NHDES Alteration of Terrain (AoT) Application, Stormwater Management Plan, & Drainage Calculations Summary

TURBOCAM International Route 9/ Redemption Road (Site) Barrington, NH 03825

September 13, 2019 Revised: February 26, 2020

Prepared for.

TURBOCAM International 607 Calef Highway Barrington, NH 03825

Prepared by:

Emanuel Engineering, Inc. Bruce Scamman, PE 118 Portsmouth Avenue, Suite A202 Stratham, NH 03885

civil & structural consultants, land planners 118 Portsmouth Avenue, A202 Stratham, NH 03885 P: 603-772-4400 F: 603-772-4487

WWW.EMANUELENGINEERING.COM

TABLE OF CONTENTS

- 1. Copy of the signed application form & application checklist
- 2. Copy of the check
- 3. USGS map with the property boundaries outlined (1'' = 2,000') scale)
- 4. Narrative of the project with a summary table of the peak discharge rates
- 5. Web GIS printout with the "Surface Water Impairments" layer turned on
- 6. Web GIS printouts with the AoT screening layers turned on
- 7. New Hampshire Natural Heritage Bureau Letter
- 8. Web Soil Survey Report
- 9. Aerial photograph (1" = 2,000" scale with the site boundaries outlined)
- 10. Photographs representative of the site
- 11. Groundwater Recharge Volume calculations
- 12. BMP worksheets (one worksheet for each treatment system)
- 13. Pre-development drainage analysis
 - a. Drainage diagram
 - b. Area Listing and Soil Listing
 - c. Ground Cover and Pipe Listing
 - d. Full summary of the 10-year storm event
 - e. Water Quality Volume (1 inch storm event),
 - f. 2-year,
 - g. 10-year,
 - h. 25-year,
 - i. 50-year, and
- 14. Post-development drainage analysis
 - a. Drainage diagram
 - b. Area Listing and Soil Listing
 - c. Ground Cover and Pipe Listing
 - d. Full summary of the 10-year storm event
 - e. Water Quality Volume (1 inch storm event),
 - f. 2-year,
 - g. 10-year,
 - h. 25-year,
 - i. 50-year, and
- 15. Riprap apron calculations
- 16. Site Specific Soil Survey report
- 17. Infiltration Feasibility Report
- 18. Registration and Notification Form for Storm Water Infiltration to Groundwater
- 19. Stormwater Management, Maintenance, Inspection, & Source Control Plan P:/2019 JOBS/19-020 CFA TurboCam - Civil Rt. 9/Drainage/Stormwater Calculations TOC 05-22-19.doc

civil & structural consultants, land planners

118 Portsmouth Ave. A202, Stratham, NH 03885 P: 603-772-4400 F: 603-772-4487 www.emanuelengineering.com

ALTERATION OF TERRAIN PERMIT APPLICATION

Services Water Division/ Alteration of Terrain Bureau/ Land Resources Management Check the Status of your Application: www.des.nh.gov/onestop

RSA/ Rule: RSA 485-A:17, Env-Wq 1500

			File Nur	nber:				
Administrative	Administrative	Administrativ	ve Check N	Vo.				
Only	Only	Only	Amount	:				
			Initials:					
1. APPLICANT INFORMATIO	N (INTENDED PERMIT HOLDER)						
Applicant Name: TURBOCAM	International	Contact Name: Elic	t Wilkins					
Email: Eliot.Wilkins@turbocam	n.com	Daytime Telephone	: (603) 978-5030					
Mailing Address: 607 Calef Hig	ghway	L						
Town/City: Barrington			State: NH	Zip Code: 03825				
2. APPLICANT'S AGENT INF	ORMATION If none, chec	k here: 🔀		•				
Business Name:		Contact Name:						
Email:		Daytime Telephone:						
Address:								
Town/City:			State:	Zip Code:				
3. PROPERTY OWNER INFO	RMATION (IF DIFFERENT FROM	I APPLICANT)						
Applicant Name: RRB5, LLC		Contact Name: Eliot	Wilkins					
Email: Eliot.Wilkins@turbocam	.com	Daytime Telephone	: (603) 978-5030					
Mailing Address: 607 Calef Hi	ghway			_				
Town/City: Barrington			State: NH	Zip Code: 03825				
4. PROPERTY OWNER'S AGI	ENT INFORMATION If no	one, check here: 🔀						
Business Name:		Contact Name:						
Email:		Daytime Telephone	:					
Address:								
Town/City:			State:	Zip Code:				
5. CONSULTANT INFORMAT	ION If none, check here: [
Engineering Firm: Emanuel Er	ngineering, Inc.	Contact Name: Bru	ce Scamman					
Email: bscamman@emanuele	ngineering.com	Daytime Telephone	603-772-4400					
Address: 118 Portsmouth Ave	nue		1					
Town/City: Stratham			State: NH	Zip Code: 03885				

ridge.mauck@des.nh.gov (603) 271-2147 NHDES Alteration of Terrain Bureau, PO Box 95, Concord, NH 03303-0095

NHDES-W-01-003

6. PROJECT TYPE							
Excavation Only	sidential	Commercial	Golf Co	ourse 🗌 Scho	ol 🗌 Municipal		
Agricultural	nd Conversion	Other:	Light Indust.				
7. PROJECT LOCATION INFO	RMATION						
Project Name: TurboCAM Interna	ational						
Street/Road Address: Route 9							
Town/City: Barrington		Co	unty: Straffo	ord			
Tay Man: 222 8 224	Dioaki		Lot Numbe	er:	l Init:		
Tax Map. 255 & 254	BIOCK.	1	L233:77;L2	234:1.2&1.4	Unit.		
Location Coordinates: 43.216236	6,-71.02123	Latitude/Lo	ongitude	UTM [State Plane		
Post-development, will the propose	ed project withdraw	from or directly	discharge to	any of the following?	2 If yes, identify the		
purpose.							
1. Stream or Wetland			Yes	U Withdrawa	al 🖂 Discharge		
Purpose: Site Drainage							
2. Man-made pond created by in	pounding a stream	n or wetland			al Discharge		
Purpose:			No No				
3. Unlined pond dug into the wat	er table				al 🗌 Discharge		
Purpose:			🖾 No				
 A surface water impaired for phosphorus and/or nitrogen? No Yes - include information to demonstrate that project will not cause net increase in phosphorus and/or nitrogen A Class A surface water or Outstanding Resource Water? No Yes - include information to demonstrate that project will not cause net increase in phosphorus and/or nitrogen A lake or pond not covered previously? No Yes - include information to demonstrate that project will not cause net increase in phosphorus and/or nitrogen A lake or pond not covered previously? No Yes - include information to demonstrate that project will not cause net increase in phosphorus and/or nitrogen Is the project a High Load area? Yes No If yes, specify the type of high load land use or activity: 							
Is the project within a Water Suppl Is the project within a Groundwater Will the well setbacks identifier Note: Guidance document titled " <u>L</u>	y Intake Protection r Protection Area (0 d in Env-Wq 1508.0 <u>Ising NHDES's One</u>	Area (WSIPA)? GPA)? 02 be met? <u>eStop WebGIS to</u>	X Yes X Yes Yes O Locate Prote 2 of the NH	U No No ⊠ No <u>ection Areas</u> " is avai	lable online. For more		
Is any part of the property within the If yes: Cut volume: <u>N/A</u> cut Fill volume: <u>N/A</u> cut	e 100-year floodpla ic feet within the 10 ic feet within the 10	ain?	No No n	Stormwater Manual.			
$\square \text{ Project IS within } \frac{1}{4} \text{ mile of a } \\ \square \text{ Project is NOT within } \frac{1}{4} \text{ mile of } \\ \square \text{ Project is NOT within } \frac{1}{4} \text{ mile of } \\ \square \text{ Project is NOT within } \frac{1}{4} \text{ mile of } \\ \square \text{ Project is NOT } \\ \square \text{ Project } \\ \square $	designated river of a designated riv	Name of River: ver					
 □ Project IS within a Coastal/G ☑ Project is NOT within a Coastal 	reat Bay Region tal/Great Bay Reg	community - in jion community	clude info r	equired by Env-W	q 1503.08(I) if applicable		
8. BRIEF PROJECT DESCRIPT	ION (PLEASE D	O NOT REPLY	SEE ATTA	CHED")			
The intent of this project is to construct one light industrial building (27,715 SF footprint) used for training and educational purposes with associated parking, utilities, and drainage.							
9. IF APPLICABLE, DESCRIBE	ANY WORK ST	ARTED PRIOR	TO RECEIV	ING PERMIT			

N/A								
10. ADDITIONAL REQUIRED INFORMATION								
A. Date a copy of the application was sent to (Attach proof of delivery)	the municipality as r	required	by Env-Wq 1	503.05(e) ¹ : <u>9/13/2019.</u>				
B. Date a copy of the application was sent to (Attach proof of delivery)	the local river adviso	ory comn	nittee if requi	red by Env-Wq 1503.05(e) ² : <u>//</u> .				
C. Type of plan required: 🗌 Land Conversio	n 🖂 Detailed Deve	lopment	Excavati	on, Grading & Reclamation 🔲 Steep Slope				
D. Additional plans required: 🛛 Stormwater	Drainage & Hydrolog	gic Soil C	Groups 🗌 S	ource Control 🔲 Chloride Management				
E. Total area of disturbance: 221,350 square	feet							
 F. Additional impervious cover as a result of t impervious coverage). Total final impervious cover: <u>87,925</u> squar 	he project: <u>87,925</u> s re feet	square fe	et (use the "	-" symbol to indicate a net reduction in				
G. Total undisturbed cover: +/- 338,229 squa	re feet							
H. Number of lots proposed: 0								
I. Total length of roadway: <u>0</u> linear feet								
J. Name(s) of receiving water(s): Wetlands								
K. Identify all other NHDES permits required to pending, or if the required approval has be applicable.	for the project, and f en issued provide th	for each i ne permit	indicate whet number, reg	ther an application has been filed and is pistration date, or approval letter number, as				
	Application Fi	iled?		Status				
			Pending	If Issued:				
1. Water Supply Approval	🗌 Yes 🖾 No	□N/A		Permit number:				
2. Wetlands Permit	🗌 Yes 🗌 No	⊠N/A		Permit number:				
3. Shoreland Permit	🗌 Yes 🗌 No	⊠N/A		Permit number:				
4. UIC Registration	🗌 Yes 🗌 No	⊠N/A		Registration date:				
5. Large/Small Community Well Approval	🗌 Yes 🗌 No	⊠N/A		Approval letter date:				
6. Large Groundwater Withdrawal Permit	🗌 Yes 🗌 No	⊠N/A		Permit number:				
7. Other: Septic	🛛 Yes 🗌 No		\boxtimes	Permit number:				
L. List all species identified by the Natural He Blanding's Turtle (Emydoidea blandingii), dw	ritage Bureau as thr varf huckleberry (Ga	reatened	or endanger a bigeloviana	red or of concern:				
M. Using NHDES's Web GIS OneStop progra turned on, list the impairments identified fo 	m (<u>www2.des.state.</u> r each receiving wat	.nh.us/gis ter. If no	<u>s/onestop/)</u> , v pollutants a 	with the Surface Water Impairment layer re listed, enter "N/A."				
N. Did the applicant/applicant's agent have a If yes, name of staff member:	pre-application mee	eting with	AOT staff?	🗌 Yes 🛛 No				

NHDES Alteration of Terrain Bureau, PO Box 95, Concord, NH 03303-0095

¹ Env-Wq 1503.05(c)(6), requires proof that a completed application form, checklist, plans and specifications, and all other supporting materials have been sent or delivered to the governing body of each municipality in which the project is proposed.

² Env-Wq 1503.05(c)(6), requires proof that a completed application form, checklist, plans and specifications, and all other supporting materials have been sent or delivered to the Local River Advisory Committee, if the project is within ¼ mile of a designated river.

O. Will blasting of bedrock be required? \boxtimes Yes \square No If ves, estimated quantity of blast rock: 10,000 cubic vards If yes, standard blasting BMP notes must be placed on the plans, available at: http://des.nh.gov/organization/commissioner/pip/publications/wd/documents/wd-10-12.pdf **NOTE:** If greater than 5,000 cubic yards of blast rock will be generated, a groundwater monitoring program must be developed and submitted to NHDES. Contact AOT staff for additional detail. 11. CHECK ALL APPLICATION ATTACHMENTS THAT APPLY (SUBMIT WITH APPLICATION IN ORDER LISTED) LOOSE: Signed application form: des.nh.gov/organization/divisions/water/aot/index.htm (with attached proof(s) of delivery) Check for the application fee: des.nh.gov/organization/divisions/water/aot/fees.htm \boxtimes Color copy of a USGS map with the property boundaries outlined (1" = 2.000' scale) If Applicant is not the property owner, proof that the applicant will have a legal right to undertake the project on the property if a permit is issued to the applicant. BIND IN A REPORT IN THE FOLLOWING ORDER: Copy of the signed application form & application checklist (des.nh.gov/organization/divisions/water/aot/index.htm) Copy of the check \boxtimes Copy of the USGS map with the property boundaries outlined (1" = 2,000' scale) 🛛 Narrative of the project with a summary table of the peak discharge rate for the off-site discharge points Web GIS printout with the "Surface Water Impairments" layer turned on http://www4.des.state.nh.us/onestopdatamapper/onestopmapper.aspx Web GIS printouts with the AOT screening layers turned on http://www4.des.state.nh.us/onestopdatamapper/onestopmapper.aspx NHB letter using DataCheck Tool – www.nhdfl.org/about-forests-and-lands/bureaus/natural-heritage-bureau/ The Web Soil Survey Map with project's watershed outlined – websoilsurvey.nrcs.usda.gov \boxtimes Aerial photograph (1" = 2.000' scale with the site boundaries outlined) \boxtimes Photographs representative of the site Groundwater Recharge Volume calculations (one worksheet for each permit application): des.nh.gov/organization/divisions/water/aot/documents/bmp worksh.xls \boxtimes BMP worksheets (one worksheet for each treatment system): des.nh.gov/organization/divisions/water/aot/documents/bmp worksh.xls C Drainage analysis, stamped by a professional engineer (see Application Checklist for details) Riprap apron or other energy dissipation or stability calculations Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication No. 3. Infiltration Feasibility Report (example online) [Env-Wg 1503.08(f)(3)] Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches): (http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge) X Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wg 1503.08(g)] Source control plan PLANS: 🛛 One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details) Pre & post-development drainage area plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) **100-YEAR FLOODPLAIN REPORT:** All information required in Env-Wg 1503.09, submitted as a separate report. ADDITIONAL INFORMATION RE: NUTRIENTS, CLIMATE See Checklist for Details 🛛 REVIEW APPLICATION FOR COMPLETENESS & CONFIRM INFORMATION LISTED ON THE APPLICATION IS INCLUDED WITH SUBMITTAL.

12. REQUIRED SIGNATURES							
By initialing here, I acknowledge that department in PDF format on a CD w	I am required by Env-Wq 1503.20(e) to submit a copy of all approved documents to the <i>i</i> thin one week after permit approval.						
By signing below, I certify that:							
 The information contained in or otherwis knowledge and belief; 	e submitted with this application is true, complete, and not misleading to the best of my						
 I understand that the submission of false, incomplete, or misleading information constitutes grounds for the department to den the application, revoke any permit that is granted based on the information, and/or refer the matter to the board of professional engineers established by RSA 310-A:3 if I am a professional engineer; and I understand that I am subject to the penalties specified in New Hampshire law for falsification in official matters, currently RSA 641. 							
Signature:	Date:						
Name (print or type):	Title:						
	PROPERTY OWNER'S AGENT:						
Signature:	Date:						
Name (print or type):	Title:						

ATTACHMENT A: ALTERATION OF TERRAIN PERMIT APPLICATION CHECKLIST

Check the box to indicate the item has been provided or provide an explanation why the item does not apply.

DESIGN PLANS

- Plans printed on 34 36" by 22 24" white paper
- PE stamp
- ⊠ Wetland delineation
- Temporary erosion control measures
- Treatment for all stormwater runoff from impervious surfaces such as roadways (including gravel roadways), parking areas, and non-residential roof runoff. Guidance on treatment BMPs can be found in Volume 2, Chapter 4 of the NH Stormwater Management Manual.
- Pre-existing 2-foot contours
- Proposed 2-foot contours
- Drainage easements protecting the drainage/treatment structures
- Compliance with the Wetlands Bureau, RSA 482- A <u>http://des.nh.gov/organization/divisions/water/wetlands/index.htm</u>. Note that artificial detention in wetlands is not allowed.
- Compliance with the Comprehensive Shoreland Protection Act, RSA 483-B. <u>http://des.nh.gov/organization/divisions/water/wetlands/cspa</u>
- Benches. Benching is needed if you have more than 20 feet change in elevation on a 2:1 slope, 30 feet change in elevation on a 3:1 slope, 40 feet change in elevation on a 4:1 slope.
- Check to see if any proposed ponds need state Dam permits. <u>http://des.nh.gov/organization/divisions/water/dam/documents/damdef.pdf</u>

DETAILS

- Typical roadway x-section
- Detention basin with inverts noted on the outlet structure
- Stone berm level spreader
- ⊠ Outlet protection riprap aprons
- A general installation detail for an erosion control blanket
- Silt fences or mulch berm
- Storm drain inlet protection. Note that since hay bales must be embedded 4 inches into the ground, they are not to be used on hard surfaces such as pavement.
- Hay bale barriers
- Stone check dams
- Gravel construction exit
- Imporary sediment trap
- The treatment BMP's proposed
- Any innovative BMP's proposed

CONSTRUCTION SEQUENCE/EROSION CONTROL

- Note that the project is to be managed in a manner that meets the requirements and intent of RSA 430:53 and Chapter Agr 3800 relative to invasive species.
- Note that perimeter controls shall be installed prior to earth moving operations.
- Note that temporary water diversion (swales, basins, etc) must be used as necessary until areas are stabilized.
- Note that ponds and swales shall be installed early on in the construction sequence (before rough grading the site).
- Note that all ditches and swales shall be stabilized prior to directing runoff to them.
- Note that all roadways and parking lots shall be stabilized within 72 hours of achieving finished grade.
- Note that all cut and fill slopes shall be seeded/loamed within 72 hours of achieving finished grade
- Note that all erosion controls shall be inspected weekly AND after every half-inch of rainfall.
- Note the limits on the open area allowed, see Env-Wq 1505.02 for detailed information.

