subcatchment1.5S: To CB5	Runoff Area=11,332 sf 59.33% Impervious Runoff Depth=5.59" Flow Length=139' Tc=11.4 min CN=88 Runoff=1.37 cfs 0.121 af
Subcatchment1.6S: To CB6	Runoff Area=24,629 sf 48.87% Impervious Runoff Depth=5.37" Flow Length=246' Tc=18.8 min CN=86 Runoff=2.40 cfs 0.253 af
Subcatchment1.7S: To CB7	Runoff Area=5,669 sf 90.51% Impervious Runoff Depth=6.52" Tc=6.0 min CN=96 Runoff=0.89 cfs 0.071 af
Subcatchment1.8S: To CB8	Runoff Area=5,647 sf 100.00% Impervious Runoff Depth=6.76" Tc=6.0 min CN=98 Runoff=0.89 cfs 0.073 af
Subcatchment1.9S: To Forebay	Runoff Area=13,764 sf 0.00% Impervious Runoff Depth=4.04" Flow Length=206' Tc=32.4 min CN=74 Runoff=0.82 cfs 0.106 af
Subcatchment1.B1: Building 1 - North	Runoff Area=2,496 sf 100.00% Impervious Runoff Depth=6.76" Tc=6.0 min CN=98 Runoff=0.39 cfs 0.032 af
Subcatchment 1.B2: Building 1 - South	Runoff Area=2,496 sf 100.00% Impervious Runoff Depth=6.76" Tc=6.0 min CN=98 Runoff=0.39 cfs 0.032 af
Subcatchment1.B3: Building 2 - North	Runoff Area=3,864 sf 100.00% Impervious Runoff Depth=6.76" Tc=6.0 min CN=98 Runoff=0.61 cfs 0.050 af
Subcatchment 1.B4: Building 2 - South	Runoff Area=3,864 sf 100.00% Impervious Runoff Depth=6.76" Tc=6.0 min CN=98 Runoff=0.61 cfs 0.050 af
Subcatchment 1.B5: Building 3 - North	Runoff Area=2,496 sf 100.00% Impervious Runoff Depth=6.76" Tc=6.0 min CN=98 Runoff=0.39 cfs 0.032 af
Subcatchment 1.B6: Building 3 - South	Runoff Area=2,496 sf 100.00% Impervious Runoff Depth=6.76" Tc=6.0 min CN=98 Runoff=0.39 cfs 0.032 af

NH-1144.5-Proposed Prepared by Beals Associates, PLLC HydroCAD® 10.20-3c s/n 01754 © 2023 Hy	<i>Type III 24-hr 50 YR Rainfall=7.00"</i> Printed 10/16/2023 droCAD Software Solutions LLC Page 2
Subcatchment 1.B7: Building 4 - North	Runoff Area=3,864 sf 100.00% Impervious Runoff Depth=6.76" Tc=6.0 min CN=98 Runoff=0.61 cfs 0.050 af
Subcatchment 1.B8: Building 4 - South	Runoff Area=3,864 sf 100.00% Impervious Runoff Depth=6.76" Tc=6.0 min CN=98 Runoff=0.61 cfs 0.050 af
Subcatchment 3: North Parcel area	Runoff Area=1,761,631 sf 9.71% Impervious Runoff Depth=3.94" ow Length=1,703' Tc=68.0 min CN=73 Runoff=68.31 cfs 13.262 af
Subcatchment 3A: To Cistern Culv	Runoff Area=85,627 sf 20.78% Impervious Runoff Depth=4.58" Flow Length=802' Tc=22.4 min CN=79 Runoff=6.76 cfs 0.751 af
Subcatchment3B: To Culv sta 10+00	Runoff Area=144,824 sf 10.00% Impervious Runoff Depth=4.04" Flow Length=935' Tc=24.8 min CN=74 Runoff=9.69 cfs 1.120 af
Subcatchment 3C: To Culv sta 6+20	Runoff Area=22,668 sf 33.64% Impervious Runoff Depth=5.14" Flow Length=253' Tc=7.3 min CN=84 Runoff=2.93 cfs 0.223 af
Subcatchment 3D: To Culv sta 9+15	Runoff Area=10,507 sf 44.02% Impervious Runoff Depth=5.82" Tc=6.0 min CN=90 Runoff=1.55 cfs 0.117 af
Subcatchment 3E: To Culv sta 12+40	Runoff Area=12,188 sf 34.47% Impervious Runoff Depth=5.37" Tc=6.0 min CN=86 Runoff=1.70 cfs 0.125 af
Subcatchment 3F: Direct to Bioret pond	Runoff Area=65,477 sf 0.00% Impervious Runoff Depth=2.31" Flow Length=398' Tc=11.2 min CN=57 Runoff=3.24 cfs 0.290 af
Subcatchment 3I: To CULV STA 6+90	Runoff Area=184,533 sf 20.00% Impervious Runoff Depth=4.58" Flow Length=653' Tc=28.8 min CN=79 Runoff=13.08 cfs 1.618 af
Reach 1.B1R: RD 1.B1 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.24' Max Vel=4.28 fps Inflow=0.39 cfs 0.032 af L=75.0' S=0.0200 '/' Capacity=0.86 cfs Outflow=0.39 cfs 0.032 af
Reach 1.B2R: RD - 1.B2 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.27' Max Vel=3.71 fps Inflow=0.39 cfs 0.032 af L=66.0' S=0.0136 '/' Capacity=0.71 cfs Outflow=0.39 cfs 0.032 af
Reach 1.B3R: RD - 1.B3 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.23' Max Vel=6.73 fps Inflow=0.61 cfs 0.050 af L=30.0' S=0.0500 '/' Capacity=1.36 cfs Outflow=0.61 cfs 0.050 af
Reach 1.B4R: RD - 1.B4 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.32' Max Vel=4.63 fps Inflow=0.61 cfs 0.050 af 2 L=8.0' S=0.0188 '/' Capacity=0.83 cfs Outflow=0.61 cfs 0.050 af
Reach 1.B5R: RD - 1.B5 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.33' Max Vel=2.90 fps Inflow=0.39 cfs 0.032 af L=69.0' S=0.0072 '/' Capacity=0.52 cfs Outflow=0.39 cfs 0.032 af
Reach 1.B6R: RD - 1.B6 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.29' Max Vel=3.31 fps Inflow=0.39 cfs 0.032 af L=74.0' S=0.0101 '/' Capacity=0.61 cfs Outflow=0.39 cfs 0.032 af
Reach 1.B7R: RD - 1.B7 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.33' Max Vel=4.41 fps Inflow=0.61 cfs 0.050 af L=30.0' S=0.0167 '/' Capacity=0.78 cfs Outflow=0.61 cfs 0.050 af
Reach 1.B8R: RD - 1.B8 6.0" Round Pipe n=0.012	Avg. Flow Depth=0.41' Max Vel=3.55 fps Inflow=0.61 cfs 0.050 af L=74.0' S=0.0101 '/' Capacity=0.61 cfs Outflow=0.61 cfs 0.050 af

