Type/Node Name: d pond 7p infilttration basin
Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable

	Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?
5.35 ac	$\mathrm{A}=$ Area draining to the practice
0.11 ac	$\mathrm{A}_{\mathrm{I}}=$ Impervious area draining to the practice
0.02 decimal	$I=$ percent impervious area draining to the practice, in decimal form
0.07 unitless	$\mathrm{Rv}=$ Runoff coefficient $=0.05+(0.9 \times \mathrm{I})$
$0.37 \mathrm{ac}-\mathrm{in}$	$\mathrm{WQV}=1$ " $\mathrm{x} \mathrm{Rv} \times \mathrm{A}$
$1,340 \mathrm{cf}$	WQV conversion (ac-in x $43,560 \mathrm{sf} / \mathrm{ac} \times 1 \mathrm{ft} / 12$ ")
335 cf	25% x WQV (check calc for sediment forebay volume)
	Method of pretreatment? (not required for clean or roof runoff)
cf	$\mathrm{V}_{\text {SED }}=$ sediment forebay volume, if used for pretreatment $\quad \leqslant \geq 25 \% \mathrm{WQV}$
cf	$\mathrm{V}=$ volume 1 (attach a stage-storage table) $\quad \leftarrow \geq$ WQV
sf	$\mathrm{A}_{\text {SA }}=$ surface area of the bottom of the pond
iph	$\mathrm{Ksat}_{\text {deSIGN }}=$ design infiltration rate ${ }^{2}$
hours	$\mathrm{T}_{\text {DRAIN }}=$ drain time $=\mathrm{V} /\left(\mathrm{A}_{\text {SA }} * \mathrm{I}_{\text {DESIGN }}\right) \quad \leftarrow \leq 72$-hrs
295.10 feet	$\mathrm{E}_{\text {ВтМ }}=$ elevation of the bottom of the basin
293.88 feet	$\mathrm{E}_{\text {SHWT }}=$ elevation of SHWT (if none found, enter the lowest elevation of the test pit)
294.00 feet	$\mathrm{E}_{\text {ROCK }}=$ elevation of bedrock (if none found, enter the lowest elevation of the test pit)
1.23 feet	$\mathrm{D}_{\text {SHWT }}=$ separation from SHWT $\quad \leftarrow \geq *^{s}$
1.1 feet	$\mathrm{D}_{\mathrm{ROCK}}=$ separation from bedrock $\quad \leftarrow \geq *^{3}$
na ft	$\mathrm{D}_{\text {amend }}=$ Depth of amended soil, if applicable due high infiltation rate $\quad \leftarrow \geq 24^{\prime \prime}$
na ft	$\mathrm{D}_{\mathrm{T}}=$ depth of trench, if trench proposed
Yes/No	If a trench or underground system is proposed, observation well provided ${ }^{4}$
na	If a trench is proposed, material in trench
pea gravel	If a basin is proposed, basin floor material
yes Yes/No	If a basin is proposed, the perimeter should be curvilinear, basin floor shall be flat.
2.0 :1	If a basin is proposed, pond side slopes $\quad \leftarrow \geq 3: 1$
297.27 ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)
298.47 ft	Peak elevation of the 50 -year storm event (infiltration can be used in analysis)
299.50 ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm)
YES	
YES	If a basin is proposed, 50 -year peak elevation \leq Elevation of berm? \leftarrow yes

1. Volume below the lowest invert of the outlet structure and excludes forebay volume
2. Ksat ${ }_{\text {DESIGN }}$ includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate
3. 1' separation if treatment not required; 4' for treatment in GPAs \& WSIPAs; \& 3^{\prime} in all other areas.
4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.
5. If 50 -year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes:

\qquad
\qquad

NHDES Alteration of Terrain
Last Revised: March