Example note: The smallest practical area shall be disturbed during construction, but in no case shall exceed 5 acres at any one time before disturbed areas are stabilized.

Note the definition of the word "stable"

Example note: An area shall be considered stable if one of the following has occurred:

- Base course gravels have been installed in areas to be paved.
- A minimum of 85 percent vegetated growth has been established.
- A minimum of 3 inches of non-erosive material such stone or riprap has been installed.
- Or, erosion control blankets have been properly installed.
- Note the limit of time an area may be exposed Example note: All areas shall be stabilized within 45 days of initial disturbance.
- Provide temporary and permanent seeding specifications. (Reed canary grass is listed in the Green Book; however, this is a problematic species according to the Wetlands Bureau and therefore should not be specified)

 \boxtimes Provide winter construction notes that meet or exceed our standards.

Standard Winter Notes:

- All proposed vegetated areas that do not exhibit a minimum of 85 percent vegetative growth by October 15, or which are disturbed after October 15, shall be stabilized by seeding and installing erosion control blankets on slopes greater than 3:1, and seeding and placing 3 to 4 tons of mulch per acre, secured with anchored netting, elsewhere. The installation of erosion control blankets or mulch and netting shall not occur over accumulated snow or on frozen ground and shall be completed in advance of thaw or spring melt events.
- All ditches or swales which do not exhibit a minimum of 85 percent vegetative growth by October 15, or which are disturbed after October 15, shall be stabilized temporarily with stone or erosion control blankets appropriate for the design flow conditions.
- After October 15, incomplete road or parking surfaces, where work has stopped for the winter season, shall be protected with a minimum of 3 inches of crushed gravel per NHDOT item 304.3.

○ Note at the end of the construction sequence that "Lot disturbance, other than that shown on the approved plans, shall not commence until after the roadway has the base course to design elevation and the associated drainage is complete and stable." – This note is applicable to single/duplex family subdivisions, when lot development is not part of the permit.

DRAINAGE ANALYSES

Please double-side 8 ½" x 11" sheets where possible but, **do not** reduce the text such that more than one page fits on one side.

PE stamp

- Rainfall amount obtained from the Northeast Regional Climate Center-<u>http://precip.eas.cornell.edu/</u>. Include extreme precipitation table as obtained from the above referenced website.
- \boxtimes Drainage analyses, in the following order:

- Pre-development analysis: Drainage diagram.
- Pre-development analysis: Area Listing and Soil Listing.
- Pre-development analysis: Node listing 1-year (if applicable), 2-year, 10-year and 50-year.
- Pre-development analysis: Full summary of the 10-year storm.
- Post-development analysis: Drainage diagram.
- Post-development analysis: Area Listing and Soil Listing.
- Post-development analysis: Node listing for the 2-year, 10-year and 50-year.
- Post-development analysis: Full summary of the 10-year storm.

Review the Area Listing and Soil Listing reports

- Hydrologic soil groups (HSG) match the HSGs on the soil maps provided.
- There is the same or less HSG A soil area after development (check for each HSG).
- There is the same or less "woods" cover in the post-development.
- Undeveloped land was assumed to be in "good" condition.
- The amount of impervious cover in the analyses is correct.

Note: A good check is to subtract the total impervious area used in the pre analysis from the total impervious area used in the post-analysis. For residential projects without demolition occurring, a good check is to take this change in impervious area, subtract out the roadway and divide the remaining by the number of houses/units proposed. Do these numbers make sense?

- \boxtimes Check the storage input used to model the ponds.
- Check to see if the artificial berms pass the 50-year storm, i.e., make sure the constructed berms on ponds are not overtopped.
- Check the outlet structure proposed and make sure it matches that modeled.
- \boxtimes Check to see if the total areas in the pre and post analyses are same.
- Confirm the correct NRCS storm type was modeled (Coos, Carroll & Grafton counties are Type II, all others Type III).

PRE- AND POST-DEVELOPMENT DRAINAGE AREA PLANS

- \boxtimes Plans printed on 34 36" by 22 24" on white paper.
- \boxtimes Submit these plans separate from the soil plans.
- \boxtimes A north arrow.
- \boxtimes A scale.
- \boxtimes Labeled subcatchments, reaches and ponds.
- Tc lines.
- A clear delineation of the subcatchment boundaries.
- Roadway station numbers.
- \boxtimes Culverts and other conveyance structures.

PRE AND POST-DEVELOPMENT COLOR-CODED SOIL PLANS

- \boxtimes 11" x 17"sheets suitable, as long as it is readable.
- \boxtimes Submit these plans separate from the drainage area plans.
- \boxtimes A north arrow.
- A scale.
- \boxtimes Name of the soil scientist who performed the survey and date the soil survey took place.

NHDES-W-01-003

2-foot contours (5-foot contours if application is for a gravel pit) as well as other surveyed features.

 \boxtimes Delineation of the soil boundaries and wetland boundaries.

 \boxtimes Delineation of the subcatchment boundaries.

 \boxtimes Soil series symbols (e.g., 26).

A key or legend which identifies each soil series symbol and its associated soil series name (e.g., 26 = Windsor).

The hydrologic soil group color coding (A = Green, B = yellow, C= orange, D=red, Water=blue, & Impervious = gray).

Please note that excavation projects (e.g., gravel pits) have similar requirements to that above, however the following are common exceptions/additions:

Drainage report is not needed if site does not have off-site flow.

- 5 foot contours allowed rather than 2 foot.
- □ No PE stamp needed on the plans.
- Add a note to the plans that the applicant must submit to the Department of Environmental Services a written update of the project and revised plans documenting the project status every five years from the date of the Alteration of Terrain permit.
- Add reclamation notes.

See NRCS publication titled: *Vegetating New Hampshire Sand and Gravel Pits* for a good resource, it is posted online at: http://des.nh.gov/organization/divisions/water/aot/categories/publications.

ADDITIONAL INFORMATION RE: NUTRIENTS, CLIMATE

☐ If project will discharge stormwater to a surface water impaired for phosphorus and/or nitrogen, include information to demonstrate that project will not cause net increase in phosphorus and/or nitrogen.

☐ If project will discharge stormwater to a Class A surface water or Outstanding Resource Water, include information to demonstrate that project will not cause net increase in phosphorus and/or nitrogen.

If project will discharge stormwater to a lake or pond not covered previously, include information to demonstrate that project will not cause net increase in phosphorus in the lake or pond.

If project is within a Coastal/Great Bay Region community, include info required by Env-Wq 1503.08(I) if applicable.

Invoice	Invoice Date	Description	Amount	Discount	Net Amount
	9/16/2019	AOT FOR RRB5	1,750.00	0.00	1,750.00

No: 94431	9/16/2019 TREASURÉR, STATE OF	NEW HAMPSHIRE	Amount: 1,750.	00
	TURBOCAM, INC. SUITE 200 607 CALEF HIGHWAY BARRINGTON, NH 03825	BENDORSEMENT LINES AND ARTIFICIA XX Citiz New HAMPS	Cens Bank ⁵⁴⁻¹⁵³ SHIRE	94431
	Date: 9/16/2019	No: 94431 Amour	nt: *******1,750.	00
One Thou Pay to the	usand Seven Hundred Fifty and no/100 [,] TREASURER, STATE OF NEW HAMPSI	Base********	ng 4	
Órder of			TURBOCAM, INC.	
			und Juli	COOR ANDES WITH
	#094431# #0114015	33: 331307955	711 -	

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY BARRINGTON QUADRANGLE NEW HAMPSHIRE 7.5-MINUTE SERIES

EXISTING CONDITIONS

The TURBOCAM International site is shown on Barrington Tax Map 233 Lot 77, and Tax Map 234 Lot 1.2 & 1.4. It is located on the northeast side of Route 9 and west side of Redemption Road in Barrington, New Hampshire. The existing combined lot has an area of 12.8 acres. For storm-water modeling purposes, the existing lot was modeled along with a portion of Redemption Road, and Tax Map 234 Lot 1.5 in-which storm-water runoff is affected by; totaling an area of 16.6 acres. Tax Map 233 Lot 77 is currently multiple cleared, vacant lots with a gravel driveway loop. Tax Map 234 Lots 1.2 & 1.4 are currently vacant, wooded lots. The intent of this project is to construct one light industrial building used for training and educational purposes with associated parking, utilities, and drainage. Additionally, a majority of the existing gravel driveway is to be paved. The parcel is bounded northerly by Christopher and Suzanne Kelliher (residential) and by the Town of Barrington (vacant), easterly by Redemption Road, southerly by Franklin Pierce Highway (Route 9), southwesterly by Robert and Rebecca Litchfield (residential), and westerly by Daniel and Cristin Wagner (residential).

Approximately 40% of the site has been cleared and is grass or ledge on the northern half of the site. The majority of the undisturbed portion of the lot is woods, wetlands, and ledge. The existing combined site's percent of impervious cover is 2.6%.

The existing combined site has 5 points of discharge for storm-water: to the northwest of Tax Map 233 Lot 77, to the southeast of Tax Map 234 Lot 1.2 (south of the gravel drive entrance), to the southeast of Tax Map 234 Lot 1.2 (north of the gravel drive entrance), and two different locations to the northeast of the Redemption Road roundabout near Tax Map 234 Lot 1.5. There is a high point on site on the eastern edge of Tax Map 233 Lot 77, near the property line with Tax Map 234 Lot 1.2. At this point, a small portion of the storm-water generally flows south, into the wetlands from a high point elevation of 256.00 feet to the low point elevation of 205.50. Runoff from this area flows directly into the wetlands to the south and through the culvert under Redemption Road. The rest of the runoff from this high point generally flows northeast, into the wetlands, into the swale along Redemption Road, and ultimately northeast offsite. To the northeast of the gravel drive, between the gravel drive and Lot 1.4, most of the storm-water generally flows south to a culvert under Redemption Road from a high point elevation of 204.41 feet. To the East side of the lot line between Lots 1.2 & 1.4, the storm-water mostly flows south from a high point elevation of

256.00 to a swale on the North side of Redemption Road flowing Northeast off site to the Northern-most part of the roundabout at a low point elevation of 210.00.

Site specific soils were delineated on site by Luke Hurley of Gove Environmental Services, Inc. on August 28, 2019. Wetlands were delineated by Jones & Beach Engineers, Inc. in April 2019.

PROPOSED DEVELOPMENT

Proposed improvements for Tax Map 233 Lot 77 and Tax Map 234 Lots 1.2 &1.4 include the construction of a 27,715 square foot building, a new septic system, a net increase of +/-58,850 square feet of new traditional pavement, a drip edge along the perimeter of the proposed building to collect stormwater from the roof, one bioswale (PP108) to filter and retain stormwater, two bioswale-ISR systems (BR1, BR2), one +/-8,500 square feet subsurface infiltration system (SI1), and associated utilities to service the building. The storm-water treatment systems vary in size (length, width, and depth) as determined by the inflow areas which will discharge storm-water into each unit. Additionally, Tax Map 234 Lots 1.4 is to be logged and stumped to within 50' of the wetlands (+/-61,500 square feet). The proposed combined site impervious area is 14.8% of the site.

BIORETENTION-ISR

An innovative bioswale system with an anaerobic internal storage reservoir (ISR) was designed pursuant to RSA485-A:9 Class Surface Waters and Env-WQ 1503.11(i) requiring a BMP that provides the highest level of pollutant removal including bioretention-ISR with amended soils. The design and sizing of a bioswale-ISR was based on research and development by Roseen and Stone 2013 funded by EPA Region 1 and detailed in the technical memorandum by Roseen (2013)¹. The bioswale-ISR was designed and constructed based on the concepts of using the functional mechanisms of a gravel wetland, and replicating them in the footprint of a standard bioretention system. From the surface, the system does not look any different than a standard bioretention system. However, in the subsurface it incorporates an anaerobic internal storage reservoir (ISR) in the same sense that is accomplished in a gravel wetland. Of primary

¹ Roseen, R. (2013). Design and Sizing of Innovative Bioretention-ISR System. Stratham, NH, Waterstone Engineering: 7.

significance in this design is the ISR, the long circuitous flow path, and the volume contained in the ISR. A traditional bioretention system has approximately 2 feet of vertical filter path length as it moves through the bioretention soil media prior to exiting by underdrain or exfiltration. A gravel wetland typically has at least a 30' horizontal flow path through the anaerobic ISR. The ratio of the ISR/WQV should be at minimum 0.1 and is the crucial element of the design in that it is based on the phenomena that nitrate is heavily first flush weighted, and should wash off in the beginning of a storm event, or a small fraction of the WQV. Additionally, the system contains a bioretention soil mix (BSM) comprised of: 65% sand, 30% loam, and 5% water treatment residuals (WTR) with a final organic matter content of 8-12%. Specific details on BSM composition are listed in the design specifications.

DRAINAGE ANALYSIS AND DESIGN

The purpose of the drainage analysis is two-fold:

- The first is to analyze the pre-development runoff flows through the site.
- The second purpose is to evaluate the impact of the proposed development on drainage patterns and flows.

The goal of the drainage design is to:

- Design a storm-water and treatment system to adequately handle the postdevelopment runoff peak and volume.
- Minimize or eliminate erosion and sedimentation during construction and after development.

METHOD

The storm-water runoff analysis for the site was based on the Town of Barrington's regulations which require a 2-year, 10-year, 25-year, and 50-year 24-hour storm events to be modeled. Additionally, the 1" water quality storm was also monitored. The analysis was performed as required by the State of New Hampshire Department of Environmental Services using the U.S. Soil Conservation Service's TR-20 runoff procedure from which the TR-55 method was developed. As described in the TR-55 manual, it is a "...procedure to calculate storm runoff, peak rate of discharge, hydrographs and storage volumes required for floodwater

reservoirs. The model begins with a rainfall amount uniformly imposed on the watershed over a specified time distribution. Mass rainfall is converted to mass runoff using a runoff curve number (CN). CN is based on soils, plant cover, impervious area, interception, and surface storage. Runoff is then transformed into a hydrograph (a graph showing the properties of runoff flow with respect to time)² by using the unit hydrograph theory (a given one-day rainfall produces a 1-inch depth of runoff over the given drainage area) and routing procedures that depend on runoff travel time through segments of the watershed" (subcatchments). Modeling calculations were performed with a HydroCAD software package.

PRE-DEVELOPMENT RUNOFF

The pre-development work site was modeled as a 16.59 acre area where, storm-water modeling and calculations for Barrington Tax Map 233 Lot 77 were performed in conjuncture with Barrington Tax Map 234 Lot 1.2, 1.4, and 1.5.

The subject area was divided into fourteen separate subcatchment areas to model the storm-water flows most accurately, and are shown on sheet SW1 included in this report.

Subcatchment ES1 represents the area on the northwestern portion of Lot 77. This area is comprised of grass, woods, and wetland cover. Per review by NHDES on November 22, 2019, ES1 is now modeled as the combined area formerly modeled as subcatchment's ES1 and ES2.

Subcatchment ES1 flows east along the surface into the large wetland area in the northwest portion of the site which continues to run southeast down along the wetland finger (Reach ER72 & ER73) and eventually off-site to the southeast (Link L200).

Subcatchment ES3 represents the area on the northern portion of Lot 77. This area is comprised of grass, woods, and wetland cover.

Subcatchment ES3 flows north along the surface into the small wetland area in the northeast corner of the site which continues to run north, off-site (Link L100).

Subcatchment ES4 represents the area just north of the existing gravel drive loop. This area is comprised of grass and gravel cover.

Subcatchment ES4 flows southeast along the surface, channelizing in the western portion of the existing gravel drive loop (Reach ER71) which continues to run south into the wetland

² Introduction to Hydrology, Viessman ET. Al. Second Edition, 1972 New York, IEP.

finger in the center of the site (Reach ER72 & ER73), the wetland finger flows to the southeast, eventually off-site to the southeast (Link L200).

Subcatchment ES5 represents the area just northwest of the existing gravel drive loop. This area is comprised of grass and gravel cover.

Subcatchment ES5 flows south along the surface, channelizing in the western portion of the existing gravel drive loop (Reach ER71) which continues to run south into the wetland finger in the center of the site (Reach ER72 & ER73), the wetland finger flows to the southeast, eventually off-site to the southeast (Link L200).

Subcatchment ES6 represents the area on the northeast portion of Lot 77 and the northwest portion of Lot 1.2. This area is comprised of grass, woods, gravel, and wetland cover.

Subcatchment ES6 flows southeast along the surface, channelizing in the western portion of the existing gravel drive loop (Reach ER71) which continues to run south into the wetland finger in the center of the site (Reach ER72 & ER73), the wetland finger flows to the southeast, eventually off-site to the southeast (Link L200).

Subcatchment ES7 represents the area in the northeast portion of Lot 1.4 and most of the northern portion of Lot 1.2. This area is comprised of woods and wetland cover. Per review by NHDES on November 22, 2019, ES7 is now modeled as the combined area formerly modeled as subcatchment's ES7 and ES8.

Subcatchment ES7 flows northeast along the surface into the south corner of the centralnorth wetlands. Continuing to run northeast along the wetland (Pond EP81), it then begins to run west along the wetland finger (Reach ER81) into a swale along the northern side Redemption Road (Reach ER84 & ER85) and eventually off site, southeast at the northern point of the Redemption Road roundabout (Link L400).