NH-1144.5-Proposed Prepared by Beals Assoc HydroCAD® 10.20-3c s/n 01	Type III 24-hr 50 ciates, PLLC 754 © 2023 HydroCAD Software Solutions LLC	YR Rainfall=7.00" Printed 10/16/2023 Page 3
Reach 3IR: SSF THROUG	HSUBCAT 3 Avg. Flow Depth=0.27' Max Vel=3.80 fps Inflo n=0.030 L=667.0' S=0.0582 '/' Capacity=379.37 cfs Outflo	ow=5.05 cfs 0.445 af ow=5.00 cfs 0.445 af
Reach 3R: Reach THROU	GH SUBCAT Avg. Flow Depth=0.46' Max Vel=1.75 fps Inflov n=0.080 L=2,144.0' S=0.0433 '/' Capacity=185.81 cfs Outflo	w=12.42 cfs 1.165 af ow=7.69 cfs 1.165 af
Reach 300: Northerly Ana	Iysis Point Old Green Hill stream crossing Inflow Outflow	r=86.47 cfs 16.956 af r=86.47 cfs 16.956 af
Pond 1.CB1: CB1	Peak Elev=226.23' Infle 12.0" Round Culvert n=0.013 L=110.0' S=0.0173 '/' Outfle	ow=1.91 cfs 0.155 af ow=1.91 cfs 0.155 af
Pond 1.CB2: CB2	Peak Elev=224.64' Infle 12.0" Round Culvert n=0.013 L=97.0' S=0.0149 '/' Outfle	ow=2.87 cfs 0.234 af ow=2.87 cfs 0.234 af
Pond 1.CB3: CB3	Peak Elev=221.38' Infle 18.0" Round Culvert n=0.013 L=56.0' S=0.0800 '/' Outfle	ow=6.02 cfs 0.661 af ow=6.02 cfs 0.661 af
Pond 1.CB4: CB4	Peak Elev=226.80' Infle 12.0" Round Culvert n=0.013 L=65.0' S=0.0615 '/' Outfle	ow=2.99 cfs 0.367 af ow=2.99 cfs 0.367 af
Pond 1.CB5: CB5	Peak Elev=209.35' Infle 18.0" Round Culvert n=0.013 L=103.0' S=0.0097 '/' Outfle	ow=8.24 cfs 0.865 af ow=8.24 cfs 0.865 af
Pond 1.CB6: CB6	Peak Elev=208.78' Infle 18.0" Round Culvert n=0.013 L=101.0' S=0.0198 '/' Outfle	ow=9.89 cfs 1.117 af ow=9.89 cfs 1.117 af
Pond 1.CB7: CB7	Peak Elev=205.32' Infle 12.0" Round Culvert n=0.013 L=66.0' S=0.1076 '/' Outfle	ow=1.88 cfs 0.153 af ow=1.88 cfs 0.153 af
Pond 1.CB8: CB8	Peak Elev=200.75' Inflo 24.0" Round Culvert n=0.013 L=52.0' S=0.0327 '/' Outflo	w=10.73 cfs 1.190 af w=10.73 cfs 1.190 af
Pond 1.DMH1: DMH1	Peak Elev=199.38' Inflo 24.0" Round Culvert n=0.013 L=63.0' S=0.0048 '/' Outfloo	w=12.57 cfs 1.343 af w=12.57 cfs 1.343 af
Pond 1.DMH2: DMH2	Peak Elev=216.80' Infle 18.0" Round Culvert n=0.013 L=102.0' S=0.0776 '/' Outfle	ow=6.02 cfs 0.661 af ow=6.02 cfs 0.661 af
Pond 1P: Sed Forbay	Peak Elev=197.96' Storage=5,632 cf Inflo Outflor	w=12.90 cfs 1.450 af w=12.47 cfs 1.450 af
Pond 3AP: 3AP	Peak Elev=267.93' Storage=142 cf Infle 15.0" Round Culvert n=0.013 L=108.0' S=0.0417 '/' Outfle	ow=6.76 cfs 0.751 af ow=6.75 cfs 0.751 af
Pond 3BP: 3BP	Peak Elev=248.27' Storage=200 cf Inflov 24.0" Round Culvert n=0.013 L=40.0' S=0.0100 '/' Outflov	w=16.42 cfs 1.871 af w=16.41 cfs 1.871 af
Pond 3CP: 3CP	Peak Elev=239.96' Storage=251 cf Inflo	w=18.90 cfs 2.336 af w=18.87 cfs 2.336 af

NH-1144.5-Proposed	Type III 24-hr 50 YR Rainfall=7.00"
Prepared by Beals Associat	tes, PLLC Printed 10/16/2023
HydroCAD® 10.20-3c_s/n 01754	© 2023 HydroCAD Software Solutions LLC Page 4
Pond 3DP: 3DP	Peak Elev=259.60' Storage=5 cf Inflow=1.55 cfs 0.117 af
	15.0" Round Culvert n=0.013 L=55.0' S=0.0200 '/' Outflow=1.55 cfs 0.117 at
Pond 3EP: CULV sta 12+40	Peak Elev=240.98' Storage=48 cf Inflow=3.26 cfs 0.242 af 15.0" Round Culvert n=0.013 L=49.0' S=0.0100 '/' Outflow=3.25 cfs 0.242 af
Pond 3FB: Sed Forbay	Peak Elev=214.96' Storage=3,747 cf Inflow=18.87 cfs 2.336 af
	Outflow=18.86 cfs 2.266 af
Pond 3FP: Bioretention Pon Disc	d Peak Elev=215.82' Storage=20,756 cf Inflow=21.06 cfs 2.556 af arded=0.18 cfs 0.472 af Primary=19.92 cfs 2.084 af Outflow=20.10 cfs 2.556 af
Pond 3IBP: Surface Sand Fil Discarded=1.03 cfs 1.652 af Pri	ter Pond Peak Elev=197.39' Storage=36,904 cf Inflow=16.95 cfs 2.097 af mary=5.05 cfs 0.445 af Secondary=0.00 cfs 0.000 af Outflow=6.08 cfs 2.097 af
Pond 3IP: 3IP	Peak Elev=251.21' Storage=21.179 cf Inflow=13.08 cfs 1.618 af
	24.0" Round Culvert n=0.013 L=94.0' S=0.0798 '/' Outflow=12.42 cfs 1.165 af
Dend DMU4: DMU4	Deals Flay=226 401 Juffay=19.97 efc. 2.226 of
	24.0" Round Culvert n=0.013 L=143.0' S=0.0483 '/' Outflow=18.87 cfs 2.336 af
Pond DMH1B: DMH 1B	Peak Elev=219.40' Inflow=18.87 cfs 2.336 af
	24.0" Round Culvert n=0.013 L=138.0' S=0.0100 '/' Outflow=18.87 cfs 2.336 af
Total Runoff Are	ea = 57.359 ac Runoff Volume = 19.603 af Average Runoff Depth = 4.10" 86.19% Pervious = 49.437 ac 13.81% Impervious = 7.923 ac

Appendix III

Charts, Graphs, and Calculations

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

	Metadata for Point
Smoothing	Yes
State	New Hampshire
Location	New Hampshire, United States
Latitude	43.230 degrees North
Longitude	70.99 degrees West
Elevation	60 feet
Date/Time	Wed Aug 16 2023 13:04:30 GMT-0400 (Eastern Daylight Time)