Subcatchment ES9 represents the western portion of Lot 1.5, north of the Redemption Road roundabout. This area is comprised of grass, woods, wetland, and impervious asphalt cover.

Subcatchment ES9 flows south along the surface, into the wetland finger and continues to run southeast into a swale along the northern side of Redemption Road (Reach ER85) and eventually off site, southeast at the northern point of the Redemption Road roundabout (Link L400).

Subcatchment ES10 represents a majority of the northern area of Lot 1.4. This subcatchment, along with Link L300, are to be ignored for this predevelopment drainage study as they were created for use in future projects.

Subcatchment ES11 represents the area on the south-middle portion of Lot 1.5, north of the Redemption Road roundabout. This area is comprised of grass, woods, and impervious asphalt cover.

Subcatchment ES11 flows southeast along the surface, into an existing swale along the northern side of Redemption Road and eventually off site, southeast at the northern point of the Redemption Road roundabout (Link L400).

Subcatchment ES12 represents the area on the northeast portion of Lot 1.2, north of Redemption Road. This area is comprised of grass, woods, wetlands, and impervious asphalt cover.

Subcatchment ES12 flows southeast along the surface, into a swale along the northern side of Redemption Road (Reach ER84 & ER85) and eventually off site, southeast at the northern point of the Redemption Road roundabout (Link L400).

Subcatchment ES13 represents the area on the south-central portion of Lot 1.4, north of Redemption Road. This area is comprised of grass, woods, and impervious asphalt cover.

Subcatchment ES13 flows southeast along the surface, into a swale along the northern side of Redemption Road (Reach ER83, ER84, & ER85) and eventually off site, southeast at the northern point of the Redemption Road roundabout (Link L400).

Subcatchment ES14 represents the area on the southwest portion of Lot 1.4 and southeast portion of Lot 1.2. This area is comprised of grass, woods, and impervious asphalt cover.

Subcatchment ES14 flows south along the surface, into an existing swale along the northern side of Redemption Road flowing southwest and eventually off-site, southeast at the east-side entrance of the gravel drive (Link L500).

Subcatchment ES15 represents the area on the south-central portion of Lot 1.4. This area is comprised of grass, woods, gravel, wetlands, and impervious asphalt cover.

Subcatchment ES15 flows southeast along the surface, channelizing on the existing gravel drive. It continues to flow into an existing swale at the southern-end of the gravel drive, where it eventually flows off-site, at the northwest-side entrance of Redemption Road (Link L200).

Subcatchment ES16 represents the area on the western portion of Lot 1.4 and southwest portion of Lot 77. This area is comprised of grass, woods, and wetland cover.

Subcatchment ES16 flows southeast along the surface, into the most-westerly wetland finger, located near the Redemption Road entrance, and eventually off-site, southeast at the west-side entrance of the gravel drive (Link L200).

The storm-water calculations were modeled with good grass cover, good woodlands, gravel areas, and impervious asphalt cover. Wetland areas were modeled with their respective Site Specific Soil Survey and cover type. The attached HydroCAD worksheets outline specific details on the flows, volumes, times, and flow conditions.

POST-DEVELOPMENT RUNOFF

The post-development site was also modeled as a 16.59 acre site which has been divided into twenty-five subcatchment areas, and are shown on sheet SW2 – Post development Drainage Plan included in this report. Previously modeled subcatchments PS2, PS5, PS18, PS21, and PS27 were combined with other subcatchments, therefore are not present in the updated drainage calculations.

Subcatchment PS1 represents the area on the northwestern portion of Lot 77. This area is comprised of grass, woods, and wetland cover. Per review by NHDES on November 22, 2019, PS1 is now modeled as the combined area formerly modeled as subcatchment's PS1 and PS2.

Subcatchment PS1 flows east along the surface into the large wetland area in the northwest portion of the site which continues to run southeast down along the wetland finger (Reach ER72 & ER73) and eventually off-site to the southeast (Link L200).

Subcatchment PS3 represents the area on the northern portion of Lot 77. This area is comprised of grass, woods, and wetland cover.

Subcatchment PS3 flows north along the surface into the small wetland area in the northeast corner of the site which continues to run north, off-site (Link L100). Water from this wetland flow back onto the site, southwest of where it flowed off the site. It then continues to run southeast down along the wetland finger (Reach ER70, ER72 & ER73) and eventually off-site to the southeast (Link L200).

Subcatchment PS4 represents the lower north-corner of Lot 77 and northeast portion of Lot 1.2. This area is comprised of pavement, building, grass, and woods cover.

Subcatchment PS4 flows south along the surface to the proposed swale, into the proposed bioswale-ISR system (Pond BR1). From there, stormwater is runs into a catch basin (Pond CB5) and is piped south to the subsurface infiltration system (Pond SI1). At this point stormwater infiltrates into the groundwater. However, in larger storm events, stormwater overflows through an HDPE pipe to the south, into the wetlands (Reach ER73) where it runs southeast, off-site (Link L200).

Subcatchment PS6 represents the area in the northeast portion of Lot 1.4 and a majority of the northern portion of Lot 1.2. This area is comprised of woods and wetland cover. Per review by NHDES on November 22, 2019, PS6 is now modeled as the combined area formerly modeled as subcatchment's PS6 and PS7.

Subcatchment PS6 flows northeast along the surface into the south corner of the centralnorth wetlands which continues to run northeast along the wetland (Pond EP81) then begins to run west along the wetland finger (Reach ER81) into a swale along the northern side of Redemption Road (Reach ER85) and eventually off site, southeast at the northern point of the Redemption Road roundabout (Link L400).

Subcatchment PS7 represents the eastern corner of Lot 1.4. This area is comprised of grass and impervious asphalt cover.

Subcatchment PS7 flows along the surface to a silt sock (to be maintained after construction has completed), which will slow down water in smaller storm events. Stormwater will back up and flow over the silt sock, continuing to flow along the swales along Redemption Road (Reach ER84 & ER85) and eventually off site, southeast at the northern point of the Redemption Road roundabout (Link L400).

Subcatchment PS8 represents the western portion of Lot 1.5, north of the Redemption Road roundabout. This area is comprised of grass, woods, wetland, and impervious asphalt cover.

Subcatchment PS8 flows south along the surface, into the wetland finger and continues to run southeast into a swale along the northern side of Redemption Road (Reach ER85) and eventually off site, southeast at the northern point of the Redemption Road roundabout (Link L400).

Subcatchment PS9 represents a majority of the northern area of Lot 1.5, same area as Subcatchment ES10. Subcatchment PS9, along with Link L300 are to be ignored for this predevelopment drainage study as they were created for use in future projects.

Subcatchment PS10 represents the area on the south-middle portion of Lot 1.5, north of the Redemption Road roundabout. This area is comprised of grass, woods, and impervious asphalt cover.

Subcatchment PS10 flows southeast along the surface, into a swale along the northern side of Redemption Road and eventually off site, southeast at the northern point of the Redemption Road roundabout (Link L400).

Subcatchment PS11 represents the area on the northeast portion of Lot 1.4, north of Redemption Road. This area is comprised of grass, woods, and wetlands cover.

Subcatchment PS11 flows southeast along the surface, being directed into the proposed stormwater detention along the northern side of Redemption Road (Pond PP109) by a silt sock (to be maintained after construction has completed). Stormwater eventually backs up in this area, and overflows out from the weir of the detention. Stormwater then flows to a different silt sock (to be maintained after construction has completed), which will slow down water in smaller storm events. Stormwater will back up and flow over the silt sock, continuing to flow along the swales along Redemption Road (Reach ER84 & ER85) and eventually off site, southeast at the northern point of the Redemption Road roundabout (Link L400).

Subcatchment PS12 represents the area on the south-central portion of Lot 1.4, north of Redemption Road. This area is comprised of grass, woods, and impervious asphalt cover.

Subcatchment PS12 flows southeast along the surface into the proposed stormwater detention along the northern side of Redemption Road (Pond PP109). Stormwater eventually backs up in this area, and overflows out from the weir of the detention. Stormwater then flows to a silt sock (to be maintained after construction has completed), which will slow down water in smaller storm events. Stormwater will back up and flow over the silt sock, continuing to flow along the swales along Redemption Road (Reach ER84 & ER85) and eventually off site, southeast at the northern point of the Redemption Road roundabout (Link L400).

Subcatchment PS13 represents the area just north of the proposed driveway entrance. This area is comprised of grass, woods, and impervious asphalt cover. Subcatchment PS13 flows south along the surface where it reaches a swale on the north side of the proposed driveway entrance (Reach ER82). This directs the flow into the proposed stormwater detention along the northern side of Redemption Road (Pond PP109). Stormwater eventually backs up in this area, and overflows out from the weir of the detention. Stormwater then flows to a silt sock (to be maintained after construction has completed), which will slow down water in smaller storm events. Stormwater will back up and flow over the silt sock, continuing to flow along the swales along Redemption Road (Reach ER84 & ER85) and eventually off site, southeast at the northern point of the Redemption Road roundabout (Link L400).

Subcatchment PS14 represents the area of the parking lot east of the proposed building at the intersection of the driveway/parking lot. This area is comprised of traditional pavement and grass cover.

Subcatchment PS14 flows into the swale south of the proposed driveway (Reach PR62), and into bioswale "A" (Pond PP108). From there, the storm-water will overflow into a catch basin (Pond PCB2), continuing south out of the catch basin through a 12" HDPE pipe, which daylights into riprap, ultimately flowing east along the proposed riprap swale (Reach PR63) off-site (Link L500).

Subcatchment PS15 represents the northeast corner of the proposed building, along with the drip edge located on the perimeter of this portion of the building. This area is comprised of building (impervious roof) and stone cover.

Subcatchment PS15 flows off the roof, enters into the drip edge area (Pond DE1) where it flows out of a series of underdrains into the proposed bioswale-ISR system (Pond BR1). From there, stormwater is runs into a catch basin (Pond CB5) and is piped south to the subsurface infiltration system (Pond SI1). At this point stormwater infiltrates into the groundwater. However, in larger storm events, stormwater overflows through an HDPE pipe to the south, into the wetlands (Reach ER73) where it runs southeast, off-site (Link L200).

Subcatchment PS16 represents the northwest corner of the proposed building, along with the drip edge, located on the perimeter of this portion of the building. This area is comprised of building (impervious roof) and stone cover.

Subcatchment PS16 flows off the roof, enters into the drip edge area (Pond DE2) where it flows out of a series of underdrains into the proposed bioswale-ISR system (Pond BR1). From

there, stormwater is runs into a catch basin (Pond CB5) and is piped south to the subsurface infiltration system (Pond SI1). At this point stormwater infiltrates into the groundwater. However, in larger storm events, stormwater overflows through an HDPE pipe to the south, into the wetlands (Reach ER73) where it runs southeast, off-site (Link L200).

Subcatchment PS17 represents the area west of the proposed building. This area is comprised of grass and traditional pavement cover.

Subcatchment PS17 flows into a catch basin centered in the subcatchment (Pond PCB4), continuing to flow east through a series of catch basins and manholes (Ponds PPT3 & PMH1) into the proposed bioswale -ISR system (Pond BR2). From there, stormwater is piped west to the subsurface infiltration system (Pond SI1). At this point stormwater infiltrates into the groundwater. However, in larger storm events, stormwater overflows through an HDPE pipe to the south, into the wetlands (Reach ER73) where it runs southeast, off-site (Link L200).

Subcatchment PS19 represents the southwest corner of the proposed building, along with the drip edge located on the perimeter of this portion of the building. This area is comprised of building (impervious roof) and stone cover.

Subcatchment PS19 flows off the roof, enters into the drip edge (Pond DE3) where it flows out of an underdrain into a catch basin (Pond PPT3). From there, it continues to flow east into a manhole (Pond PMH1) before finally flowing into the bioswale-ISR system (Pond BR2). From there, stormwater is piped west to the subsurface infiltration system (Pond SI1). At this point stormwater infiltrates into the groundwater. However, in larger storm events, stormwater overflows through an HDPE pipe to the south, into the wetlands (Reach ER73) where it runs southeast, off-site (Link L200).

Subcatchment PS20 represents the pavement area at the southwest corner of the proposed building. This area is comprised of grass and traditional pavement cover.

Subcatchment PS20 flows into a catch basin (Pond PPT3). From there, it continues to flow east into a manhole (Pond PMH1) before finally flowing into the bioswale-ISR system (Pond BR2). From there, stormwater is piped west to the subsurface infiltration system (Pond SI1). At this point stormwater infiltrates into the groundwater. However, in larger storm events, stormwater overflows through an HDPE pipe to the south, into the wetlands (Reach ER73) where it runs southeast, off-site (Link L200).

Subcatchment PS22 represents the southeast corner of the proposed building, along with the drip edge located on the perimeter of this portion of the building. This area is comprised of building (impervious roof) and stone cover.

Subcatchment PS22 flows off the roof, enters into the drip edge (Pond DE4) where it flows into the bioswale-ISR system (Pond BR2). From there, stormwater is piped west to the subsurface infiltration system (Pond SI1). At this point stormwater infiltrates into the groundwater. However, in larger storm events, stormwater overflows through an HDPE pipe to the south, into the wetlands (Reach ER73) where it runs southeast, off-site (Link L200).

Subcatchment PS23 represents the bottom portion of the large wetland area in the northwest area of the site, as well as a portion of the loading area on the south side of the building. This area is comprised of grass, woods, and wetlands cover.

Subcatchment PS23 flows southwest along the surface until it reaches the southern edge of the large wetland area in the northwest portion of the site (Reach ER73). It continues to flow southeast, off-site (Link L200).

Subcatchment PS24 represents majority of the southwest portion of Lot 77. This area is comprised of grass, woods and wetlands cover.

Subcatchment PS24 flows southeast along the surface, into the most-westerly wetland finger, located near the Redemption Road entrance, and eventually off-site, southeast at the west-side entrance of the gravel drive (Link L200).

Subcatchment PS25 represents the area southeast of the proposed building on the north side of Redemption Road, where the entrance to the existing gravel drive is. This area is comprised of grass, woods and wetlands cover.

Subcatchment PS25 flows south along the surface where it reaches the southern edge of the large wetland area in the northwest portion of the site. It continues to flow southeast, off-site (Link L200).

Subcatchment PS26 represents the area on the north side of the existing gravel drive entrance, east of the proposed building. This area is comprised of grass, woods and traditional pavement cover.

Subcatchment PS26 flows east along the surface, channelizing in a swale on the north side of Redemption Road. Eventually, flowing south, offsite (Link L500).

Subcatchment PS28 represents the area on the southern-edge of the proposed driveway entrance. This area is comprised of grass and traditional pavement cover.

Subcatchment PS28 flows east along the surface where it will channelize in the swale on the south side of the proposed driveway entrance. The storm-water will continue to flow east, beside the driveway entrance, and into bioswale "A" (Pond PP108). From there, the storm-water will overflow into a catch basin (Pond PCB2), continuing south out of the catch basin through a 12" HDPE pipe, which daylights into riprap, ultimately flowing east along the proposed riprap swale (Reach PR63) off-site (Link L500).

Subcatchment PS29 represents the area south of the proposed driveway entrance, in the area of the proposed bioswale along Redemption Road. This are is comprised of grass, woods and traditional pavement cover.

Subcatchment PS29 flows east along the surface and into bioswale "A" (Pond PP108). From there, the storm-water will overflow into a catch basin (Pond PCB2), continuing south out of the catch basin through a 12" HDPE pipe, which daylights into riprap, ultimately flowing east along the proposed riprap swale (Reach PR63) off-site (Link L500).

Subcatchment PS30 represents the area just southeast of the proposed building. This area is comprised of grass and traditional pavement cover.

Subcatchment PS30 flows mostly into the proposed swale to the south, along the parking lot. From there it flows east into the proposed bioswale-ISR system (Pond BR2). From there, stormwater is piped west to the subsurface infiltration system (Pond SI1). At this point stormwater infiltrates into the groundwater. However, in larger storm events, stormwater overflows through an HDPE pipe to the south, into the wetlands (Reach ER73) where it runs southeast, off-site (Link L200).

The storm-water calculations for the proposed site were modeled with good grass cover, good woodlands, stone cover, impervious gravel cover, porous pavement, and impervious paved parking lot and roof cover. Wetland areas were modeled with their respective Site Specific Soil Survey and cover type. The HydroCAD worksheets outline specific details on the flows and flow conditions.

For exfiltration under the subsurface infiltration system, and bioswale, the infiltration rate was determined using the Default Values method as described in Env-Wq 1504.14(c). A safety factor of two was used.

The proposed development on the site increased the impervious area by +/-87,925 square feet from predevelopment.

The 1-inch Water Quality Volume (WQV), 2-year, 10-year, 25-year, and 50-year twenty four-hour storm events have been modeled to verify the operability of the storm-water management system, to meet state and local regulations, and to ensure adequate freeboard on the storm-water management structures.

The post-development HydroCAD storm-water flow calculations show decreased stormwater peak flows and volumes for the 1-inch, 2-year, 10-year, 25-year, and 50-year storm events for the site.

The storm-water flow summaries are detailed in the HydroCAD calculations showing the net decrease in runoff at each point of discharge. Each point of discharge has been subtotaled to compare the pre-development and post-development discharges from the same geographical areas of the parcel and shown on the Storm-water Summary sheet as Link L100 (west of the site), Link L200 (southwest corner of the site), Link L300 (northeast of the site), Link L400 (northeast of the site, end of Redemption Road roundabout), and Link L500 (southeast of site, north of existing gravel drive entrance).

STORMWATER/DRAINAGE SUMMARY

EMANUEL ENGINEERING, INC.

JOB: DATE: ENGINEER: 19-020 CFA - TurboCAM 2/25/2020 JJM

PEAK FLOWS FROM HYDROCAD										
Subcatchment	Storm Qu	ality	2-Year Storm		10-Year Storm		25-Year Storm		50-Year Storm	
Area	1"		3.07"		4.61"		5.83"		6.97"	
	Pre	Post	Pre	Post	Pre	Post	Pre	Post	Pre	Post
	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)
POINTS OF DISCHARGE										
LINK 200L	0.00	0.00	0.05	0.04	0.70	0.52	2.46	1.78	4.75	4.64
LINK 300L	0.00	0.00	0.01	0.01	0.08	0.08	0.34	0.34	0.84	0.84
LINK 400L	0.00	0.00	0.26	0.26	1.21	1.16	2.42	2.02	3.73	3.52
LINK 500L	0.00	0.00	0.13	0.06	0.77	0.38	1.41	0.71	2.01	1.18
FLOW TOTALS (CFS)	0.00	0.00	0.45	0.37	2.76	2.14	6.63	4.85	11.33	10.18
Net Increase/(Decrease) (CFS)		0.00		(0.08)		(0.62)		(1.78)		(1.15)

VOLUMES FROM HYDROCAD											
Subcatchment	Storm Quality 2		2-Year Storm		10-Year Storm		25-Year Storm		50-Year Storm		
Area	1"		3.07"	3.07" 4		4.61"		5.83"		6.97"	
	Pre	Post	Pre	Post	Pre	Post	Pre	Post	Pre	Post	
	(AF)	(AF)	(AF)	(AF)	(AF)	(AF)	(AF)	(AF)	(AF)	(AF)	
POINTS OF DISCHARGE											
LINK 200L	0.000	0.000	0.040	0.032	0.262	0.205	0.548	0.465	0.884	0.846	
LINK 300L	0.000	0.000	0.003	0.003	0.041	0.041	0.097	0.097	0.163	0.163	
LINK 400L	0.000	0.000	0.100	0.052	0.443	0.307	0.788	0.658	1.151	1.027	
LINK 500L	0.000	0.000	0.034	0.045	0.106	0.121	0.180	0.191	0.258	0.263	
Voume TOTALS (AF)	0.000	0.000	0.177	0.132	0.852	0.674	1.613	1.411	2.456	2.299	
Net Increase/(Decrease) (AF)		0.000		(0.045)		(0.178)		(0.202)		(0.157)	

STORMWATER ANALYSIS AREA WORKSHEET

EMANUEL ENGINEERING INC.

JOB:	19-020 CFA - TurboCAM
DATE:	2/6/2020
ENGINEER:	MCV

PRE DEVELOPMENT DRAINAGE AREAS:

	SOIL		SUBCAT ES1	SUBCAT ES3	SUBCAT ES4	SUBCAT ES5	SUBCAT ES6	SUBCAT ES7	SUBCAT ES9
SOIL TYPE	GROUP	CN#	Area (SF)						
	А	39	0	0	0	0	0	0	9,841
Grass	В	61	0	0	0	0	0	0	0
	С	74	0	0	0	0	0	0	0
	А	30	56,403	12,689	9,025	13,071	26,865	0	2,369
Woods	В	55	8,020	0	0	0	3,861	0	13,310
	С	70	36,985	3,241	0	0	26,009	84,458	24,652
Dovement	А	98	0	0	0	0	0	0	5,551
Pavement	В	98	0	0	0	0	0	0	0
Total Area (S	F)		101,408	15,930	9,025	13,071	56,735	84,458	55,723
Total Area (Ac	res)		2.33	0.37	0.21	0.30	1.30	1.94	1.28
Total Impervious	s (SF)		0	0	0	0	0	0	5,551
Impervious (Ac	res)		0.00	0.00	0.00	0.00	0.00	0.00	0.13

SUBCAT ES10	SUBCAT ES11	SUBCAT ES12	SUBCAT ES12A	SUBCAT ES13	SUBCAT ES14	SUBCAT ES15	SUBCAT ES16	TOTAL AREA
Area (SF)	Area (SF)	Area (SF)	Area (SF)	Area (SF)	Area (SF)	Area (SF)	Area (SF)	(SF)
31,198	9,251	869	8,600	9,045	13,418	0	13,397	95,619
0	0	1,648	0	2,932	0	0	0	4,580
0	0	0	0	0	0	0	0	0
23,985	0	16,115	0	17,458	8,782	43,592	29,498	259,852
0	0	1,651	0	0	0	0	0	26,842
19,689	4,095	12,250	0	18,383	26,352	27,802	32,875	316,792
0	2,085	0	2,121	2,266	5,681	272	0	17,975
0	0	0	0	996	0	0	0	996
74,872	15,431	32,533	10,721	51,080	54,233	71,666	75,770	722,656
1.72	0.35	0.75	0.25	1.17	1.25	1.65	1.74	16.59
0	2,085	0	2,121	3,262	5,681	272	0	18,971
0.00	0.05	0.00	0.05	0.07	0.13	0.01	0.00	0.44

STORMWATER ANALYSIS AREA WORKSHEET

EMANUEL ENGINEERING INC.

 JOB:
 19-020 CFA - TurboCAM

 DATE:
 2/6/2020

 ENGINEER:
 JJM

POST DEVELOPMENT DRAINAGE AREAS:

	SOIL		SUBCAT PS1	SUBCAT PS3	SUBCAT PS4	SUBCAT PS6	SUBCAT PS7	SUBCAT PS8	SUBCAT PS9	SUBCAT PS10
SOIL TYPE	GROUP	CN#	Area (SF)							
	A	39	18,898	16,928	1,166	0	8,600	9,841	31,198	9,251
Grass	В	61	3,788	0		0	0	0	0	0
	С	74	0	0	6,755	2,618	0	0	0	0
	A	30	39,435	271		0	0	2,369	23,985	0
Woods	В	55	3,580	0		0	0	13,310	0	0
	С	70	36,257	3,241	21,381	62,199	0	24,652	19,689	4,095
	A	96	0	0		0	0	0	0	0
Gravel	В	96	0	0		0	0	0	0	0
	С	96	0	0		0	0	0	0	0
	A	98	0	0	5,324	0	2,121	5,551	0	2,085
Pavement	В	98	0	0		0	0	0	0	0
	С	98	0	0	4,744	0	0	0	0	0
	A	98	0	0	1,200	0	0	0	0	0
Buildings	В	98	0	0		0	0	0	0	0
	С	98	0	0		0	0	0	0	0
	A		0	0		0	0	0	0	0
Crushed Stone	В		0	0		0	0	0	0	0
	С		0	0		0	0	0	0	0
Total A	rea (SF)		101,958	20,440	40,570	64,817	10,721	55,723	74,872	15,431
Area (Acres)		2.34	0.47	0.93	1.49	0.25	1.28	1.72	0.35
Total Impe	rvious (SF)		0	0	11,268	0	2,121	5,551	0	2,085
Imperviou	us (Acres)		0.00	0.00	0.26	0.00	0.05	0.13	0.00	0.05

SUBCAT PS11	SUBCAT PS12	SUBCAT PS13	SUBCAT PS14	SUBCAT PS15	SUBCAT PS16	SUBCAT PS17	SUBCAT PS19	SUBCAT PS20
Area (SF)								
9,190	22,740	2,871	0	0	0	1,103		877
1,648	2,934	0	0	0	0	0	0	0
8,273	17,678	14,723	2,277	0	0	0	0	0
8,389	0	0	0	0	0	0	0	0
1,651	0	0	0	0	0	0	0	0
3,977	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	3,055	1,307	0	0	0	12,190	0	3,745
0	996	0	0	0	0	0	0	0
0	0	2,321	5,451	0	0	0	0	0
0	0	0	0	0	4,898	0	6,250	0
0	0	0	0	0	0	0	0	0
0	0	0	0	7,785	1,330	0	0	0
0	0	0	0	0	204	0	484	0
0	0	0	0	0	0	0	0	0
0	0	0	0	503	195	0	0	0
33,128	47,403	21,222	7,728	8,288	6,627	13,293	6,734	4,622
0.76	1.09	0.49	0.18	0.19	0.15	0.31	0.15	0.11
0	4,051	3,628	5,451	7,785	6,228	12,190	6,250	3,745
0.00	0.09	0.08	0.13	0.18	0.14	0.28	0.14	0.09

SUBCAT PS22	SUBCAT PS23	SUBCAT PS24	SUBCAT PS25	SUBCAT PS26	SUBCAT PS28	SUBCAT PS29	SUBCAT PS30	TOTAL AREA
Area (SF)	(SF)							
0	4,828	13,397	15,044	9,291	2,867	3,827	5,352	187,269
0	2,502	0	0	0	0	0		10,872
	0	0	0	179	1,387	0	4,610	58,500
0	603	29,498	8,960	701	0	2,526	0	116,737
0	2,009	0	0	0	0	0	0	20,550
0	3,393	32,875	4,533	2,046	0	1,627	0	219,965
0	0	0	1,441	0	0	0	0	1,441
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	302	4,077	1,756	2,293	11,054	54,860
0	0	0	0	0	0	0	0	996
0	0	0	0	0	3,689	0	5,681	21,886
103	0	0	0	0	0	0	0	12,451
0	0	0	0	0	0	0	0	0
6,147	0	0	0	0	0	0	0	15,262
0	0	0	0	0	0	0	0	688
0	0	0	0	0	0	0	0	0
480	0	0	0	0	0	0	0	1,178
6,730	13,335	75,770	30,280	16,294	9,699	10,273	26,697	722,655
0.15	0.31	1.74	0.70	0.37	0.22	0.24	0.61	16.59
6,250	0	0	1,743	4,077	5,445	2,293	16,735	106,896
0.14	0.00	0.00	0.04	0.09	0.13	0.05	0.38	2.45

CONFIDENTIAL – NH Dept. of Environmental Services review

Memo

NH NATURAL HERITAGE BUREAU NHB DATACHECK RESULTS LETTER

To: Jonathan MacBride, Emanuel Engineering, Inc. 118 Portsmouth Avenue Stratham, NH 03885

From: Amy Lamb, NH Natural Heritage Bureau

Date: 9/9/2019 (valid for one year from this date)

Re: Review by NH Natural Heritage Bureau

NHB File ID: NH	IB19-2805 Town	a: Barrington	Location:	Tax Maps: Map 233 Lot 77 & Map 244
				Lots 1 2 1 4 1 5 and 1 6

Description: Construct a 100'x250' light industrial building with associate drainage, porous pavement, utilities, septic, etc. cc: Kim Tuttle

As requested, I have searched our database for records of rare species and exemplary natural communities, with the following results.

Comments: Contact NHB if there will be impacts to wetlands as a result of this project. If no wetland impacts are proposed, then NHB has no concerns about the proposal. Contact the NH Fish & Game Department to address wildlife concerns.

Plant species	State ¹	Federal	Notes
dwarf huckleberry (Gaylussacia bigeloviana)	т	-	The primary threats are changes to this species' peatland habitat, including changes to local hydrology, increased nutrient input from stormwater runoff, and sedimentation from nearby disturbance.
Vertebrate species	State ¹	Federal	Notes
Blanding's Turtle (Emydoidea blandingii)	Е	-	Contact the NH Fish & Game Dept (see below).

¹Codes: "E" = Endangered, "T" = Threatened, "SC" = Special Concern, "--" = an exemplary natural community, or a rare species tracked by NH Natural Heritage that has not yet been added to the official state list. An asterisk (*) indicates that the most recent report for that occurrence was more than 20 years ago.

Contact for all animal reviews: Kim Tuttle, NH F&G, (603) 271-6544.

A negative result (no record in our database) does not mean that a sensitive species is not present. Our data can only tell you of known occurrences, based on information gathered by qualified biologists and reported to our office. However, many areas have never been surveyed, or have only been surveyed for certain species. An on-site survey would provide better information on what species and communities are indeed present.

Department of Natural and Cultural Resources Division of Forests and Lands (603) 271-2214 fax: 271-6488

CONFIDENTIAL – NH Dept. of Environmental Services review

NHB19-2805

dwarf huckleberry (Gaylussacia bigeloviana)

Legal St	atus		Conser	vation Sta	atus
Federal: Not listed State: Listed Threatened				Apparen Imperile	tly secure but with cause for concern d due to rarity or vulnerability
Descript	ion at thi	s Location			
Conserva	tion Ranl	: Fair quality, condition and/	or landscap	e context	('C' on a scale of A-D).
Commen	ts on Ran	k: Single individual document	ted.		
Detailed	Descripti	on: 2007: One shrub with 7 ster 1962: Specimen collected.	ms, averagi	.ng 35 cm	in height.2002: Searched for but not found.
General A	Area:	2007: 27+ associated speci buckthorn).1962: Bog.	ies identifie	d. Invasiv	ve species: Frangula alnus (alder-
General (Comment	omments: 2002: Cate's Pond is behind private homes. The pond edge contains thick 6-7 ft high shi very hard to get to water edge. Next surveyors should enter the pond from north end, following the heads. Leads in Sentember (fruite heim)			
Managen Commen	nent ts:	Tonowing the brook. Look	in Septemb	er. (nuns-	-nan y).
Location	1				
Survey S Managed	ite Name l By:	Cate Pond			
County:	Straffo	rd top			
Size:	7.7 acı	es	Elevatio	on:	
Precision	i: Wi	thin (but not necessarily restricted	ed to) the a	rea indica	ted on the map.
Direction	ns: 20 fie the Ea	07: Go west on Rte. 9 from E. B. Id parking lot. Walk SE through pond from the north end, follow st Barrington, go west on Rte. 9,	arrington to woods to (ving the bro take right (Smoke. S Cates Pon ook.1962: on Smoke	St. Turn north on Smoke St. Park at ball d edge (43.23023N 71.02295W).2002: Enter In bog at north end of Cates Pond. From St, about 1 mile up road. Pond is on the left.
Dates do	cumente	d			
First repo	orted:	1962-06-25	Last rep	orted:	2007-09-12

Blanding's Turtle (Emydoidea blandingii)

Legal St	atus		Conserv	vation Sta	tus
Federal:Not listedState:Listed Endangered			Global: State:	Apparent Critically	ly secure but with cause for concern imperiled due to rarity or vulnerability
Descript	ion at this Lo	ocation			
Conserva Commen	ation Rank: its on Rank:	Not ranked			
Detailed General	Description: Area:	2000: Area 561: 1 turtle.			
General	Comments:	2000: Area 561: Shell fragme crossing.	nts were	found in w	woods adjacent to Young Road at stream
Manager Commen	nent its:	C			
Location	ı				
Survey S Managed	ite Name: S l By:	wains Lake			
County: Town(s):	Strafford Barrington				
Size:	1.9 acres		Elevatio	n:	
Precisior	n: Within	(but not necessarily restricted	to) the ar	ea indicate	ed on the map.
Direction	ns: 2000: .	Area 561: Stream crossing at Y	oung Ro	ad.	
Dates do	ocumented				
First repo	orted: 2	000-07-06	Last rep	orted:	2000-07-06

Blanding's Turtle (Emydoidea blandingii)

Legal Status	Conservation Status
Federal: Not listed	Global: Apparently secure but with cause for concern
State: Listed Endangered	State: Critically imperiled due to rarity or vulnerability
Description at this Location	
Conservation Bank: Not ranked	
Comments on Pank:	
Comments on Rank.	
Detailed Description: 2006: Area 11698: 1 adult se	en.
General Area: 2006: Area 11698: Sandy roa	ndside.
General Comments:	
Management	
Comments:	
Location	
Survey Site Name: Swains Lake	
Managed By:	
County: Stratford	
I own(s): Barrington	
Size: 7.7 acres	Elevation:
Precision: Within (but not necessarily restricted	to) the area indicated on the map.
Directions: 2006: Area 11698: Route 9 across fro	om Province Lane on road with sandy edges.
Dates documented	
First reported: 2006-05-18	Last reported: 2006-05-18

Blanding's Turtle (Emydoidea blandingii)

Legal Status	Conservation Status					
Federal: Not listed	Global: Apparently secure but with cause for concern					
State: Listed Endangered	State: Critically imperiled due to rarity or vulnerability					
Description at this Location						
Conservation Rank: Not ranked						
Comments on Rank:						
Detailed Description: 2010: Area 12755: 1 adult fem	ale observed injured on road.					
General Area: 2010: Area 12755: Crossing ro	ad next to pond.					
General Comments: 2010: Area 12755: Turtle was	sent to rehab after injury.					
Management						
Comments:						
Location						
Survey Site Name: Swains Lake						
Managed By: Goodwill						
County: Strafford						
Town(s): Barrington						
Size: 1.9 acres	Elevation:					
Precision: Within (but not necessarily restricted to) the area indicated on the map.						
Directions: 2010: Area 12755: Rte. 9 at Richardson Pond, Barrington.						
Dates documented						
First reported: 2010-07-19	Last reported: 2010-07-19					

Blanding's Turtle (Emydoidea blandingii)

Federal:Not listedGlobal:Apparently secure but with cause for concerState:Listed EndangeredState:Critically imperiled due to rarity or vulnerable	n ility			
Description at this Location				
Conservation Rank: Not ranked				
Comments on Rank:				
Detailed Description: 2012: Area 13046: 2 adult females observed, nesting.				
General Area: 2012: Area 13046: Sand piles in town maintenance area.				
General Comments: 2012: Area 13046: "The piles have been there for many years. It is dirt/sand with c asphalt and rocks. Some of the hills have a good amount of growth on them. I belied dumped there by the road maintenance people but I am not sure. The hills are not in year after year, and there are makeshift paths for driving trucks up and around the h turtle nest is destroyed. The town must have dug up the area where the nest was and other areas at the site."	nunks of ve it is lentical ills. The some			
Management				
Comments:				
Location				
Survey Site Name:Scruton PondManaged By:Town of Barrington Land				
County: Strafford				
Town(s): Barrington				
Size: 1.9 acres Elevation:				
Precision: Within (but not necessarily restricted to) the area indicated on the map.				
Directions: 2012: Area 13046: From Rte. 9 in Barrington, turn onto Smoke Street (across from Barrington Public Safety Building) and go past the town transfer station. BYA baseball fields are after the transfer station on the right. Turn into the parking lot and follow the driveway to the right all the way to the back. The T-ball fields will be on your left and the dirt piles on your right.				
Dates documented				
First reported:2012-06-07Last reported:2012-06-07				