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.49	0.65	0.81	1.03	1yr	0.70	0.98	1.20	1.53	1.97	2.56	2.82	1yr	2.26	2.71	3.12	3.85	4.41	1yr
2yr	0.32	0.49	0.61	0.80	1.01	1.28	2yr	0.87	1.16	1.49	1.89	2.41	<mark>3.08</mark>	3.44	2yr	2.73	3.30	3.80	4.53	5.16	2yr
5yr	0.37	0.57	0.72	0.96	1.23	1.57	5yr	1.06	1.44	1.84	2.36	3.03	3.89	4.39	5yr	3.44	4.22	4.84	5.71	6.45	5yr
10yr	0.40	0.63	0.80	1.09	1.42	1.84	10yr	1.22	1.69	2.17	2.80	3.60	<mark>4.64</mark>	5.29	10yr	4.11	5.09	5.82	6.80	7.65	10yr
25yr	0.46	0.74	0.94	1.30	1.73	2.27	25yr	1.49	2.08	2.69	3.50	4.54	5.86	6.77	25yr	5.19	6.51	7.43	8.57	9.57	25yr
50yr	0.52	0.83	1.07	1.49	2.01	2.67	50yr	1.73	2.45	3.17	4.15	5.40	<mark>7.00</mark>	8.17	50yr	6.19	7.85	8.94	10.22	11.35	50yr
100yr	0.58	0.94	1.21	1.72	2.33	3.13	100yr	2.01	2.88	3.74	4.92	6.42	8.36	9.85	100yr	7.40	9.48	10.75	12.20	13.47	100yr
200yr	0.65	1.06	1.37	1.97	2.72	3.69	200yr	2.35	3.39	4.43	5.85	7.66	9.99	11.89	200yr	8.84	11.43	12.94	14.56	15.99	200yr
500yr	0.76	1.26	1.64	2.38	3.33	4.56	500yr	2.87	4.21	5.50	7.32	9.65	12.64	15.25	500yr	11.19	14.67	16.55	18.40	20.08	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.24	0.36	0.44	0.60	0.73	0.90	1yr	0.63	0.88	0.91	1.25	1.51	1.95	2.48	1yr	1.73	2.39	2.93	3.28	3.97	1yr
2yr	0.31	0.48	0.59	0.81	0.99	1.18	2yr	0.86	1.15	1.35	1.81	2.34	2.99	3.34	2yr	2.65	3.21	3.69	4.41	5.03	2yr
5yr	0.35	0.54	0.67	0.91	1.16	1.40	5yr	1.00	1.37	1.61	2.14	2.77	3.61	4.06	5yr	3.20	3.90	4.52	5.34	6.04	5yr
10yr	0.38	0.59	0.73	1.02	1.32	1.60	10yr	1.14	1.56	1.81	2.43	3.12	4.14	4.70	10yr	3.66	4.52	5.25	6.17	6.92	10yr
25yr	0.44	0.67	0.83	1.19	1.56	1.91	25yr	1.35	1.87	2.12	2.83	3.62	4.95	5.70	25yr	4.38	5.48	6.41	7.44	8.22	25yr
50yr	0.49	0.74	0.92	1.33	1.78	2.19	50yr	1.54	2.14	2.37	3.20	4.05	5.66	6.58	50yr	5.01	6.33	7.46	8.58	9.47	50yr
100yr	0.54	0.82	1.03	1.49	2.04	2.52	100yr	1.76	2.46	2.67	3.59	4.51	6.45	7.59	100yr	5.71	7.30	8.69	9.89	10.81	100yr
200yr	0.61	0.91	1.16	1.68	2.34	2.89	200yr	2.02	2.82	3.00	4.04	5.03	7.36	8.77	200yr	6.51	8.43	10.13	11.40	12.36	200yr
500yr	0.71	1.06	1.36	1.98	2.82	3.49	500yr	2.43	3.42	3.51	4.72	5.82	8.71	10.60	500yr	7.71	10.20	12.41	13.77	14.70	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.28	0.43	0.53	0.71	0.87	1.07	1yr	0.75	1.05	1.23	1.72	2.18	2.76	3.01	1yr	2.44	2.90	3.34	4.14	4.73	1yr
2yr	0.33	0.50	0.62	0.84	1.03	1.24	2yr	0.89	1.21	1.46	1.94	2.50	3.19	3.55	2yr	2.82	3.41	3.92	4.67	5.32	2yr
5yr	0.39	0.60	0.75	1.02	1.30	1.57	5yr	1.12	1.53	1.83	2.47	3.16	4.17	4.71	5yr	3.69	4.53	5.18	6.07	6.83	5yr
10yr	0.45	0.70	0.87	1.21	1.56	1.90	10yr	1.35	1.86	2.21	3.01	3.80	5.14	5.85	10yr	4.55	5.63	6.42	7.41	8.29	10yr
25yr	0.55	0.84	1.05	1.49	1.97	2.44	25yr	1.70	2.38	2.84	3.91	4.88	6.80	7.81	25yr	6.02	7.51	8.50	9.79	10.75	25yr
50yr	0.64	0.97	1.21	1.74	2.34	2.93	50yr	2.02	2.87	3.44	4.75	5.92	8.40	9.73	50yr	7.44	9.36	10.54	12.01	13.18	50yr
100yr	0.74	1.13	1.41	2.04	2.79	3.53	100yr	2.41	3.45	4.17	5.81	7.19	10.39	12.13	100yr	9.20	11.66	13.04	14.76	16.09	100yr
200yr	0.87	1.30	1.65	2.39	3.33	4.27	200yr	2.87	4.17	5.06	7.09	8.71	12.89	15.14	200yr	11.41	14.56	16.15	18.13	19.67	200yr
500yr	1.06	1.57	2.02	2.94	4.18	5.46	500yr	3.61	5.33	6.53	9.25	11.26	17.18	20.29	500yr	15.20	19.51	21.43	23.83	25.67	500yr

NH-1144 Commercial Development, Barrington, NH Site Evaluation Report

March 15, 2022 Page 1

The project proposes a surface sand filter and sediment forebay to meet the GRV requirements per AoT. The pond is designed with a sediment forebay as pretreatment devices.

1.0 Location of Practice

A surface sand filter filtration basin is located south west of the cul-de-sac on lot #C4.

2.0 Existing topography at the location of the practice

The surface sand filter basin on commercial lot #C4 is designed in an area with a topographic slope of approximately 6% that is forested and HSG C soils.

3.0 Test Pit/boring locations

The surface sand filter basin on lot #C4 is 9,673 s.f. in area at the floor and the ESHWT, etc. was based on Test Pits conducted on 2-19-19 and 9-3-21 field located as shown on the drainage area plans.

4.0 Seasonal high-water table (SHWT) and bedrock elevations

The surface sand filter basin on lot #C4 has a bottom of practice elevation of 192.5'(bottom of filter course = 193.5'), TP #D2-2 showed no ESHWT to 67", the high existing ground surface under the basin = 197.0, SHWT = 191.41'. Bedrock not found to 67" or deeper than 191.41'

5.0 Profile descriptions

Logged by Christian Smith, PE. Designer #1543 on 2-19-2019 Test Pit#: D3 (Pond 3IBP) Depth (inches) Description

2" – 0" 0" - 3"	10YR 3/3	Forest Mat Dark Brown, Fine Sandy Loam, Granular, Friable
3" - 17"	10YR 4/4	Dark Yellowish Brown, Fine Sandy Loam, Granular, Friable
17" - 33"	10YR 5/6	Yellowish Brown, Fine Sandy Loam, Blocky, Friable
33" – 65"	2.5¥ 5/6	Light Olive Brown, Fine Sand Massive, Friable W/ Redox

NH-1144 Commercial Development, Barrington, NH Site Evaluation Report

March 15, 2022 Page 2

ESHWT = 33 Inches Roots to 36 Inches Observed Ground Water - None Restrictive - None Refusal - None

(please see the test pit data performed by Tom Sokoloski, CSS, CWS at the end of this report)

6.0 Soil Plan in the area of the proposed practices

Grading/Soil Plans appears at the end of this report.

7.0 Summary of data used to determine infiltration rate

All infiltration rates calculated by Christian Smith, P.E.

The infiltration Rates were determined using amoozemeter testing results provided by TES Environmental Consultants, performed on 9-3-21 and 11-2-21. The Surface Sand Filter 3IBP is in native material identified as SSS 29 or Woodbridge soil. Three complete amoozemeter test were conducted which resulted in average infiltration rates of 7.0 in/hr + 6.06 in/hr + 4.86 in/hr = (17.92in/hour)/3 = 5.97 in/hr averaged. Applying the required factor of safety of 2 gives the design rate of 2.99 in/hr.