Blanding's Turtle (Emydoidea blandingii)

Legal Status	Conservation Status
Federal: Not listed	Global: Apparently secure but with cause for concern
State: Listed Endangered	State: Critically imperiled due to farity or vulnerability
Description at this Location	
Conservation Rank: Not ranked	
Comments on Rank:	
Detailed Description: 2013: Area 13421: 1 adult of	bserved, sex unknown.
General Area: 2013: Area 13421: Roadsid	e, coniferous forest.
General Comments:	
Management	
Comments:	
Location	
Survey Site Name: Swains Lake	
Managed By: Goodwill	
County: Strafford	
Town(s): Barrington	
Size: .4 acres	Elevation:
Precision: Within (but not necessarily restricted	ed to) the area indicated on the map.
Directions: 2013: Area 13421: Route 9, Barring	gton at the parking entrance to the Goodwill Conservation Area.
Dates documented	
First reported: 2013-06-08	Last reported: 2013-06-08

Blanding's Turtle (Emydoidea blandingii)

Legal Status	Conservation Status
Federal: Not listed State: Listed Endangered	Global:Apparently secure but with cause for concernState:Critically imperiled due to rarity or vulnerability
Description at this Location	
Conservation Rank: Not ranked Comments on Rank:	
Detailed Description: 2015: Area 14043: 1 adult fer General Area: 2015: Area 14043: Sandy resi General Comments: Management Comments:	nale observed, laying eggs. idential driveway. Surrounded by wetlands, pond, and forest.
Location	
Survey Site Name: Scruton Pond Managed By:	
County:StraffordTown(s):BarringtonSize:.4 acres	Elevation:
Precision: Within (but not necessarily restricted	to) the area indicated on the map.
Directions: 2015: Area 14043: 16 Chrissy Circle,	Barrington.
Dates documented	
First reported: 2015-06-18	Last reported: 2015-06-18

Blanding's Turtle (Emydoidea blandingii)

Legal Status	Conservation Status
Federal: Not listed State: Listed Endangered	Global: Apparently secure but with cause for concern State: Critically imperiled due to rarity or vulnerability
Description at this Location	
Conservation Rank: Not ranked Comments on Rank:	
Detailed Description: 2015: Area 14088: 1 adult fer General Area: 2015: Area 14088: Roadside General Comments: Management Comments:	nale observed. near construction zone.
Location	
Survey Site Name: Scruton Pond Managed By:	
Town(s): Barrington	
Size: 1.9 acres	Elevation:
Precision: Within (but not necessarily restricted	to) the area indicated on the map.
Directions: 2015: Area 14088: Smoke Street, Bar	rrington.
Dates documented	
First reported: 2015-06-09	Last reported: 2015-06-09

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Strafford County, New Hampshire

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Strafford County, New Hampshire	13
GIB—Gloucester fine sandy loam, 3 to 8 percent slopes	13
HaB—Hinckley loamy sand, 3 to 8 percent slopes	14
HaC—Hinckley loamy sand, 8 to 15 percent slopes	15
HbE—Hinckley loamy sand, 15 to 60 percent slopes	17
HgB—Hollis-Gloucester very rocky fine sandy loams, 3 to 8 percent	
slopes	19
LrB—Leicester-Ridgebury fine sandy loams, 3 to 8 percent slopes,	
very stony	20
Mp—Freetown and Swansea mucky peats, 0 to 2 percent slopes	23
Sb—Saugatuck loamy sand	25
References	27

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

MAP LEGEND)	MAP INFORMATION		
Area of In	terest (AOI)	39	Spoil Area	The soil surveys that comprise your AOI were mapped at		
	Area of Interest (AOI)	۵	Stony Spot	1:20,000.		
Soils		0	Very Stony Spot	Warning: Soil Man may not be valid at this scale		
	Soil Map Unit Polygons	1	Wet Spot	Warning. Ool wap may not be valid at this seale.		
~	Soil Map Unit Lines	0 A	Other	Enlargement of maps beyond the scale of mapping can cause		
	Soil Map Unit Points	-	Special Line Features	line placement. The maps do not show the small areas of		
Special	Point Features	Water For	aturos	contrasting soils that could have been shown at a more detailed		
ၜ	Blowout		Streams and Canals	scale.		
\boxtimes	Borrow Pit	Transpor	tation	Please rely on the bar scale on each man sheet for man		
×	Clay Spot	+++	Rails	measurements.		
\diamond	Closed Depression	~	Interstate Highways			
X	Gravel Pit	~	US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:		
00	Gravelly Spot		Major Roads	Coordinate System: Web Mercator (EPSG:3857)		
0	Landfill		Local Roads	Maps from the Web Soil Survey are based on the Web Mercatr		
A.	Lava Flow	Backgrou	ind	projection, which preserves direction and shape but distorts		
عاد	Marsh or swamp	Duckgrou	Aerial Photography	distance and area. A projection that preserves area, such as th Albers equal-area conic projection, should be used if more		
-	Mine or Quarry			accurate calculations of distance or area are required.		
6	Miscellaneous Water			This product is generated from the USDA-NRCS certified data		
õ	Perennial Water			of the version date(s) listed below.		
~	Rock Outcrop					
Ň	Saline Spot			Soll Survey Area: Strafford County, New Hampshire Survey Area Data: Version 18, Sep 5, 2018		
T	Sandy Spot					
°°0				Soil map units are labeled (as space allows) for map scales		
-	Severely Eroded Spot					
0	Sinkhole			Date(s) aerial images were photographed: Aug 28, 2015—Ma		
≫	Slide or Slip			10, 2017		
Ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.		

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
GIB	Gloucester fine sandy loam, 3 to 8 percent slopes	1.7	3.1%
НаВ	Hinckley loamy sand, 3 to 8 percent slopes	15.3	28.5%
НаС	Hinckley loamy sand, 8 to 15 percent slopes	9.6	17.9%
HbE	Hinckley loamy sand, 15 to 60 percent slopes	15.9	29.8%
HgB	Hollis-Gloucester very rocky fine sandy loams, 3 to 8 percent slopes	1.7	3.1%
LrB	Leicester-Ridgebury fine sandy loams, 3 to 8 percent slopes, very stony	4.8	9.0%
Мр	Freetown and Swansea mucky peats, 0 to 2 percent slopes	2.7	5.1%
Sb	Saugatuck loamy sand	1.9	3.5%
Totals for Area of Interest		53.5	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas

are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Strafford County, New Hampshire

GIB—Gloucester fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9d73 Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Gloucester and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Gloucester

Setting

Parent material: Till

Typical profile

H1 - 0 to 14 inches: fine sandy loam
H2 - 14 to 28 inches: very gravelly loamy sand
H3 - 28 to 40 inches: very gravelly coarse sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 3.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Acton

Percent of map unit: 5 percent Hydric soil rating: No

Hollis

Percent of map unit: 5 percent Hydric soil rating: No

Not named pan

Percent of map unit: 5 percent Hydric soil rating: No

HaB—Hinckley loamy sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2svm8 Elevation: 0 to 1,430 feet Mean annual precipitation: 36 to 53 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 250 days Farmland classification: Not prime farmland

Map Unit Composition

Hinckley and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hinckley

Setting

Landform: Kames, outwash terraces, outwash deltas, outwash plains, eskers, moraines, kame terraces

Landform position (two-dimensional): Summit, backslope, footslope, shoulder Landform position (three-dimensional): Nose slope, side slope, base slope, crest, riser, tread

Down-slope shape: Linear, convex, concave

Across-slope shape: Convex, linear, concave

Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 8 inches: loamy sand

Bw1 - 8 to 11 inches: gravelly loamy sand

Bw2 - 11 to 16 inches: gravelly loamy sand

BC - 16 to 19 inches: very gravelly loamy sand

C - 19 to 65 inches: very gravelly sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Very low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Windsor

Percent of map unit: 8 percent

Landform: Kames, eskers, moraines, outwash terraces, outwash deltas, kame terraces, outwash plains

Landform position (two-dimensional): Summit, shoulder, backslope, footslope Landform position (three-dimensional): Nose slope, side slope, base slope, crest, riser, tread Down-slope shape: Linear, convex, concave

Across-slope shape: Convex, linear, concave

Hydric soil rating: No

Sudbury

Percent of map unit: 5 percent
Landform: Outwash terraces, outwash deltas, kame terraces, outwash plains, moraines
Landform position (two-dimensional): Backslope, footslope
Landform position (three-dimensional): Side slope, base slope, head slope, tread
Down-slope shape: Concave, linear
Across-slope shape: Linear, concave
Hydric soil rating: No

Agawam

Percent of map unit: 2 percent

Landform: Kames, eskers, moraines, outwash terraces, outwash deltas, kame terraces, outwash plains

Landform position (two-dimensional): Summit, shoulder, backslope, footslope Landform position (three-dimensional): Nose slope, side slope, base slope, crest,

riser, tread

Down-slope shape: Linear, convex, concave *Across-slope shape:* Convex, linear, concave

Hydric soil rating: No

HaC—Hinckley loamy sand, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2svm9 Elevation: 0 to 1,480 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Hinckley and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Hinckley

Setting

Landform: Kames, eskers, moraines, outwash terraces, outwash deltas, kame terraces, outwash plains

Landform position (two-dimensional): Shoulder, toeslope, footslope, backslope Landform position (three-dimensional): Nose slope, side slope, crest, head slope, riser

Down-slope shape: Linear, concave, convex

Across-slope shape: Convex, linear, concave

Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material *A - 1 to 8 inches:* loamy sand *Bw1 - 8 to 11 inches:* gravelly loamy sand *Bw2 - 11 to 16 inches:* gravelly loamy sand *BC - 16 to 19 inches:* very gravelly loamy sand *C - 19 to 65 inches:* very gravelly sand

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Merrimac

Percent of map unit: 5 percent

Landform: Kames, eskers, moraines, outwash terraces, outwash plains Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Side slope, crest, head slope, nose slope, riser Down-slope shape: Convex Across-slope shape: Convex

Hydric soil rating: No

Windsor

Percent of map unit: 5 percent

Landform: Kames, eskers, moraines, kame terraces, outwash plains, outwash terraces, outwash deltas

Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Nose slope, side slope, crest, head slope, riser

Down-slope shape: Linear, concave, convex *Across-slope shape:* Convex, linear, concave

Hydric soil rating: No

Sudbury

Percent of map unit: 5 percent

Landform: Kame terraces, outwash plains, moraines, outwash deltas, outwash terraces

Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Base slope, tread Down-slope shape: Concave, linear Across-slope shape: Linear, concave Hydric soil rating: No

HbE—Hinckley loamy sand, 15 to 60 percent slopes

Map Unit Setting

National map unit symbol: 2svmh Elevation: 0 to 890 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Hinckley and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hinckley

Setting

Landform: Eskers, moraines, outwash terraces, outwash deltas, kame terraces, outwash plains, kames

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Crest, nose slope, side slope, head slope, riser

Down-slope shape: Linear, convex, concave

Across-slope shape: Convex, linear, concave

Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 8 inches: loamy sand

Bw1 - 8 to 11 inches: gravelly loamy sand

Bw2 - 11 to 16 inches: gravelly loamy sand

BC - 16 to 19 inches: very gravelly loamy sand

C - 19 to 65 inches: very gravelly sand

Properties and qualities

Slope: 15 to 60 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Windsor

Percent of map unit: 10 percent
Landform: Moraines, outwash terraces, outwash plains, outwash deltas, kame terraces, kames, eskers
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope, crest, nose slope, head slope, riser
Down-slope shape: Convex, linear, concave
Across-slope shape: Linear, convex, concave
Hydric soil rating: No

Merrimac

Percent of map unit: 5 percent
Landform: Eskers, moraines, outwash terraces, outwash plains, kames
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope, head slope, crest, nose slope, riser
Down-slope shape: Concave, linear, convex
Across-slope shape: Linear, convex, concave
Hydric soil rating: No

HgB—Hollis-Gloucester very rocky fine sandy loams, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9d7v Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Hollis and similar soils: 50 percent Gloucester and similar soils: 30 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hollis

Setting

Parent material: Till

Typical profile

H1 - 0 to 14 inches: very stony fine sandy loam *H2 - 14 to 18 inches:* bedrock

Properties and qualities

Slope: 3 to 8 percent
Percent of area covered with surface fragments: 1.6 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Natural drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Very low (about 2.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: D Hydric soil rating: No

Description of Gloucester

Setting

Parent material: Till

Typical profile

H1 - 0 to 14 inches: very stony fine sandy loam

- H2 14 to 28 inches: very gravelly loamy sand
- H3 28 to 40 inches: very gravelly coarse sand

Properties and qualities

Slope: 3 to 8 percent
Percent of area covered with surface fragments: 1.6 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 3.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Rock outcrop

Percent of map unit: 10 percent *Hydric soil rating:* No

Not named

Percent of map unit: 5 percent Hydric soil rating: No

Acton

Percent of map unit: 3 percent Hydric soil rating: No

Leicester

Percent of map unit: 2 percent Landform: Depressions Hydric soil rating: Yes

LrB—Leicester-Ridgebury fine sandy loams, 3 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: 2xffs Elevation: 100 to 1,160 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Leicester, very stony, and similar soils: 60 percent Ridgebury, very stony, and similar soils: 30 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Leicester, Very Stony

Setting

Landform: Ground moraines, drainageways, hills, depressions Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Base slope Down-slope shape: Concave, linear Across-slope shape: Concave Parent material: Coarse-loamy melt-out till derived from gneiss, granite, and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 7 inches: fine sandy loam

Bg - 7 to 18 inches: fine sandy loam

BC - 18 to 24 inches: fine sandy loam

C1 - 24 to 39 inches: gravelly fine sandy loam

C2 - 39 to 65 inches: gravelly fine sandy loam

Properties and qualities

Slope: 3 to 8 percent
Percent of area covered with surface fragments: 1.6 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: High (about 9.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: B/D Hydric soil rating: Yes

Description of Ridgebury, Very Stony

Setting

Landform: Drumlins, depressions, drainageways, hills, ground moraines Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Base slope, head slope Down-slope shape: Concave Across-slope shape: Concave *Parent material:* Coarse-loamy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 6 inches: fine sandy loam

Bw - 6 to 10 inches: sandy loam

Bg - 10 to 19 inches: gravelly sandy loam

Cd - 19 to 66 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent
Percent of area covered with surface fragments: 1.6 percent
Depth to restrictive feature: 15 to 35 inches to densic material
Natural drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: D Hydric soil rating: Yes

Minor Components

Woodbridge, very stony

Percent of map unit: 5 percent Landform: Ground moraines, drumlins, hills Landform position (two-dimensional): Summit, backslope, footslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Walpole

Percent of map unit: 3 percent Landform: Outwash terraces, drainageways, depressions Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Whitman, very stony

Percent of map unit: 2 percent Landform: Hills, ground moraines, drumlins, depressions, drainageways Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Mp—Freetown and Swansea mucky peats, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2w68w Elevation: 10 to 940 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Freetown and similar soils: 50 percent *Swansea and similar soils:* 30 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Freetown

Setting

Landform: Marshes, kettles, depressions, swamps, bogs Down-slope shape: Concave Across-slope shape: Concave Parent material: Moderately decomposed organic material

Typical profile

Oe1 - 0 to 2 inches: mucky peat Oe2 - 2 to 79 inches: mucky peat

Properties and qualities

Slope: 0 to 2 percent
Percent of area covered with surface fragments: 0.0 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water storage in profile: Very high (about 20.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydrologic Soil Group: B/D Hydric soil rating: Yes

Description of Swansea

Setting

Landform: Kettles, swamps, bogs, depressions, marshes Down-slope shape: Concave Across-slope shape: Concave Parent material: Moderately decomposed organic material over sandy and gravelly glaciofluvial deposits

Typical profile

Oe1 - 0 to 12 inches: mucky peat *Oe2 - 12 to 25 inches:* mucky peat *Cg - 25 to 79 inches:* sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water storage in profile: High (about 11.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydrologic Soil Group: B/D Hydric soil rating: Yes

Minor Components

Natchaug

Percent of map unit: 10 percent Landform: Depressions, depressions, depressions Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Scarboro

Percent of map unit: 4 percent Landform: Depressions, outwash deltas, drainageways, outwash terraces Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Whitman

Percent of map unit: 4 percent Landform: Hills, depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes
Maybid

Percent of map unit: 2 percent Landform: Marine terraces Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Sb—Saugatuck loamy sand

Map Unit Setting

National map unit symbol: 9d8r Elevation: 300 to 1,000 feet Mean annual precipitation: 27 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 125 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Saugatuck and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Saugatuck

Setting

Landform: Outwash terraces Parent material: Outwash

Typical profile

H1 - 0 to 4 inches: loamy sand H2 - 4 to 7 inches: sand H3 - 7 to 26 inches: loamy sand H4 - 26 to 42 inches: sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 10 to 16 inches to undefined
Natural drainage class: Poorly drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Very low (about 1.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4w Hydrologic Soil Group: B/D Hydric soil rating: Yes

Minor Components

Not named wet

Percent of map unit: 15 percent Landform: Outwash terraces Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

bing maps

Notes

Project: TurboCAM International Job#: 19-020 Location: Barrington, NH Date: 05-06-19 Scale: 1"=2000'

1.18	ac	Area of HSG A soil that was replaced by impervious cover	0.40"
-	ac	Area of HSG B soil that was replaced by impervious cover	0.25"
0.88	ac	Area of HSG C soil that was replaced by impervious cover	0.10"
-	ac	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
0.27	inches	Rd = weighted groundwater recharge depth	
0.5603	ac-in	GRV = AI * Rd	
2,034	cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04):

Per HydroCAD calculations, the following volumes were recharged:				
Storm event:	Volume:			
2-year Storm	13,591 cf (3.744 ac-in)			

All storm events greater than a 2-year storm exceed the 2,034 cubic feet of groundwater recharge.