(Amoozemeter field data sheets for all test appear at the end of this report behind the respective soil plans with the TES test pit logs)

Test Pits – NH-1144 – Barrington, NH Located Off Route 125 & Green Hill Road Conducted by Joseph P. Nichols - Beals Associates, PLLC - #1451 Date: 2/19/19 Conducted by Christian O Smith - Beals Associates, PLLC - #1543 Date: 2/19/19 & 2/20/19

<u>Test Pit # I</u> 2"-0"	03	Forest Mat	
0°° - 3°°	10YR 3/3	Dark Brown, Fine Sandy Loam, Granular, Friable	
3" - 17"	10YR 4/4	Dark Yellowish Brown, Fine Sandy Loam, Granular, Friable	5 3 DOS61
17" - 33"	10YR 5/6	Yellowish Brown, Fine Sandy Loam, Blocky, Friable	- eph P. (4) No. 1451
33" – 65"	2.5¥ 5/6	Light Olive Brown, Fine Sand Massive, Friable W/ Redox	
ESHWT = 33	Inches		

Roots to 36 Inches Observed Ground Water - None Restrictive - None Refusal - None (Perc Rate 8 MPI)

<u>Test Pit # D4</u> 2" – 0" 0" - 6"	4 10YR 3/2	Forest Mat Very Dark Grayish Brown, Fine Sandy Loam, Granular, Friable	Denigram ()
6" - 24"	10 YR 5/4	Yellowish Brown, Fine Loamy Sand, Massive, Friable	Children O. South No. 1543
24" - 47"	2.5¥ 5/3	Light Olive Brown, Fine Loamy Sand, Massive, Friable W/ Redox	C And C
47" – 62"	2.5Y 5/2	Grayish Brown, Fine Loamy Sand Massive, Firm W/ Redox	

ESHWT = 24 Inches Roots to 24 Inches Observed Ground Water @ 40 Inches Restrictive @ 47 Inches Refusal – None (Perc Rate 6 MPI)

TES

TES ENVIRONMENTAL CONSULTANTS, L.L.C.

TEST PIT LOG SHEET

Date	9/3/20	21	Project No	: 21-0070			Lot: Lo	t C-4
CSS:	Thomas	E. Sokolos	ki Project Na	me: Beals/Faiz	me/Rt. 125/Barri	ngton	Test Pit	No: 02-2
HOR	DEPTH	COLOR	TEXTURE	STRUCTURE	CONSISTENCY	R FE/	EDOX ITURES	NOTES
Öe	0-1"	10VR 3/2	147.60	6.10	6-m		¥2.	Many fine and medium roots
A	1-6*	10YR 3/2	Fine sandy loam	Weak granular	Very triable	1	None	Many fine, medium and coarse roots
Bw1	6-18"	10YR 5/6	Sandy loam	Subangular blocky	Friable	1	Vone	Common fine and medium roots
8w2	18-34*	10YR 5/4	Loomy sand	Subangular blocky	Friable	ţ	lone	Few fine and medium roots
С	34-67*	2.57 5/4	Loamy sand	Massive	Frieble	ħ	lone	No roots
ESHWT	: N/O			NOTES:			THE N HE	AND
rðots	: 30"					4	E.	NO AD A
OBSER	ED WATE	R: N/O				14	NUD E	There
LEDGE : RESTRI	N/O CTIVE LAY	/ER: N/O				12	No. 06 A let bos	Junit
halimanteer Minaciple august				the state of the s			CSS ST	AMP

Amoozemeter Field Data Sheet

TES Environmental Consultants, LLC

DATE: 9	13/21			PERMEAMET	ER NO.: 1523	
LOCATION	Gegreen and			AIR TEMPERA	TURE:	22
	ling' house	y we a	No No	h	BEGIN 17	09= 1
	1 Cm. 0	K. R. V.	A. CTON		FINAL 70	01
TEST BY: T	om Sokoit	oski	and a state of the	with a draw		
SOIL MAP (JNIT: 2	93	in and the interface of the state of the sta	NOTES: T	Thirt	Surgements
HORIZON	6.2	3		1 63	気 ドキ レ	d h
and the statement of the	يري فيستشفين فتتقلق والجاف	No many concerned a sur		D.	1 1	$d_{1} \sim 2$.
DISTURBED	SITE:	No		1 1101	ND 7 6 2411	A CARE DE
Suil log R	ECORDED:	Nes		31	proposed	Lot CH
SETUP CAL	ACITAIL	k	1			
HOLE DEPT	K	Phil.	67	12 America a mar	and the second second second second	No. CONTRACTOR OF THE OWNER
SURFACE TO	D REF. LIN	E L	- 37	(BUILIUM OF	HULE TO SURFAC	E)
DEPTHOFH	20 IN HO	IE M-	15	IUN AMOUZE	MEIER)	
CHT TUBE S	ETTING	H1=		(LJ LIN MIN -	-3.9")	We also a star of
	an ann ann a du			GLI IDDE FRU	INI WATER LEVEL	LIOWN)
k associated	d <u>C</u> onversi	Ion Factor	2 on = 105/	an ² CF		
DROPIN	the second second	maline and a	7			
WATER			OUTFLOW			
LEVELIN			CHAMBER(S)	OUTFLOW	SATURAT	THIN THE ADDRESS
-LOW RES.	ELAPS	ED TIME	USED	(Q)	CONDUCTIVITY	(Kear) = D = Coaff
(1)	-	(2)	(3)	(1*3)/2 = (Q)	A) A= 0.0011	53 When H=1Srm
cm	min	min/hr	(<i>CF</i>)	cm ³ /hr.	(cm / hr)	1 (in / hr)
-1º F	015	0.008.3	1.2 %	21420	74,91	9,91
0 -	-0.0	0.023	105	21420	211.91	9.81
19	2.2	0.083	10 5	1 22650	26.38	10.58
110	Vis	10,0023	105	22680	26.38	10.38
1					45 William	
						And the state of t
alandelikipta-patromana		1				
		1 1			سادرین مانان در ا هتین	
1		1			and the second s	
1						
1	ania a participad	1				
		1				
di secondo de		lan - la		Mara M	-11 -11	
				SHOW IT AND	<u>A'2.61</u>	10,11
			1	SCOCY NGAT	0.85	0.33

Amoozemeter Field Data Sheet

TES Environmental Consultants, LLC

DATE: 112121	PERMEAMETER NO.: 1523
RH, 125, Barrison	AIR TEMPERATURE: BEGIN 700F FINAL 700E
TEST BY: Tom Sokoloski SOIL MAP UNIT: 396 HORIZON: BU: 1302	NOTES: TECH PH D 2-7
DISTURBED SITE: No SOIL LOG RECORDED: NOS	Proprior Loi C4

SETUP CALCULATIONS	1	and a second s	الم و محمد من المحمد و المحمد من المحمد المحمد المحمد من المحمد من المحمد و المحمد من المحمد و المحمد المحمد ا
HOLE DEPTH	d+	48	BOTTOM OF HOLE TO SUBFACEL
SURFACE TO REF. LINE	+	5	(ON AMOOZEMETER)
DEPTH OF H20 IN HOLE	H-	15	(15 CM MIN5.9")
CHT TUBE SETTING	H1=	38	SET TUBE FROM WATER LEVEL DOM/N

OUTFLOW CHAMBERS USED

 $1 \text{ on} = 20 \text{ cm}^2 \text{ cF}$

& associated Conversion Factor

 $2 \text{ on} = 105 \text{ cm}^2 \text{ CF}$

FIELD TEST	5	OF 9				
DROP IN WATER LEVEL IN FLOW RES. (1)	ELAPS	ED TIME 2)	OUTFLOW CHAMBER(S) USED (3)	OUTFLOW (Q) (1*3)/2 = (Q)	SATURATEC CONDUCTIVITY A) A= 0.001163	HYDRAULIC (K _{SAT}) = Q ⁺ Coeff S when H=15cm
	D for	min/nr	(4)	cm°/hr.	(cm / hr)	(in / hr)
1.1.	0.5	0.0053	105	15130	17.58	6.92
1.2	162	Dano 3	105	- 17640	20.53	8.08
1.2	6.5	110031	105	17(24)	17.58	build
The second state of the se				2.40	17,58	- 442
	•••		and the second		And the second second water and the second s	
		1	nggan an an ing ing an san san san sa			and a subsection of the subsec
······	-			1		Press
ĺ.	The seath Reasonables					Barres and a second
1						
	and the section of the section.					
1			han Bellehorn all in the space opposed in the same			
				Mean Ksar	18.32	Zid
				StDev KSAY	1.47	0.58

Amoozemeter Field Data Sheet

TES Environmental Consultants, LLC

DATE: 9/3/21	PERMEAMETER NO.: 1523	
RA. 125 Barrington	AIR TEMPERATURE: BEGIN 70%F- FINAL 0°F	
TEST BY: Tom Sokoloski	and a ship and a ship and a ship and a ship a second a ship and a ship a second a	
HORIZON: 1340	Test pit ba-2	
DISTURBED SITE: 1) SOIL LOG RECORDED: Ve<	properties Lot C4	r 61

SETUP CALCULATIONS				
HOLE DEPTH	d+	41)	(BOTTOM OF HOLE TO SURFACE)	
SURFACE TO REF. LINE	4	5	(ON AMOOZEMETER)	Manual Martines
DEPTH OF H20 IN HOLE	H -	5	(15 CM MIN 5.9")	
CHT TUBE SETTING	H1=	30	SET TUBE FROM WATER LEVEL DOWN	State State

OUTFLOW CHAMBERS USED

7

1

 $1 \text{ on} = 20 \text{ cm}^2 \text{ CF}$

& associated Conversion Pactor

 $2 \text{ on} = 105 \text{ cm}^2 \text{ CF}$

FIELD TEST	6	OF 9				
DROP IN WATER LEVEL IN FLOW RES. (1)	ELAPS	ED TIME	OUTFLOW CHAMBER(S) USED (3)	OUTFLOW (Q) (1*3)/2 = (Q)	SATURATED CONDUCTIVITY A) A= 0.001165	HYDRAULIC $(K_{SNT}) = Q * Coeff$ when H=15cm
	min	min/hr	(CF)	cm /hr.	(cm / hr)	(in / hr)
13		10.017	105	8190	9.52	3:75
1.3	1	0.017	105	8190	9,52	3.75
13.0		0.015	105	7560	8.79	3,46
1.5 1		10416	1.05	0918	4.52	3.25
					while and the state of the stat	
1		1				
2						and the set of the product of the second
			r un annangelikken der Belanapate pop i Byrandy in rear an of some			and the second sec
			s Vas. viji		a manda an ing sa	
1- 1			للون ما الاستياب	·		- Annual months of Berlinsteinberg a super-Statistic day to be
Aller and a second	ATTENDED.	-	all and the second s	Mean Kaar	Cp · 2 C	3,68
				StDev Kisar	0.37	0.14
				La company and the second second	manager and a second se	

7 (4-6)= 7.00 m/hr.

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Surface Sand Filter (1P)

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

Yes	_	Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.07	7(a).
4.85	ас	A = Area draining to the practice	
2.03	ас	A _I = Impervious area draining to the practice	
0.42	decimal	I = Percent impervious area draining to the practice, in decimal form	
0.43	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x l)	
2.07	ac-in	WQV= 1" x Rv x A	
7,512	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
1,878	cf	25% x WQV (check calc for sediment forebay volume)	
5,634	cf	75% x WQV (check calc for surface sand filter volume)	
N	/A	Method of Pretreatment? (not required for clean or roof runoff)	
7,228	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
Calculate ti	me to drain	if system IS NOT underdrained:	
11,778	sf	A _{SA} = Surface area of the practice	
2.99	iph	Ksat _{DESIGN} = Design infiltration rate ¹	
	-	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
N/A	Yes/No	(Use the calculations below)	
2.6	hours	$T_{\text{DRAIN}} = \text{Drain time} = V / (A_{\text{SA}} * I_{\text{DESIGN}})$	<u><</u> 72-hrs
Calculate ti	me to drain	if system IS underdrained:	
N/A	ft	E _{WQV} = Elevation of WQV (attach stage-storage table)	
NI / A	- - f -		
N/A	CTS	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	
N/A -	hours	Q_{WQV} = Discharge at the E _{WQV} (attach stage-discharge table) T _{DRAIN} = Drain time = 2WQV/Q _{WQV}	<u><</u> 72-hrs
- 193.50	hours feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T _{DRAIN} = Drain time = 2WQV/Q _{WQV} E_{FC} = Elevation of the bottom of the filter course material ²	<u><</u> 72-hrs
N/A - 193.50 N/A	hours feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable	<u><</u> 72-hrs
N/A - 193.50 N/A 190.41	hours feet feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test place	<u>≤ 72-hrs</u>
N/A - 193.50 N/A 190.41 190.41	hours feet feet feet feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pi E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test	≤ 72-hrs it) pit)
N/A - 193.50 N/A 190.41 190.41 #VALUE!	feet feet feet feet feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pi E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course	≤ 72-hrs it) ≥ 1'
N/A - 193.50 N/A 190.41 190.41 #VALUE! 3.09	hours feet feet feet feet feet feet	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilt E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course	≤ 72-hrs it) pit) ≥ 1' ≥ 1'
N/A - 193.50 N/A 190.41 190.41 #VALUE! 3.09 3.09	hours feet feet feet feet feet feet feet	$\begin{aligned} & Q_{WQV} = DIscharge \text{ at the } E_{WQV} \text{ (attach stage-discharge table)} \\ & T_{DRAIN} = Drain \text{ time} = 2WQV/Q_{WQV} \\ & E_{FC} = EIevation \text{ of the bottom of the filter course material}^2 \\ & E_{UD} = Invert eIevation \text{ of the underdrain} (UD), \text{ if applicable} \\ & E_{SHWT} = EIevation \text{ of SHWT} \text{ (if none found, enter the lowest elevation of the test place)} \\ & E_{ROCK} = EIevation \text{ of bedrock} \text{ (if none found, enter the lowest elevation of the test place)} \\ & D_{FC to UD} = Depth to UD from the bottom of the filter course \\ & D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course \\ & D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course \end{aligned}$	<pre>≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' </pre>
N/A - 193.50 N/A 190.41 190.41 #VALUE! 3.09 3.09 197.39	crs hours feet feet feet feet feet feet feet fee	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilter E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis)	<pre>≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' </pre>
N/A - 193.50 N/A 190.41 #VALUE! 3.09 3.09 197.39 197.75	crs hours feet feet feet feet feet feet ft ft	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pl E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pl $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice	<pre>≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' ≥ 1'</pre>
N/A - 193.50 N/A 190.41 #VALUE! 3.09 3.09 197.39 197.75 YES	crs hours feet feet feet feet feet feet ft ft	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pilt E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pilt $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice	≤ 72-hrs it) ≥ 1' ≥ 1' ≥ 1' ≥ 1'
N/A - 193.50 N/A 190.41 #VALUE! 3.09 3.09 197.39 197.75 YES If a surface	crs hours feet feet feet feet feet feet ft ft sand filter	Q_{WQV} = Discharge at the E _{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/Q _{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pi E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pi $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed:	<pre>≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' </pre> > 1'
N/A - 193.50 N/A 190.41 #VALUE! 3.09 3.09 197.39 197.75 YES If a surface YES	crs hours feet feet feet feet feet feet ft ft sand filter ac	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pl E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pl E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check.	<pre>≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' </pre> ← yes < 10 ac
N/A - 193.50 N/A 190.41 #VALUE! 3.09 3.09 197.39 197.75 YES If a surface YES 42,366	crs hours feet feet feet feet feet feet ft ft sand filter ac cf	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = 2WQV/ Q_{WQV} E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pl E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pl $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table)	<pre>≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' </pre> ← yes < 10 ac > 75%WQV
N/A - 193.50 N/A 190.41 #VALUE! 3.09 3.09 197.39 197.75 YES If a surface YES 42,366 24.0	crs hours feet feet feet feet feet feet ft ft sand filter ac cf inches	$Q_{WQV} = Discharge at the E_{WQV}$ (attach stage-discharge table) $T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicableE_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test piE_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pi E_{ROCK} = Depth to UD from the bottom of the filter courseD_{FC to UD} = Depth to UD from the bottom of the filter courseD_{FC to SHWT} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practiceor underground sand filter is proposed:Drainage Area check.V = Volume of storage3 (attach a stage-storage table)D_{FC} = Filter course thickness$	<pre>≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' </pre> ← yes <pre>< 10 ac </pre> <pre>> 75%WQV 18", or 24" if within GPA</pre>
N/A - 193.50 N/A 190.41 #VALUE! 3.09 3.09 197.39 197.75 YES If a surface YES 42,366 24.0 Sheet	crs hours feet feet feet feet feet feet ft ft sand filter ac cf inches	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T_{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test pi E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test pi E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table) D_{FC} = Filter course thickness Note what sheet in the plan set contains the filter course specification.	<pre>≤ 72-hrs it) pit) ≥ 1' ≥ 1' ≥ 1' </pre> ← yes <10 ac > 75%WQV 18", or 24" if within GPA

If a bioret	ention area	a is proposed:			
YES	/ES ac Drainage Area no larger than 5 ac?				
-	_cf	V = Volume of storage ³ (attach a stage-storage table)	<u>></u> WQV		
	inches	D _{FC} = Filter course thickness	18", or 24" if within GPA		
Shee	t	Note what sheet in the plan set contains the filter course specification			
	:1	Pond side slopes	<u>> 3</u> :1		
Shee	Sheet Note what sheet in the plan set contains the planting plans and surface cover				
If porous p	pavement	is proposed:			
		Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)			
	acres	A _{sa} = Surface area of the pervious pavement			
	:1	Ratio of the contributing area to the pervious surface area	≤ 5:1		
	inches	D _{FC} = Filter course thickness	12", or 18" if within GPA		
	_		mod. 304.1 (see		
Shee	t	Note what sheet in the plan set contains the filter course spec.	spec)		

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

NHDES Alteration of Terrain

Last Revised: January 2019

StoneArch Development Corporation Residential Development NH-1144.5

STORMWATER MANAGEMENT/BMP OPERATION & MAINTENANCE PLAN

Proper construction, inspections, maintenance and repair are key elements in maintaining a successful stormwater management program on a developed property. Routine inspections ensure permit compliance and reduce the potential for deterioration of infrastructure or reduced water quality.

For the purpose of this Stormwater Management Program, a significant rainfall event is considered and event of three (3) inches in a 24-hour period or 0.5 inches in a one-hour period. During construction, inspections should be conducted every two weeks or after a 0.25" rainfall event in a 24-hour period per the EPA NPDES Phase II SWPPP, until the entire disturbed area is fully restabilized. Upon full stabilization of the project and filing of an NOI, inspections need only be conducted after a significant rainfall event as described above or as described in the maintenance guidelines below.

During construction activities StoneArch Development Corporation, at 42J Dover Point Road, Dover, NH 03820 with a phone number (978) 375-3153 or it's heirs and/or assigns, shall be responsible for inspections and maintenance activities. StoneArch Development Corporation shall be responsible for ongoing inspection and maintenance of BMP drainage structures and treatment areas.

Documentation:

A maintenance log will be kept (i.e. report) summarizing inspections, maintenance, and any corrective actions taken. The log will include the date on which each inspection or maintenance task was performed, a description of the inspection findings or maintenance completed, and the name of the inspector or maintenance personnel performing the task (see Stormwater Construction Site Inspection Report attached). If a maintenance task requires the clean-out of any sediments or debris, the location where the sediment and debris was disposed after removal will be indicated. During inspections, photographs of each BMP shall be taken and kept with the inspection logs.

BMP Maintenance Guidelines

The following provides a list of recommendations and guidelines for managing the Stormwater facilities. The cited areas, facilities, and measures will be inspected and the identified deficiencies will be corrected. Clean-out must include the removal and legal disposal of any accumulated sediments and debris.

<u>DURING CONSTRUCTION:</u> 1. STABILIZED CONSTRUCTION ENTRANCE

A temporary gravel construction entrance provides an area where mud can be dislodged from tires before the vehicle leaves the construction site to reduce the amount of mud and sediment transported onto paved municipal and state roads. The stone size for the pad should be between 1 and 2-inch coarse aggregate, and the pad itself constructed to a minimum length of 50' for the full width of the access road. The aggregate should be placed at least six inches thick. A plan view and profile are shown on Sheet E1 - Sediment and Erosion Control Detail Plan.

1a. ENVIRONMENTAL DUST CONTROL

Dust will be controlled on the site by the use of multiple Best Management Practices. Mulching and temporary seeding will be the first line of protection to be utilized where problems occur. If dust problems are not solved by these applications, the use of water and calcium chloride can be applied. Calcium chloride will be applied at a rate that will keep the surface moist but not cause pollution.

1b. TEMPORARY EROSION AND SEDIMENT CONTROL DEVICES

- Function Temporary erosion and sediment control devices are utilized during construction period to divert, store and filter stormwater from nonstabilized surfaces. These devices include, but are not limited to: silt fences, hay bales, filters, sediment traps, stone check dams, mulch and erosion control blankets.
- Maintenance Temporary erosion and sediment control devices shall be inspected and maintained on a weekly basis and following a significant storm event (>0.5-inch rain event) throughout the construction period to ensure that they still have integrity and are not allowing sediment to pass. Sediment build-up in swales will be removed if it is deeper than six inches. Sediment is to be removed from sumps in the catch basin semi-annually. Refer to the Site Plan drawings for the maintenance of temporary erosion and sediment control devices.

ONGOING POST-CONSTRUCTION (Note inspections shall require photographs of each BMP):

2. Catch Basins:

Inspect catch basins 2 times per year (preferably in spring and fall) to ensure that the catch basins are working in their intended fashion and that they are free of debris. Clean structures when sediment depths reach 12" from invert of outlet. If the basin outlet is designed with a hood to trap floatable materials (i.e. Snout), check to ensure watertight seal is working. At a minimum, remove floating debris and hydrocarbons at the time of the inspection.

3. Culverts:

Inspect culverts 2 times per year (preferably in spring and fall) to ensure that the culverts are working in their intended fashion and that they are free of debris. Remove any obstructions to flow; remove accumulated sediments and debris at the inlet, at the outlet, and within the conduit and to repair any erosion damage at the culvert's inlet and outlet.

4. Stormwater Infiltration/Filtration Facilities:

Inspect all upstream pre-treatment measures for sediment and floatables accumulation. Remove and dispose of sediments or debris as needed (see details below). **Surface:**

The infiltration facility will be inspected within the first three months after construction; thereafter the filter will be inspected 2 times per year to ensure that the filter is draining within 72 hours of a rain event equivalent to 1/2" or more. Failure to drain in 72 hours will require part or all of the top 3 inches of the infiltration area to be removed and replaced with new like material. Vegetated infiltration ponds or swales will be mowed at least annually or otherwise maintained to control the growth of woody vegetation and to control the accumulation of sediments in order to maintain the water quality volume.

Any woody vegetation or accumulated sediment must be removed. The facilities will be inspected after major storms and any identified deficiencies will be corrected.

5. Pretreatment Structures

Inspect all upstream pre-treatment measures (forebays, etc.) for sediment and floatables accumulation. Remove and dispose of sediments or debris as needed. Inspect structure on a semiannual basis by using inspection port and/or access structure. Remove sediment as needed when average depths reach 1".

6. Riprap Weir – Maintenance

- Inspect at least once annually for accumulation of sediment and debris and for signs of erosion within approach channel, spreader channel or down-slope of the spreader.
- Remove debris whenever observed during inspection.
- Remove sediment when accumulation exceeds 25% of spreader channel depth.
- Mow as required by landscaping design. At a minimum, mow annually to control woody vegetation within the spreader.
- Snow should not be stored within or down-slope of the level spreader or its approach channel.
- Repair any erosion and re-grade or replace stone berm material, as warranted by inspection.
- Reconstruct the spreader if down-slope channelization indicates that the spreader is not level or that discharge has become concentrated, and corrections cannot be made through minor re-grading.

7. Vegetated Areas:

Inspect slopes and embankments early in the growing season to identify active or potential erosion problems. Replant bare areas or areas with sparse growth. Where rill erosion is evident, armor the area with an appropriate lining or divert the erosive flows to on-site areas able to withstand the concentrated flows. The facilities will be inspected after major storms and any identified deficiencies will be corrected.

8. Driveways and Parking Surfaces: Clear accumulations of winter sand in parking lots and along roadways at least once a year, preferably in the spring. Accumulations on pavement may be removed by pavement sweeping. Accumulations of sand along road shoulders may be removed by grading excess sand to the pavement edge and removing it manually or by a front-end loader.

9. Invasive Species:

During maintenance activities, check for the presence of invasive plants and

remove in a safe manner as described on the following pages. They should be controlled as described on the following pages.

Background:

Invasive plants are introduced, alien, or non-native plants, which have been

moved by people from their native habitat to a new area. Some exotic plants are imported for human use such as landscaping, erosion control, or food crops. They also can arrive as "hitchhikers" among shipments of other plants, seeds, packing materials, or fresh produce. Some exotic plants become invasive and cause harm

by:

becoming weedy and overgrown;

killing established shade trees;

obstructing pipes and drainage systems;

forming dense beds in water; lowering water levels in lakes, streams, and wetlands; destroying natural communities; promoting erosion on stream banks and hillsides; and resisting control except by hazardous chemical.

Methods for Disposing Non-Native Invasive Plants

Prepared by the Invasives Species Outreach Group, volunteers interested in helping people control invasive plants. Assistance provided by the Piscataquog Land Conservancy and the NH Invasives Species Committee. Edited by Karen Bennett, Extension Forestry Professor and Specialist.

Non-native invasive plants crowd out natives in natural and managed landscapes. They cost taxpayers billions of dollars each year from lost agricultural and forest crops, decreased biodiversity, impacts to natural resources and the environment, and the cost to control and eradicate them.

Lonicera tatarica USDA-NRCS PLANTS Database / Britton, N.L., and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Vol. 3: 282.

Invasive plants grow well even in less than desirable conditions such as sandy soils along roadsides, shaded wooded areas, and in wetlands. In ideal conditions, they grow and spread even faster. There are many ways to remove these non- native invasives, but once removed, care is needed to dispose the removed plant material so the plants don't grow where disposed.

Knowing how a particular plant reproduces indicates its method of spread and helps determine

the appropriate disposal method. Most are spread by seed and are dispersed by wind, water, animals, or people. Some reproduce by vegetative means from pieces of stems or roots forming new plants. Others spread through both seed and vegetative means.

New Hampshire Regulations

Prohibited invasive species shall only be disposed of in a manner that renders them nonliving and nonviable. (Agr. 3802.04)

No person shall collect, transport, import, export, move, buy, sell, distribute, propagate or transplant any living and viable portion of any plant species, which includes all of their cultivars and varieties, listed in Table 3800.1 of the New Hampshire prohibited invasive species list. (Agr 3802.01)

Because movement and disposal of viable plant parts is restricted (see NH Regulations), viable invasive parts can't be brought to most transfer stations in the state. Check with your transfer station to see if there is an approved, designated area for invasives disposal. This fact sheet gives recommendations for rendering plant parts non-viable.

Control of invasives is beyond the scope of this fact sheet. For information about control visit www.nhinvasives.org or contact your UNH Cooperative Extension office.

How and When to Dispose of Invasives?

To prevent seed from spreading remove invasive plants before seeds are set (produced). Some plants continue to grow, flower and set seed even after pulling or cutting. Seeds can remain viable in the ground for many years. If the plant has flowers or seeds, place the flowers and seeds in a heavy plastic bag "head first" at the weeding site and transport to the disposal site. The following are general descriptions of disposal methods. See the chart for recommendations by species.

Burning: Large woody branches and trunks can be used as firewood or burned in piles. For outside burning, a written fire permit from the local forest fire warden is required unless the ground is covered in snow. Brush larger than 5 inches in diameter can't be burned. Invasive plants with easily airborne seeds like black swallow-wort with mature seed pods (indicated by their brown color) shouldn't be burned as the seeds may disperse by the hot air created by the fire.

Bagging (solarization): Use this technique with softer- tissue plants. Use heavy black or clear plastic bags (contractor grade), making sure that no parts of the plants poke through. Allow the bags to sit in the sun for several weeks and on dark pavement for the best effect.

Tarping and Drying: Pile material on a sheet of plastic

Japanese knotweed

Polygonum cuspidatum USDA-NRCS PLANTS Database / Britton, N.L., and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Vol. 1: 676.

and cover with a tarp, fastening the tarp to the ground and monitoring it for escapes. Let the material dry for several weeks, or until it is clearly nonviable.

Chipping: Use this method for woody plants that don't reproduce vegetatively.

Burying: This is risky, but can be done with watchful diligence. Lay thick plastic in a deep pit before placing the cut up plant material in the hole. Place the material away from the edge of the plastic before covering it with more heavy plastic. Eliminate as much air as possible and toss in soil to weight down the material in the pit. Note that the top of the buried material should be at least three feet underground. Japanese knotweed should be at least 5 feet underground!

Drowning: Fill a large barrel with water and place soft-tissue plants in the water. Check after a few weeks and look for rotted plant material (roots, stems, leaves, flowers). Well- rotted plant material may be composted. A word of caution- seeds may still be viable after using this method. Do this before seeds are set. This method isn't used often. Be prepared for an awful stink!

Composting: Invasive plants can take root in compost. Don't compost any invasives unless you know there is no viable (living) plant material left. Use one of the above techniques (bagging, tarping, drying, chipping, or drowning) to render the plants nonviable before composting. Closely examine the plant before composting and avoid composting seeds.

Be diligent looking for seedlings for years in areas where removal and disposal took place.

Suggested Disposal Methods for Non-Native Invasive Plants

This table provides information concerning the disposal of removed invasive plant material. If the infestation is treated with herbicide and left in place, these guidelines don't apply. Don't bring invasives to a local transfer station, unless there is a designated area for their disposal, or they have been rendered non-viable. This listing includes wetland and upland plants from the New Hampshire Prohibited Invasive Species List. The disposal of aquatic plants isn't addressed.

Woody Plants	Method of	Methods of Disposal		
	Reproducing			
Norway maple (Acer platanoides) European barberry (Berberis vulgaris) Japanese barberry (Berberis thunbergii) autumn olive (Elaeagnus umbellata) burning bush (Euonymus alatus) Morrow's honeysuckle (Lonicera morrowii) Tatarian honeysuckle (Lonicera tatarica) showy bush honeysuckle (Lonicera x bella) common buckthorn (Rhamnus cathartica) glossy buckthorn (Frangula alnus)	Fruit and Seeds	Prior to fruit/seed ripening Seedlings and small plants Pull or cut and leave on site with roots exposed. No special care needed. Larger plants Use as firewood. Make a brush pile. Chip. Burn. After fruit/seed is ripe Don't remove from site. Burn. Make a covered brush pile. Chip once all fruit has dropped from branches. Leave resulting chips on site and monitor.		
oriental bittersweet (Celastrus orbiculatus) multiflora rose (Rosa multiflora)	Fruits, Seeds, Plant Fragments	Prior to fruit/seed ripening Seedlings and small plants Pull or cut and leave on site with roots exposed. No special care needed. Larger plants Make a brush pile. Burn. After fruit/seed is ripe Don't remove from site. Burn. Make a covered brush pile. Chip – only after material has fully dried (1 year) and all fruit has dropped from branches. Leave resulting chips on site and monitor.		

	Method of Reproducing	Methods of Disposal
garlic mustard	Fruits and Seeds	
(Alliaria petiolata)		Prior to flowering
spotted knapweed		Depends on scale of infestation Small
(Centaurea maculosa)		infestation
Sap of related knapweed can		Pull or cut plant and leave on site with roots
cause skin irritation and		exposed.
tumors. Wear gloves when		
handling.		Large infestation
black swallow-wort		Pull or cut plant and pile. (You can pile onto or
(Cynanchum nigrum)		cover with plastic sheeting)
May cause skin rash Wear		Monitor Remove any re-sprouting material
aloves and long sleeves when		Womtor. Remove any re-sprouting material.
handling	L	
nanding.		During and following flowering
(Cynanabym raggioum)		Do nothing until the following year or remove
(Cynanenum rossieum)		flowering heads and bag and let rot.
giant nogweed		
(Heracleum		Small infestation
mantegazzianum)		Pull or cut plant and leave on site with roots
Can cause major skin rash.		exposed.
Wear gloves and long sleeves		
when handling.		Large infestation
dame's rocket		Pull or cut plant and pile remaining material.
(Hesperis matronalis)		(You can pile onto plastic or cover with plastic
perennial pepperweed		sheeting).
(Lepidium latifolium)		Monitor. Remove any re-sprouting material.
purple loosestrife		
(Lythrum salicaria)		
Japanese stilt grass		
(Microstegium vimineum)		
mile-a-minute weed		
	Fruits, Seeds, Plant	
common reed (Phragmites	Fragments Primary	Small infestation
australis)	means of spread in	Bag all plant material and let rot.
Japanese knotweed	these species is by	Never pile and use resulting material as
(Polygonum cuspidatum)	plant parts. Although	compost.
Bohemian knotweed	all care should be	Burn.
(Polygonum x bohemicum)	given to preventing	
	the dispersal of seed	Large infestation
	during control	Remove material to unsuitable habitat (drv. hot
	activities, the	and sunny or dry and shaded location) and
	presence of seed	scatter or pile.
	doesn't materially	Monitor and remove any sprouting material
	influence disposal	Pile. let dry, and burn
	activities.	, , ,

In the event that invasive species are noticed growing in any of the stormwater management practices, the invasive vegetation shall be removed completely to include root matter and disposed of properly. Prior to disposal, the vegetation shall be placed on and completely cover with a plastic tarp for a period of two – three weeks until plants are completely dead. If necessary or to expedite the process, spray only the invasive vegetation and roots with a systemic nonselective herbicide after placement on the tarp (to prevent chemical migration) and then cover as described above.

Annual Report:

Description: The owner is responsible to keep an **I & M** Activity Log that documents inspection, maintenance and repairs to the storm water management system, and a **Deicing Log** to track the amount and type of deicing material applied to the site. The original owner is responsible to ensure that any subsequent owner (s) have copies of the <u>Stormwater System</u> <u>Operation and Maintenance Plan & Inspection and Maintenance Manual</u>, copies of past logs and check lists. This includes any owner association for potential condominium conversion of the property. The Annual Report will be prepared and submitted to the Town of Barrington DPW and/or NHDES AoT upon request.

STORMWATER SYSTEM OPERATION AND MAINTENANCE PLAN

Inspection & Maintenance Manual Checklist

StoneArch Development Corporation – Residential Development Route 125 Barrington, NH

BMP / System	Minimum Inspection Frequency	Minimum Inspection Requirements	Maintenance / Cleanout Threshold	
Pavement Sweeping	Two Times Per Year	N/A	N/A	
Litter/Trash Removal	Routinely	Inspect dumpsters, outdoor waste receptacles area, and yard areas.	Parcel will be free of litter/trash.	
Deicing Agents	N/A	N/A	Use salt as the primary agent for roadway safety during winter.	
Drainage System:				
Drainage Pipes/Catch Basins & DMH's	1 time per 2 years	Check for sediment accumulation & clogging.	Less than 2" sediment depth	
Drainage Swales	2 times per year	Check for sediment and debris accumulation buildup.	Remove sediment & debris when required.	

Surface Sand Filter	Twice Annually After every 2.5" of rain or greater.	Monitoring and evaluation of wetland vegetation, inspection of sediment on pond surface, inlet/outlet and appurtenance structure evaluation.	Remove dead & diseased vegetation along with all debris; take corrective measures, reseed and repair inlet/outlet structures and appurtenances if required.

Inspection Notes:

Stormwater System operation and maintenance plan

Inspection & Maintenance Manual Log Form Residential Development Rt 125 Residential Development, Barrington, NH - Lots 26.58 & 26.59

BMP / System	Date Inspected	Inspector	Cleaning/Repair (List Items & Comments)	Repair Date	Performed By:

INSPECTION CHECKLIST AND MAINTENANCE GUIDANCE - SURFACE SAND FILTER INSPECTION CHECKLIST

Location:

Owner Change since last inspection? Y N

Owner Name, Address, Phone:

Date: ______ Time: ______ Site conditions: ______

Inspection Items	Satisfactory (S) or Unsatisfactory (U)	Comments/Corrective Action
Sand Filter Inspection List		
Complete drainage of the filter in about 40 hours after a rain event?		
Clogging of filter surface?		
Clogging of inlet/outlet structures?		
Clogging of filter fabric?		
Filter clear of debris and functional?		
Leaks or seeps in filter?		
Obstructions of spillway(s)?		
Animal burrows in filter?		
Sediment accumulation in filter bed (less than 50% is acceptable)?		
Cracking, spalling, bulging or deterioration of concrete?		
Erosion in area draining to sand filter?		
Erosion around inlets, filter bed, or outlets?		
Pipes and other structures in good condition?		
Undesirable vegetation growth?		
Other (describe)?		
Hazards		
Have there been complaints from residents?		
Public hazards noted?		

If any of the above inspection items are UNSATISFACTORY, list corrective actions and the corresponding completion dates below:

Corrective Action Needed	Due Date

Inspector Signature:_____

Inspector Name (printed)_____

Anti-icing Data I	Log Form			
Truck:	8			
Date:				
Air Temperature	Pavement Temperature	Sky		
Reason for applyin	ng:			
Road Name:				
Chemical: Sand/S (Circle one)	alt - Salt - Othe	er (List below)		
Application Time:	:			
Application Amou	int:			
Name:				

Appendix IV

Plans

SOIL SERIES	MAP UNIT	HIGH INTENSITY SOIL TYPES	HYDROLOGIC GROUP	
NEWFIELDS PAXTON WOODBRIDGE RIDGEBURY WET_RIDGEBURY	444 66 29 656 656 /P	(321) (223) (323) (423) (523)	B C C C C	
SLOPE: $0-8\% = B$	8-15% =	$(5)^{-15-25\%} = D$	25 - 50% = F	>50% = F

SOIL	MAP	HIGH INTENSITY	HYDROLOGIC
<u>SERIES</u>	<u>UNIT</u>	SOIL TYPES	<u>GROUP</u>
NEWFIELDS	444	(321)	B
PAXTON	66	(223)	C
WOODBRIDGE	29	(323)	C
RIDGEBURY	656	(423)	C
WET RIDGEBURY	656/P	(523)	С

SOIL SERIES	MAP UNIT	HIGH INTENSITY SOIL TYPES	HYDROLOGIC GROUP	
NEWFIELDS PAXTON	444 66	(321) (223)	B C	
WOODBRIDGE	29	(323)	C	
RIDGEBURY	656	(423)	С	
WET RIDGEBURY	656/P	(523)	С	
SLOPE: $0-8\% = B$	8-15% =	$C_{15-25\%} = D_{15-25\%}$	25-50% = F > 50%	= F

SOIL <u>SERIES</u>	MAP <u>UNIT</u>	HIGH INTENSITY SOIL TYPES	HYDROLOGIC <u>GROUP</u>
NEWFIELDS PAXTON WOODBRIDGE RIDGEBURY WET RIDGEBURY	444 66 29 656 656/P	(321) (223) (323) (423) (523)	B C C C C C