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Bioswale "A" (Node PP108)

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable

Yes	Have you reviewed the restrictions on unlined systems outlined in Env-V	Vq 1508.07(a)?
0.64 ac	A = Area draining to the practice	
0.30 ac	A_{I} = Impervious area draining to the practice	
0.48 decimal	I = percent impervious area draining to the practice, in decimal form	
0.48 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.30 ac-in	WQV= 1" x Rv x A	
1,105 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
276 cf	25% x WQV (check calc for sediment forebay volume)	
828 cf	75% x WQV (check calc for surface sand filter volume)	
Stone Forebay	Method of Pretreatment? (not required for clean or roof runoff)	
378 cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$
920 sf	A_{SA} = surface area of the practice	
N/A iph	$Ksat_{DESIGN} = design infiltration rate^{1}$	
Yes Yes/No	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been	provided?
- hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
212.80 feet	E_{FC} = elevation of the bottom of the filter course material ²	
211.80 feet	E_{UD} = invert elevation of the underdrain (UD), if applicable	
217.00 feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation	n of the test pit)
215.42 feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation	on of the test pit)
1.00 feet	$D_{FC \text{ to UD}}$ = depth to UD from the bottom of the filter course	← ≥ 1'
(2.62) feet	$D_{FC \text{ to } ROCK}$ = depth to bedrock from the bottom of the filter course	← ≥ 1'
(4.20) feet	$D_{FC \text{ to SHWT}} = \text{depth to SHWT from the bottom of the filter course}$	← ≥ 1'
216.43 ft	Peak elevation of the 50-year storm event (infiltration can be used in a	analysis)
217.80 ft	Elevation of the top of the practice	
YES	50 peak elevation \leq Elevation of the top of the practice	← yes
If a surface sand filt	ter or underground sand filter is proposed:	
YES ac	Drainage Area check.	← < 10 ac
cf	$V = volume of storage^{3}$ (attach a stage-storage table)	$\leftarrow \geq 75\%$ WQV
inches	$D_{FC} = $ filter course thickness	← 18", or 24" if within GPA
Sheet	Note what sheet in the plan set contains the filter course specification	
Yes/No	Access grate provided?	← yes

If a bioretention area is proposed:

YES ac	Drainage Area no larger than 5 ac?	← yes
3,982 cf	V = volume of storage ³ (attach a stage-storage table)	$\leftarrow \geq WQV$
24.0 inches	D_{FC} = filter course thickness	← 18", or 24" if within GPA
Sheet D5	Note what sheet in the plan set contains the filter course specification	
3.0 :1	Pond side slopes	← <u>>3</u> :1
Sheet -	Note what sheet in the plan set contains the planting plans and surface	cover
If porous pavement i	s proposed:	
If porous pavement i	s proposed: Type of pavement proposed (concrete? Asphalt? Pavers? Etc)]
If porous pavement i acres	s proposed: _ Type of pavement proposed (concrete? Asphalt? Pavers? Etc) A _{SA} = surface area of the pervious pavement	
If porous pavement i acres :1	s proposed: Type of pavement proposed (concrete? Asphalt? Pavers? Etc) A _{SA} = surface area of the pervious pavement ratio of the contributing area to the pervious surface area	← ≤ 5:1
If porous pavement i acres :1 inches	s proposed:Type of pavement proposed (concrete? Asphalt? Pavers? Etc) A_{SA} = surface area of the pervious pavementratio of the contributing area to the pervious surface area D_{FC} = filter course thickness	 ← ≤ 5:1 ← 12", or 18" if within GPA

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

2019

HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
211.55	920	0	216.85	3,120	3,982
211.65	920	28	216.95	3,120	3,982
211.75	920	55	217.05	3,120	3,982
211.85	920	83	217.15	3,120	3,982
211.95	920	110	217.25	3,120	3,982
212.05	920	138	217.35	3,120	3,982
212.15	920	166	217.45	3,120	3,982
212.25	920	193	217.55	3,120	3,982
212.35	920	221	217.65	3,120	3,982
212.45	920	248	217.75	3,120	3,982
212.55	920	276			
212.65	920	304			
212.75	920	331			
212.85	920	359			
212.95	920	386			
213.05	920	414			
213.15	920	442			
213.25	920	469			
213.35	920	497			
213.45	920	524			
213.55	920	552			
213.65	920	580			
213.75	920	607			
213.85	920	635			
213.95	920	662			
214.05	920	690			
214.15	920	/18			
214.25	920	/45			
214.35	920	//3			
214.45	920	800			
214.55	920	828			
214.65	920	008			
214.75	920	883			
214.00	1,070	944			
214.90	1,931	1,042			
215.05	1,991	1,140			
215.15	2,002	1,200			
215.25	2,112	1,372			
215.55	2,173	1,485			
215.45	2,233	1,023			
215.55	2,234	1,757			
215.05	2,004	2 044			
215.85	2,410	2,044			
215.95	2,546	2,356			
216.05	2 614	2,500			
216 15	2 681	2 695			
216.25	2.749	2.874			
216.35	2.816	3.060			
216.45	2.884	3.253			
216.55	2,951	3,453			
216.65	3,019	3,660			
216.75	3,086	3,873			
		•	l		

Stage-Area-Storage for Pond PP108: Bioswale "A"

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.06)

Rev. 2/11/2020	Er	iter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analy	sis, if applicable
		Have you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.06(b)?	
1.25 ac		A = Area draining to the practice1	•
0.89 ac	2	$A_1 = $ Impervious area draining to the practice	
0.71 de	ecimal	I = percent impervious area draining to the practice, in decimal form	
0.69 un	nitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.86 ac	c-in	WQV= 1" x Rv x A	
3,135 cf	f	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
784 cf	f	25% x WQV (check calc for sediment forebay volume)	
2,351 cf	f	75% x WQV (check calc for surface sand filter volume)	
catch basin prefilte	ers	Method of Pretreatment? (not required for clean or roof runoff)	
cf	f	V_{SED} = sediment forebay volume, if used for pretreatment	← ≥ 25%WQV
900 sf	f	A_{SA} = surface area of the practice	
3.00 ip	h	$I_{DESIGN} = design infiltration rate^{2}$	
Yes Yes	es/No	If I _{DESIGN} is < 0.50 iph, has an underdrain been provided?	
13.9 hc	ours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
226.00 fe	eet	E_{FC} = elevation of the bottom of the filter course material	
fe	eet	E_{UD} = invert elevation of the underdrain (UD), if applicable	
222.75 fe	eet	E_{BTM} = elevation of the bottom of the practice (i.e., bottom of the stone reservoir).	
fe	eet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)	
fe	eet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)	
fe	et	$D_{FC \text{ to UD}} = \text{depth to UD from the bottom of the filter course}^3$	← ≥ 1'
fe	et	$D_{ray, page} = depth to bedrock from the bottom of the filter course3$	← > 1'
fo	ot	$D_{FC TO ROCK}$ depin to bedrock from the bottom of the filter course ³	<u> </u>
		$D_{FC to SHWT}$ – depth to SHWT from the bottom of the meetical	$\begin{pmatrix} 2 \\ - 2 \end{pmatrix}$
220.66 D	eet	$D_{BTM to SHWT}$ = depth to SHW1 from the bottom of the practice	$\mathbf{r} \geq 2$
229.66 ft		Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
230.00 It		Elevation of the top of the practice	
YES		10 peak elevation < Elevation of the top of the practice	← ves
YES If a surface sand filter	r is pro	10 peak elevation \leq Elevation of the top of the practice	← yes
YES If a surface sand filter	r is pro	10 peak elevation ≤ Elevation of the top of the practice posed: Drainage Area check	← yes
YES If a surface sand filter ac	r is pro c f	10 peak elevation ≤ Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table)	 ✓ yes ✓ < 10 ac ✓ > 75%/WOV
YES If a surface sand filter ac cf in	r is pro c f oches	10 peak elevation ≤ Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4, 5} (attach a stage-storage table) Droe = filter course thickness	 ← yes ← < 10 ac ← ≥ 75%WQV ← 18"
YES If a surface sand filter ac cf in Sheet	r is pro c f nches	10 peak elevation \leq Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4, 5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification	 ← yes ← < 10 ac ← ≥ 75%WQV ← 18"
YES If a surface sand filter cf cf in Sheet Y	r is pro c f nches fes/No	10 peak elevation ≤ Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4, 5} (attach a stage-storage table) D_{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided?	
YES If a surface sand filter cf cf in Sheet Ye	r is pro c f aches fes/No	10 peak elevation ≤ Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D_{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter?	 ← yes ← < 10 ac ← ≥ 75%WQV ← 18" ← yes
YES If a surface sand filter cf cf in Sheet Ye If an underground san	r is pro c f aches 'es/No nd filte	10 peak elevation \leq Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? r is proposed:	 ← yes ← < 10 ac ← ≥ 75%WQV ← 18" ← yes
YES If a surface sand filter ac cf in Sheet Ye If an underground san ac	r is pro	10 peak elevation \leq Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? r is proposed: Drainage Area check.	← yes ← < 10 ac ← ≥ 75%WQV ← 18" ← yes ← < 10 ac
YES If a surface sand filter ac cf in Sheet Yo If an underground san ac cf	r is pro c f icches es/No nd filte	10 peak elevation \leq Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? r is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table)	
YES If a surface sand filter cf cf sheet Ye If an underground san cf	r is pro	10 peak elevation \leq Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D_{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? r is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D_{FC} = filter course thickness	
YES If a surface sand filter cf cf filter f	r is pro	10 peak elevation \leq Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D_{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? r is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D_{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification	
YES If a surface sand filter ac cf in Sheet If an underground san ac cf in Sheet Ye Ye	r is pro	10 peak elevation \leq Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D_{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? r is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D_{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided?	<pre></pre>
YES If a surface sand filter ac cf in Sheet Ye If an underground san cf in Sheet Ye If an inderground san cf in Sheet Ye If a bioretention area	r is pro	10 peak elevation \leq Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D_{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? r is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D_{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D_{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? mosed:	<pre></pre>
YES If a surface sand filter f f f f f f f f f f f f f f f f f f	r is pro	10 peak elevation ≤ Elevation of the top of the practice posed: Drainage Area check. $V = volume of storage^{4.5}$ (attach a stage-storage table) $D_{FC} = filter course thickness$ Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? r is proposed: Drainage Area check. $V = volume of storage^{4.5}$ (attach a stage-storage table) $D_{FC} = filter course thickness$ Note what sheet in the plan set contains the filter course specification Access grate provided? Does grate provided? Drainage Area no larger than 5 ac?	<pre></pre>
YES If a surface sand filter ac cf in Sheet Ye If an underground san cf in Sheet Ye If aboretention area YES 2,450	r is pro	10 peak elevation ≤ Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D_{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? r is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D_{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table)	<pre></pre>
YES If a surface sand filter ac cf in Sheet Ya If an underground san cf in Sheet Ya If an underground san cf Sheet Ya If abioretention area YES 24.0	r is pro	10 peak elevation ≤ Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D_{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? r is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D_{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? mote what sheet in the plan set contains the filter course specification Access grate provided? mote what sheet in the plan set contains the filter course specification Access grate provided? mote what sheet in the plan set contains the filter course specification Access grate provided? mote what sheet in the plan set contains the filter course specification Access grate provided? mote biology = filter course thickness N = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness	<pre></pre>
YES If a surface sand filter f f f f f f f f f f f f f f f f f f	r is pro	10 peak elevation ≤ Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? r is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Dosed: Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification	<pre></pre>
YES If a surface sand filter f f f f f f f f f f f f f	r is pro	10 peak elevation ≤ Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? r is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Downed: Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Dowsed: Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Pond side slopes	
YES If a surface sand filter f f f f f f f f f f f f f f f f f f	r is pro	10 peak elevation ≤ Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? r is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Doesed: Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Pond side slopes Note what sheet in the plan set contains the filter course specification	
YES If a surface sand filter ac cf in Sheet Ya If an underground san cf in Sheet Ya If an underground san cf in Sheet YES ac 24,00 in Sheet 3.0 :1 Sheet If porous pavement is	r is pro c f f ccches ies/No f f cches cs/No es/No f f cches D1 cches D1 cches D2 p proport	10 peak elevation ≤ Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? r is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? D rainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? D rainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Pond side slopes Note what sheet in the plan set contains the filter course specification Pond side slopes Note what sheet in the plan set contains the planting plans and surface cover sed:	$ \begin{array}{c} \leftarrow \text{ yes} \\ \hline \leftarrow < 10 \text{ ac} \\ \leftarrow \ge 75\%WQV \\ \leftarrow 18'' \\ \leftarrow \text{ yes} \\ \hline \leftarrow < 10 \text{ ac} \\ \leftarrow \ge 75\%WQV \\ \leftarrow 24'' \\ \leftarrow \text{ yes} \\ \hline \leftarrow \text{ yes} \\ \leftarrow \text{ yes} \\ \leftarrow = \ge WQV \\ \leftarrow 18'' \\ \leftarrow \ge 2:1 \end{array} $
YES If a surface sand filter ac cf in Sheet Ya If an underground san ac cf in Sheet Ya If an underground san cf in Sheet Yes ac 24.0 in Sheet 3.0 :1 Sheet If porous pavement is	r is pro c f f cches es/No f f cches es/No is prop f cches D1 cches D2 5 proport	10 peak elevation ≤ Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? r is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Dosed: Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Pond side slopes Note what sheet in the plan set contains the filter course specification Pond side slopes Note what sheet in the plan set contains the planting plans and surface cover sed: Type of pavement proposed (concrete? Asphalt? Pavers? Etc)	$ \begin{array}{c} \leftarrow \text{ yes} \\ \hline \leftarrow < 10 \text{ ac} \\ \leftarrow \ge 75\%WQV \\ \leftarrow 18'' \\ \leftarrow \text{ yes} \\ \hline \leftarrow < 10 \text{ ac} \\ \leftarrow \ge 75\%WQV \\ \leftarrow 24'' \\ \leftarrow \text{ yes} \\ \hline \leftarrow \text{ yes} \\ \leftarrow \text{ yes} \\ \leftarrow \text{ yes} \\ \leftarrow \text{ 24''} \\ \leftarrow $
YES If a surface sand filter ac cf in Sheet Ye If an underground san ac cf in Sheet Ye If a bioretention area YES ac 2,450 cf 24.0 in Sheet 3.0 i1 Sheet If porous pavement is ac	r is pro	10 peak elevation ≤ Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? r is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Destel: Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Pond side slopes Note what sheet in the plan set contains the filter course specification Pond side slopes Note what sheet in the plan set contains the planting plans and surface cover sed: Type of pavement proposed (concrete? Asphalt? Pavers? Etc) A _{SA} = surface area of the pervious pavement	
YES If a surface sand filter ac cf in Sheet Ye If an underground san ac cf in Sheet Ye If a bioretention area YES ac 2,450 cf 24.0 in Sheet If porous pavement is ac c in Sheet in Shee	r is pro	10 peak elevation ≤ Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? r is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Dosed: Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Pond side slopes Note what sheet in the plan set contains the filter course specification Pond side slopes Note what sheet in the plan set contains the planting plans and surface cover sed: Type of pavement proposed (concrete? Asphalt? Pavers? Etc) A _{SA} = surface area of the pervious pavement ratio of the contributing area to the pervious surface area	
YES If a surface sand filter ac cf Growthead sand filter Yei If an underground sand cf Growthead sand filter Yei If an inderground sand YES ac 2,450 cf 2,450 cf 2,450 cf 2,450 cf 3,0 il Sheet If porous pavement is Comparison ac cite ac ci	r is pro c c c c c c c c c c c c c c c c c c c	10 peak elevation ≤ Elevation of the top of the practice posed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? r is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Doesed: Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Pond side slopes Note what sheet in the plan set contains the filter course specification Pond side slopes Note what sheet in the plan set contains the planting plans and surface cover sed: Type of pavement proposed (concrete? Asphalt? Pavers? Etc) A _{SA} = surface area of the pervious pavement ratio of the contributing area to the pervious surface area D _{FC} = filter course thickness	

1. If the practice is a tree box filter, the drainage area shall be < 0.1 acre

2. Rate of the limiting layer (either the filter course or the underlying soil). See Vol. 2 of the NH Stormwater Manual, Ch. 2-4, for guidance on determining the infiltration rate.

3. If not within a GPA or WSIPA: SHWT/Bedrock must be at least 1 foot below the filter course material (or an underdrain must drain the SHWT to at least one foot below the filter course material). If within a GPA or WSIPA: SHWT must be at least two feet below the bottom of the practice OR the filter course material must be at least twice as thick as required and the SHWT must be at least one foot below the filter course material.

4. Volume without depending on infiltration. The storage above the filter media shall not include the volume above the outlet structure, if any.

5. The volume includes the storage above the filter but below the invert of the outlet structure (if any), the filter media voids, and the pretreatment area.

Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
226.00	0	228.65	999
226.05	6	228.70	1,070
226.10	13	228.75	1,142
226.15	19	228.80	1,216
226.20	26	228.85	1,292
226.25	32	228.90	1,370
226.30	38	228.95	1,449
226.35	45	229.00	1,531
226.40	51	229.05	1,614
226.45	58	229.10	1,700
226.50	64 70	229.15	1,787
220.55	70	229.20	1,870
220.00	11	229.20	1,907
220.00	00	229.30	2,000
220.70	90	229.35	2,104
226.75	102	229.40	2,231
226.85	102	229.50	2,040
226.00	100	229.55	2,400
226.00	122	229.60	2,002
227.00	128	229.65	2,762
227.05	134	229.70	2.870
227.10	141	229.75	2.979
227.15	147	229.80	3,091
227.20	154	229.85	3,204
227.25	160	229.90	3,320
227.30	166	229.95	3,437
227.35	173	230.00	3,556
227.40	179		
227.45	186		
227.50	192		
227.55	198		
227.60	205		
227.65	211		
227.70	218		
227.73	224		
227.00	230		
227.00	237		
227.90	243		
227.95	256		
228.00	302		
228.00	350		
228.15	399		
228.20	451		
228.25	504		
228.30	560		
228.35	617		
228.40	676		
228.45	737		
228.50	800		
228.55	864		
228.60	931		

Stage-Area-Storage for Pond BR1: Bioswale-ISR 1 (CB5)

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.06)

Rev. 2/11/2020	Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analyst	sis, if applicable
	Have you reviewed the restrictions on unlined systems outlined in Env-Wa 1508.06(b)?	
1.23 ac	A = Area draining to the practice1	•
1.25 ac	$A_1 = $ Impervious area draining to the practice	
0.89 decima	I = percent impervious area draining to the practice in decimal form	
0.85 unitles	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
1 04 ac-in	$WOV = 1^{\circ} x Ry x A$	
3.784 cf	WOV conversion (ac-in x 43.560 sf/ac x 1ft/12")	
946 cf	25% x WOV (check calc for sediment forebay volume)	
2,838 cf	75% x WQV (check calc for surface sand filter volume)	
catch basin prefilters	Method of Pretreatment? (not required for clean or roof runoff)	
cf	V_{SED} = sediment forebay volume, if used for pretreatment	← ≥ 25%WQV
920 sf	$A_{SA} = surface$ area of the practice	
3.00 iph	$I_{DESIGN} = design infiltration rate2$	
Yes Yes/N	$1 \text{ If } I_{\text{DESIGN}}$ is < 0.50 iph, has an underdrain been provided?	
16.5 hours	$T_{DPAIN} = \text{drain time} = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
227.00 feet	E_{FC} = elevation of the bottom of the filter course material	
feet	E_{UD} = invert elevation of the underdrain (UD), if applicable	
223.75 feet	E_{BTM} = elevation of the bottom of the practice (i.e., bottom of the stone reservoir).	
feet	E_{super} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)	
feet	E_{POCY} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)	
feet	P_{rot} , $v_{rot} = denth to LID from the bottom of the filter course3$	← > 1'
faat	$D_{FC to UD}$ = depth to be dready from the bottom of the filter course ³	<u> </u>
	$D_{FC \text{ to ROCK}}$ – depin to be able K from the bottom of the inter course	
feet	$D_{FC \text{ to SHWT}} = \text{depth to SHWT}$ from the bottom of the filter course	₹ <u>≥</u> 1
feet	$D_{BTM \text{ to } SHWT}$ = depth to SHWT from the bottom of the practice	$\leftarrow \geq 2'$
230.78 ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
231.00 ft	Elevation of the top of the practice	
VEC	10 peak elevation \leq Elevation of the top of the practice	
YES	10 peak elevation \leq Elevation of the top of the practice	← yes
YES If a surface sand filter is p	10 peak elevation < Elevation of the top of the practice roposed: Designed Area check	← yes
YES If a surface sand filter is p ac	10 peak elevation ≤ Elevation of the top of the practice roposed: Drainage Area check. V = values of storage ^{4,5} (attach a storage storage table)	
YES If a surface sand filter is p ac cf inches	10 peak elevation ≤ Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D = € filter course thickness	
YES If a surface sand filter is p ac cf inches	10 peak elevation \leq Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what shart in the plan set contains the filter source energification	 ✓ yes ✓ < 10 ac ✓ ≥ 75%WQV ✓ 18"
YES If a surface sand filter is p ac cf inches Sheet Vac Ni	10 peak elevation \leq Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided?	 ✓ yes ✓ < 10 ac ✓ ≥ 75%WQV ✓ 18" ✓ yes
YES If a surface sand filter is p ac cf inches Sheet Yes/No	10 peak elevation ≤ Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification → Access grate provided? The filter shell not be covered in grass. What is covering the filter?	 ✓ yes ✓ < 10 ac ✓ ≥ 75%WQV ✓ 18" ✓ yes
YES If a surface sand filter is p ac cf inches Sheet Yes/N If an underground sand fi	10 peak elevation \leq Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification \rightarrow Access grate provided? The filter shall not be covered in grass. What is covering the filter? tor is proposed:	 ✓ yes ✓ < 10 ac ✓ ≥ 75%WQV ✓ 18" ✓ yes
YES If a surface sand filter is p ac cf inches Sheet Yes/No If an underground sand fi	10 peak elevation ≤ Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? ter is proposed: Drainage Area check.	 ✓ yes ✓ < 10 ac ✓ ≥ 75%WQV ✓ 18" ✓ yes ✓ < 10 ac
YES If a surface sand filter is p ac cf inches Sheet Yes/N If an underground sand fi ac cf	10 peak elevation ≤ Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? ter is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table)	
YES If a surface sand filter is p ac cf inches Sheet Yes/N If an underground sand fi ac cf inches	10 peak elevation \leq Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification \Rightarrow Access grate provided? The filter shall not be covered in grass. What is covering the filter? ter is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness	
YES If a surface sand filter is p ac cf inches Sheet Yes/N If an underground sand fi ac cf inches Sheet	10 peak elevation ≤ Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? ter is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification	
YES If a surface sand filter is p ac cf inches Sheet Yes/N If an underground sand fi ac cf inches Sheet Yes/N	10 peak elevation ≤ Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? ter is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided?	
YES If a surface sand filter is p ac cf inches Sheet Yes/N If an underground sand fi ac cf inches Sheet Yes/N If a bioretention area is p	10 peak elevation ≤ Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? ter is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? ter is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? prosed:	 ← yes ← < 10 ac ← ≥ 75%WQV ← 18" ← yes ← < 10 ac ← ≥ 75%WQV ← 24" ← yes
YES If a surface sand filter is p ac cf inches Sheet Yes/N If an underground sand fi ac cf inches Sheet Yes/N If a bioretention area is p YES ac	10 peak elevation ≤ Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? ter is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? ter is proposed: Note what sheet in the plan set contains the filter course specification Access grate provided? Drainage Area no larger than 5 ac?	 ← yes ← < 10 ac ← ≥ 75%WQV ← 18" ← yes ← < 10 ac ← ≥ 75%WQV ← 24" ← yes ← yes
YES If a surface sand filter is p ac cf inches Sheet Yes/N If an underground sand fi ac cf inches Sheet Yes/N If a bioretention area is pp YES ac 2,844 cf	10 peak elevation ≤ Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? ter is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? proposed: Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table)	
YES If a surface sand filter is p ac cf inches Sheet Yes/N If an underground sand fi ac cf inches Sheet Yes/N If a bioretention area is pp YES ac 2,844 cf 24.0 inches	10 peak elevation ≤ Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? ter is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness	$ \begin{array}{c} \leftarrow \text{ yes} \\ \hline \leftarrow < 10 \text{ ac} \\ \leftarrow \ge 75\%WQV \\ \leftarrow 18" \\ \leftarrow \text{ yes} \\ \hline \leftarrow < 10 \text{ ac} \\ \leftarrow \ge 75\%WQV \\ \leftarrow 24" \\ \leftarrow \text{ yes} \\ \hline \leftarrow \text{ yes} \\ \hline \leftarrow \text{ yes} \\ \hline \leftarrow \text{ yes} \\ \leftarrow \text{ yes} \\ \hline \leftarrow \text{ yes} \\ \leftarrow \text{ 18"} \\ \end{array} $
YES If a surface sand filter is p ac cf inches Sheet Yes/N If an underground sand fi cf inches Cf inches Sheet Yes/N If a bioretention area is pp YES ac 2,844 cf 24.0 inches Sheet D	10 peak elevation ≤ Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? ter is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification	$ \begin{array}{l} \leftarrow \text{ yes} \\ \hline \leftarrow < 10 \text{ ac} \\ \leftarrow \ge 75\% WQV \\ \leftarrow 18" \\ \leftarrow \text{ yes} \\ \hline \leftarrow < 10 \text{ ac} \\ \leftarrow \ge 75\% WQV \\ \leftarrow 24" \\ \leftarrow \text{ yes} \\ \hline \leftarrow \text{ yes} \\ \hline \leftarrow \text{ yes} \\ \hline \leftarrow \text{ yes} \\ \leftarrow \text{ yes} \\ \hline \leftarrow \text{ 18"} \\ \end{array} $
YES If a surface sand filter is p ac cf inches Sheet Yes/N If an underground sand fi cf inches Cf inches Sheet Yes/N If a bioretention area is pr YES ac 2,844 cf 24.0 inches Sheet D 3.0 :1	10 peak elevation ≤ Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? ter is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Pond side slopes	$ \begin{array}{l} \leftarrow \text{ yes} \\ \hline \leftarrow < 10 \text{ ac} \\ \leftarrow \ge 75\% WQV \\ \leftarrow 18'' \\ \leftarrow \text{ yes} \\ \hline \leftarrow < 10 \text{ ac} \\ \leftarrow \ge 75\% WQV \\ \leftarrow 24'' \\ \leftarrow \text{ yes} \\ \hline \leftarrow \text{ yes} \\ \hline \leftarrow \text{ yes} \\ \hline \leftarrow \text{ yes} \\ \leftarrow \ge 24'' \\ \leftarrow \text{ yes} \\ \hline \leftarrow \ge 21 \\ \hline \end{array} $
YES If a surface sand filter is p ac cf inches Sheet Yes/N If an underground sand fi cf inches Cf inches Sheet Yes/N If a bioretention area is p YES ac 2,844 cf 24.0 inches Sheet D 3.0 :1 Sheet D	10 peak elevation ≤ Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification • Access grate provided? The filter shall not be covered in grass. What is covering the filter? ter is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification • Access grate provided? oposed: Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Invalue of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness INote what sheet in the plan set contains the filter course specification D _{FC} = filter course thickness INote what sheet in the plan set contains the filter course specification Pond side slopes 2 Note what sheet in the plan set contains the planting plans and surface cover	$ \begin{array}{l} \leftarrow yes \\ \hline \leftarrow < 10 \text{ ac} \\ \leftarrow \ge 75\%WQV \\ \leftarrow 18" \\ \leftarrow yes \\ \hline \leftarrow < 10 \text{ ac} \\ \leftarrow \ge 75\%WQV \\ \leftarrow 24" \\ \leftarrow yes \\ \hline \leftarrow yes \\ \leftarrow yes \\ \leftarrow = 24" \\ \leftarrow yes \\ \leftarrow = 24" \\ \leftarrow yes \\ \hline \leftarrow = 24" \\ \leftarrow yes \\ \leftarrow = 24" \\ \hline \leftarrow = 24" \\ \leftarrow = 24" \\ \hline \hline \hline \leftarrow = 24" \\ \hline \hline \hline \hline \leftarrow = 24" \\ \hline $
YES If a surface sand filter is p ac cf inches Sheet Yes/N If an underground sand fi cf inches Sheet Yes/N If a bioretention area is pu YES ac 2,844 cf 24.0 inches Sheet D 3.0 :1 Sheet D If porous pavement is pro	10 peak elevation ≤ Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification • Access grate provided? The filter shall not be covered in grass. What is covering the filter? ter is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification • Access grate provided? oposed: Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Pond side slopes 2. Note what sheet in the plan set contains the planting plans and surface cover posed:	$ \begin{array}{l} \leftarrow \text{ yes} \\ \hline \leftarrow < 10 \text{ ac} \\ \leftarrow \ge 75\%WQV \\ \leftarrow 18" \\ \leftarrow \text{ yes} \\ \hline \leftarrow < 10 \text{ ac} \\ \leftarrow \ge 75\%WQV \\ \leftarrow 24" \\ \leftarrow \text{ yes} \\ \hline \leftarrow \text{ yes} \\ \hline \leftarrow \text{ yes} \\ \hline \leftarrow \text{ yes} \\ \leftarrow = 2WQV \\ \leftarrow 18" \\ \leftarrow \ge 2:1 \\ \end{array} $
YES If a surface sand filter is p ac cf inches Sheet Yes/N If an underground sand fi cf inches Sheet Yes/N If a bioretention area is pp YES ac 2,844 cf 24.0 inches Sheet D 3.0 :1 Sheet D If porous pavement is pro	10 peak elevation ≤ Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? ter is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Pond side slopes 2. Note what sheet in the plan set contains the filter course specification Pond side slopes 2. Note what sheet in the plan set contains the planting plans and surface cover Dosed: Type of pavement proposed (concrete? Asphalt? Pavers? Etc)	$ \leftarrow yes $ $ \leftarrow <10 ac $ $ \leftarrow \ge 75\%WQV $ $ \leftarrow 18" $ $ \leftarrow yes $ $ \leftarrow <10 ac $ $ \leftarrow \ge 75\%WQV $ $ \leftarrow 24" $ $ \leftarrow yes $ $ \leftarrow yes $ $ \leftarrow yes $ $ \leftarrow \ge WQV $ $ \leftarrow 18" $ $ \leftarrow \ge 2:1 $
YES If a surface sand filter is p ac cf inches Sheet Yes/N If an underground sand fi cf inches Sheet Yes/N If a bioretention area is pu YES ac 2,844 cf 24.0 inches Sheet D 3.0 :1 Sheet D If porous pavement is pro	10 peak elevation ≤ Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? ter is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Pond side slopes 2. Note what sheet in the plan set contains the filter course specification Pond side slopes 2. Note what sheet in the plan set contains the planting plans and surface cover posed: Type of pavement proposed (concrete? Asphalt? Pavers? Etc) A _{SA} = surface area of the pervious pavement	$ \leftarrow yes $ $ \leftarrow < 10 ac $ $ \leftarrow \ge 75\%WQV $ $ \leftarrow 18" $ $ \leftarrow yes $ $ \leftarrow < 10 ac $ $ \leftarrow \ge 75\%WQV $ $ \leftarrow 24" $ $ \leftarrow yes $ $ \leftarrow yes $ $ \leftarrow yes $ $ \leftarrow \ge WQV $ $ \leftarrow 18" $ $ \leftarrow \ge 2:1 $
YES If a surface sand filter is p ac cf inches Sheet Yes/N If an underground sand fi cf inches Sheet Yes/N If a bioretention area is pu YES ac 2,844 cf 24.0 inches Sheet D 3.0 :1 Sheet D inches Cheet D acres cheet Ch	10 peak elevation ≤ Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? ter is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Pond side slopes Note what sheet in the plan set contains the filter course specification Pond side slopes Note what sheet in the plan set contains the planting plans and surface cover Dosed: Type of pavement proposed (concrete? Asphalt? Pavers? Etc) A _{SA} = surface area of the pervious pavement ratio of the contributing area to the pervious surface area	$ \leftarrow yes $ $ \leftarrow < 10 ac $ $ \leftarrow \ge 75\%WQV $ $ \leftarrow 18" $ $ \leftarrow yes $ $ \leftarrow < 10 ac $ $ \leftarrow \ge 75\%WQV $ $ \leftarrow 24" $ $ \leftarrow yes $ $ \leftarrow yes $ $ \leftarrow yes $ $ \leftarrow = 2WQV $ $ \leftarrow 18" $ $ \leftarrow \ge 2:1 $
YES If a surface sand filter is p ac cf inches Sheet Yes/N If an underground sand fi ac cf inches Sheet Yes/N If a bioretention area is pu YES ac 2.844 cf 24.0 inches Sheet D 3.0 :1 If porous pavement is pro acres - :1 inches	10 peak elevation ≤ Elevation of the top of the practice roposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? The filter shall not be covered in grass. What is covering the filter? ter is proposed: Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Access grate provided? Drainage Area check. V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Drainage Area no larger than 5 ac? V = volume of storage ^{4,5} (attach a stage-storage table) D _{FC} = filter course thickness Note what sheet in the plan set contains the filter course specification Pond side slopes Note what sheet in the plan set contains the filter course specification Pond side slopes Note what sheet in the plan set contains the planting plans and surface cover Dosed: Type of pavement proposed (concrete? Asphalt? Pavers? Etc) A _{SA} = surface area of the pervious pavement ratio of the contributing area to the pervious surface area D _{FC} = filter course thickness	$ \leftarrow yes $ $ \leftarrow <10 ac $ $ \leftarrow \ge 75\%WQV $ $ \leftarrow 18" $ $ \leftarrow yes $ $ \leftarrow <10 ac $ $ \leftarrow \ge 75\%WQV $ $ \leftarrow 24" $ $ \leftarrow yes $ $ \leftarrow yes $ $ \leftarrow yes $ $ \leftarrow \ge WQV $ $ \leftarrow 18" $ $ \leftarrow \ge 2:1 $ $ \leftarrow 5:1 $ $ \leftarrow 5:1 $ $ \leftarrow 5:1 $ $ \leftarrow 12" $

1. If the practice is a tree box filter, the drainage area shall be < 0.1 acre

2. Rate of the limiting layer (either the filter course or the underlying soil). See Vol. 2 of the NH Stormwater Manual, Ch. 2-4, for guidance on determining the infiltration rate.

3. If not within a GPA or WSIPA: SHWT/Bedrock must be at least 1 foot below the filter course material (or an underdrain must drain the SHWT to at least one foot below the filter course material). If within a GPA or WSIPA: SHWT must be at least two feet below the bottom of the practice OR the filter course material must be at least twice as thick as required and the SHWT must be at least one foot below the filter course material.

4. Volume without depending on infiltration. The storage above the filter media shall not include the volume above the outlet structure, if any.

5. The volume includes the storage above the filter but below the invert of the outlet structure (if any), the filter media voids, and the pretreatment area.

Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
227.00	0	229.65	906
227.05	12	229.70	977
227.10	23	229.75	1,053
227.15	35	229.80	1,134
227.20	46	229.85	1,221
227.25	58	229.90	1,313
227.30	69	229.95	1,410
227.35	80	230.00	1,513
227.40	92	230.05	1,620
227.45	103	230.10	1,731
227.50	110	230.15	1,040
227.00	127	230.20	1,900
227.00	150	230.23	2,094
227.05	150	230.30	2,224
227.70	101	230.33	2,330
227.70	184	230.45	2,407
227.85	195	230.50	2,040
227.90	207	230.55	2,940
227.95	218	230.60	3.096
228.00	230	230.65	3.258
228.05	242	230.70	3,423
228.10	253	230.75	3,594
228.15	265	230.80	3,769
228.20	276	230.85	3,948
228.25	288	230.90	4,132
228.30	299	230.95	4,320
228.35	310	231.00	4,513
228.40	322		
228.45	333		
228.50	345		
228.55	307		
220.00	200		
228.00	300		
228.70	403		
228.80	403		
228.85	425		
228.90	437		
228.95	448		
229.00	460		
229.05	463		
229.10	471		
229.15	484		
229.20	503		
229.25	527		
229.30	556		
229.35	590		
229.40	630		
229.45	674		
229.50	724		
229.55	780		
229.60	840		
		I	

Stage-Area-Storage for Pond BR2: Bioswale - ISR 2 (CB3)

DESIGN MEMORANDUM

FROM: Robert Roseen, PE, PHD, D.WRE, Waterstone Engineering

DATE: February 5, 2020

RE: Residence Time Calculations for Bioretention-Internal Storage Reservoir, Turbocam, Barrington, NH

As per design guidance for the Innovative Bioretention-ISR System, the residence time for the anaerobic internal storage reservoirs (BR1 and BR2) are based on findings from a 2013 EPA study (Roseen and Stone 2013¹) and design and sizing technical memo² written following that study. Sizing guidance is detailed below.

Outlet Control Sizing and Bypass

An outlet control feature must be included to regulate the release of the system. Because the system contains high infiltration rate soils it needs to be slowed for contaminant removal. The primary outlet structure and its hydraulic rating curve are based on a calculated release rate by orifice control to drain the WQV in 24-48 hrs. For orifice diameter calculations refer to the NY Stormwater Manual (2001) or HDS 5 (FHWA, 2005) for details.

Equation 1:

$$Q = CA(2gh)^{0.5}$$

- Q= flow
- C= orifice coefficient, 0.6 for round
- A= orifice area
- G= gravity
- H, hydraulic head over orifice

$$Q = \frac{W_{QV}}{T_d}$$

Equation 2:

- Q= flow
- W_{QV}= water quality volume
- T_d = drain time, 24-48 hrs

A high flow bypass is typically located similar to any bioretention system with an overflow at the end of the system. A dome grate or raised catchbasin are common. This system was built with 4" of ponding depth however up to 12" is common for bioretention systems.

¹ Roseen, R. and R. Stone (2013). Evaluation and Optimization of the Effectiveness of Stormwater Control Measures for Nitrogen Removal, Final Report. Boston, MA, University of New Hampshire Stormwater Center, Geosyntec Consultants, USEPA Region 1.

² Roseen, R. (2013). Design and Sizing of Innovative Bioretention-ISR System. Stratham, NH, Waterstone Engineering: 7.

Parameter	Symbol	Units	BR1	BR2	Notes
Water Quality Volume	WQV	ft ³	3,150	3,774	
Water Quality Flow	WQF	cfs	0.036	0.044	WQV/T
Discharge Coef.	С	unitless	0.6	0.6	Orifice Plate
Orifice Area	A	ft ²	0.0045	0.0054	
Drain Time	т	days	1	1	
Gravitational Acceleration	g	ft/s²	32.2	32.2	
Driving Head	h	ft	2.8	2.8	h = davg+dBSM+dpea-gravel
Discharge	Q	gpm	16.3	19.6	
Diameter	D	ft	0.08	0.08	
Diameter	D	in	0.91	0.99	
D rounded to nearest		in	1	1	use pipe with min 1" diameter

Table 1: Residence time calculations for BR1 and BR2

INFILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.05)

Rev. 12/17/2019	Note: WQV calculation us	es a HydroCAD-derived 0.15" runoff depth	
YES		Have you reviewed Env-Wq 1508.05(a) to ensure that infiltration is allowed?	
2.48	ac	A = Area draining to the practice	-
1.98	ac	A_{I} = Impervious area draining to the practice	
0.80	decimal	I = percent impervious area draining to the practice, in decimal form	
0.77	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
1.91	ac-in	WQV= 1" x Rv x A	
6,919	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
1,730	cf	25% x WQV (check calc for sediment forebay volume)	
Bioretent	ion BR1, BR2	Method of pretreatment? (not required for clean or roof runoff)	
	cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$
20,126	cf	$V = volume^1$ (attach a stage-storage table)	$\leftarrow \geq WQV$
8,500	sf	A_{SA} = surface area of the bottom of the pond	
3.00	iph	$I_{DESIGN} = design infiltration rate^2$	
3.3	hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
224.17	feet	E_{BTM} = elevation of the bottom of the practice	
220.00	feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)	
220.00	feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)	
4.17	feet	D_{SHWT} = separation from SHWT ³	$\leftarrow \geq *^3$
4.2	feet	D_{ROCK} = separation from bedrock ³	$\leftarrow \geq *^3$
6.00	ft	D_{T} = depth of trench, if trench proposed	← 4 - 10 ft
YES	Yes/No	If a trench or underground system is proposed, observation well provided	
1/2" to 1 1/2" drai	nage stone, 40% voids	If a trench is proposed, material in trench	
		If a basin is proposed, basin floor material	
	Yes/No	If a basin is proposed, the perimeter should be curvilinear.	
	:1	If a basin is proposed, pond side slopes	← <u>≥</u> 3:1
227.12	ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
229.05	ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
230.08	ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm)	
YES	-	10 peak elevation \leq Elevation of the top of the trench?	← yes
YES		If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes

Type/Node Name: S1: Infiltration System

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. See NH Stormwater Manual, Vol.2, Ch.2-4, for guidance on determining the infiltration rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC

Elevation	Wetted	Storage	Elevation	Wetted	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
224.17	8,500	0	229.47	10,232	18,039
224.27	8,533	340	229.57	10,265	18,384
224.37	8,565	680	229.67	10,298	18,728
224.47	8,598	1,020	229.77	10,330	19,072
224.57	8,631	1,360	229.87	10,363	19,414
224.67	8,663	1,700	229.97	10,396	19,752
224.77	8,696	2,040	230.07	10,428	20,092
224.87	8,729	2,380	230.17	10,432	20,126
224.97	8,761	2,720	230.27	10,432	20,126
225.07	8,794	3,060	230.37	10,432	20,126
225.17	8,827	3,400			
225.27	8,860	3,740			
225.37	8,892	4,080			
225.47	8,925	4,420			
225.57	8,958	4,760			
225.67	8,990	5,100			
225.77	9,023	5,440			
223.07	9,000	5,760 6,120			
220.97	9,000	0,120			
220.07	9,121	6,400			
220.17	9,154	7 140			
226.27	9,100	7,140			
226.07	9 252	7,400			
226.57	9,284	8,160			
226.67	9.317	8,500			
226.77	9,350	8,840			
226.87	9,382	9,180			
226.97	9,415	9,520			
227.07	9,448	9,860			
227.17	9,480	10,200			
227.27	9,513	10,540			
227.37	9,546	10,880			
227.47	9,579	11,220			
227.57	9,611	11,560			
227.67	9,644	11,900			
227.77	9,677	12,240			
227.87	9,709	12,580			
227.97	9,742	12,920			
220.07	9,775	13,200			
220.17	9,007	13,000			
220.27	9,040	14 280			
220.37	9,075	14,200			
228.57	9 938	14,020			
228.67	9 971	15,300			
228.77	10 003	15,640			
228.87	10.036	15.979			
228.97	10.069	16,319			
229.07	10,101	16,662			
229.17	10,134	17,006			
229.27	10,167	17,350			
229.37	10,199	17,695			
			I		

Stage-Area-Storage for Pond SI1: Subsurface Infiltration

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	No
State	New Hampshire
Location	
Longitude	71.019 degrees West
Latitude	43.216 degrees North
Elevation	0 feet
Date/Time	Fri, 17 May 2019 15:13:11 -0400

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.49	0.66	0.81	1.00	1yr	0.70	0.98	1.13	1.57	1.99	2.55	2.80	1yr	2.26	2.69	3.11	3.83	4.40	1yr
2yr	0.32	0.49	0.60	0.82	1.01	1.19	2yr	0.87	1.16	1.38	1.85	2.39	3.07	3.41	2yr	2.71	3.28	3.78	4.51	5.13	2yr
5yr	0.37	0.57	0.70	0.96	1.23	1.47	5yr	1.06	1.44	1.71	2.29	2.93	3.87	4.36	5yr	3.42	4.19	4.81	5.68	6.42	5yr
10yr	0.41	0.64	0.79	1.10	1.42	1.72	10yr	1.23	1.69	2.01	2.69	3.42	4.61	5.25	10yr	4.08	5.05	5.78	6.76	7.61	10yr
25yr	0.49	0.74	0.92	1.31	1.73	2.13	25yr	1.49	2.09	2.49	3.33	4.21	5.83	6.72	25yr	5.16	6.47	7.37	8.53	9.53	25yr
50yr	0.55	0.84	1.04	1.50	2.01	2.51	50yr	1.74	2.45	2.92	3.92	4.92	6.97	8.11	50yr	6.17	7.80	8.86	10.17	11.31	50yr
100yr	0.63	0.94	1.18	1.71	2.34	2.95	100yr	2.02	2.89	3.44	4.62	5.76	8.32	9.78	100yr	7.37	9.41	10.65	12.14	13.42	100yr
200yr	0.71	1.07	1.35	1.96	2.73	3.48	200yr	2.36	3.40	4.05	5.44	6.74	9.95	11.80	200yr	8.80	11.35	12.80	14.49	15.93	200yr
500yr	0.85	1.26	1.62	2.35	3.35	4.32	500yr	2.89	4.22	5.03	6.76	8.30	12.60	15.14	500yr	11.15	14.56	16.35	18.33	20.01	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.36	0.44	0.60	0.73	0.90	1yr	0.63	0.88	0.92	1.25	1.52	1.95	2.48	1yr	1.73	2.38	2.90	3.29	3.91	1yr
2yr	0.31	0.48	0.59	0.81	0.99	1.18	2yr	0.86	1.15	1.35	1.81	2.33	2.97	3.31	2yr	2.63	3.18	3.66	4.39	5.01	2yr
5yr	0.35	0.54	0.67	0.92	1.16	1.40	5yr	1.01	1.37	1.61	2.13	2.76	3.57	4.00	5yr	3.16	3.84	4.45	5.32	5.97	5yr
10yr	0.38	0.59	0.73	1.02	1.32	1.60	10yr	1.14	1.56	1.81	2.42	3.11	4.07	4.61	10yr	3.60	4.43	5.14	6.15	6.80	10yr
25yr	0.44	0.67	0.83	1.19	1.57	1.91	25yr	1.35	1.87	2.12	2.83	3.62	4.83	5.54	25yr	4.28	5.33	6.24	7.46	8.22	25yr
50yr	0.49	0.74	0.92	1.33	1.79	2.19	50yr	1.54	2.14	2.38	3.19	4.06	5.49	6.36	50yr	4.86	6.12	7.22	8.62	9.50	50yr
100yr	0.55	0.83	1.03	1.49	2.05	2.51	100yr	1.77	2.46	2.67	3.59	4.53	6.23	7.29	100yr	5.52	7.01	8.36	9.95	10.85	100yr
200yr	0.61	0.92	1.16	1.68	2.35	2.88	200yr	2.03	2.82	3.00	4.03	5.06	7.06	8.78	200yr	6.25	8.44	9.70	11.50	12.43	200yr
500yr	0.72	1.06	1.37	1.99	2.83	3.48	500yr	2.44	3.41	3.52	4.71	5.88	8.29	10.64	500yr	7.33	10.23	11.81	13.93	14.80	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.28	0.43	0.53	0.71	0.87	1.07	1yr	0.75	1.05	1.23	1.72	2.17	2.76	3.04	1yr	2.44	2.92	3.36	4.12	4.75	1yr
2yr	0.33	0.50	0.62	0.84	1.03	1.24	2yr	0.89	1.21	1.46	1.93	2.49	3.19	3.54	2yr	2.82	3.40	3.92	4.64	5.28	2yr
5yr	0.39	0.60	0.75	1.02	1.30	1.57	5yr	1.13	1.53	1.83	2.46	3.15	4.18	4.72	5yr	3.70	4.54	5.19	6.03	6.85	5yr
10yr	0.46	0.70	0.87	1.21	1.57	1.90	10yr	1.35	1.86	2.21	2.99	3.79	5.17	5.89	10yr	4.58	5.66	6.44	7.36	8.35	10yr
25yr	0.56	0.84	1.05	1.50	1.97	2.44	25yr	1.70	2.39	2.84	3.88	4.85	6.86	7.89	25yr	6.07	7.59	8.56	9.68	10.69	25yr
50yr	0.64	0.98	1.22	1.75	2.36	2.94	50yr	2.03	2.87	3.44	4.72	5.87	8.51	9.88	50yr	7.53	9.50	10.63	11.87	13.05	50yr
100yr	0.75	1.13	1.42	2.05	2.81	3.54	100yr	2.43	3.46	4.16	5.75	7.12	10.55	12.37	100yr	9.34	11.89	13.18	14.58	15.91	100yr
200yr	0.87	1.31	1.66	2.41	3.36	4.28	200yr	2.90	4.19	5.05	7.02	8.62	13.13	14.97	200yr	11.62	14.39	16.36	17.88	19.44	200yr
500yr	1.07	1.59	2.04	2.97	4.22	5.48	500yr	3.64	5.36	6.51	9.14	11.12	17.58	20.04	500yr	15.56	19.27	21.76	23.47	25.36	500yr

Turbocam Predevelopment 01-31-20 Prepared by Microsoft HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
5.965	30	Woods, Good, HSG A (ES1, ES10, ES12, ES13, ES14, ES15, ES16, ES3, ES4, ES5, ES6, ES9)
2.195	39	>75% Grass cover, Good, HSG A (ES10, ES11, ES12, ES12A, ES13, ES14, ES16, ES9)
0.616	55	Woods, Good, HSG B (ES1, ES12, ES6, ES9)
0.105	61	>75% Grass cover, Good, HSG B (ES12, ES13)
7.273	70	Woods, Good, HSG C (ES1, ES10, ES11, ES12, ES13, ES14, ES15, ES16, ES3, ES6, ES7, ES9)
0.413	98	Paved parking, HSG A (ES11, ES12A, ES13, ES14, ES15, ES9)
0.023	98	Paved parking, HSG B (ES13)
16.590	52	TOTAL AREA

Turbocam Predevelopment 01-31-20 Prepared by Microsoft HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area	ı Soil	Subcatchment
(acres)	Group	Numbers
8.573	B HSG A	ES1, ES10, ES11, ES12, ES12A, ES13, ES14, ES15, ES16, ES3, ES4, ES5, ES6, ES9
0.744	HSG B	ES1, ES12, ES13, ES6, ES9
7.273	HSG C	ES1, ES10, ES11, ES12, ES13, ES14, ES15, ES16, ES3, ES6, ES7, ES9
0.000	HSG D	
0.000	Other	
16.590)	TOTAL AREA

Turbocam Predevelopment 01-31-20 Prepared by Microsoft HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC

Printed 2/7/2020 Page 4

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
 2.195	0.105	0.000	0.000	0.000	2.300	>75% Grass cover, Good	ES10,
							ES11,
							ES12,
							ES12A,
							ES13,
							ES14,
							ES16,
							ES9
0.413	0.023	0.000	0.000	0.000	0.436	Paved parking	ES11,
							ES12A,
							ES13,
							ES14,
							ES15,
							ES9
5.965	0.616	7.273	0.000	0.000	13.854	Woods, Good	ES1,
							ES10,
							ES11,
							ES12,
							ES13,
							ES14,
							ES15,
							ES16,
							ES3,
							ES4,
							ES5,
							ES6,
							ES7, ES9
8.573	0.744	7.273	0.000	0.000	16.590	TOTAL AREA	

Ground Covers (all nodes)

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 3 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method Subcatchment ES1: Northwest portion of Runoff Area=101,408 sf 0.00% Impervious Runoff Depth=0.41" Flow Length=373' Tc=15.4 min CN=47 Runoff=0.21 cfs 0.079 af Runoff Area=74,872 sf 0.00% Impervious Runoff Depth=0.29" Subcatchment ES10: East portion of Flow Length=235' Tc=14.8 min CN=44 Runoff=0.08 cfs 0.041 af Subcatchment ES11: South-center portion Runoff Area=15,431 sf 13.51% Impervious Runoff Depth=0.79" Flow Length=151' Tc=11.4 min CN=55 Runoff=0.15 cfs 0.023 af Runoff Area=32,533 sf 0.00% Impervious Runoff Depth=0.45" Subcatchment ES12: Southeast portion of Flow Length=340' Tc=21.6 min CN=48 Runoff=0.08 cfs 0.028 af Runoff Area=10,721 sf 19.78% Impervious Runoff Depth=0.59" Subcatchment ES12A: Eastern Corner of Flow Length=135' Tc=7.7 min CN=51 Runoff=0.06 cfs 0.012 af Subcatchment ES13: South-center portion Runoff Area=51,080 sf 6.39% Impervious Runoff Depth=0.64" Flow Length=357' Tc=26.6 min CN=52 Runoff=0.23 cfs 0.062 af Subcatchment ES14: Southwest portion of Runoff Area=54,233 sf 10.48% Impervious Runoff Depth=1.02" Flow Length=531' Tc=12.7 min CN=59 Runoff=0.77 cfs 0.106 af Runoff Area=71,666 sf 0.38% Impervious Runoff Depth=0.37" Subcatchment ES15: 1/2 South-center Flow Length=457' Tc=20.8 min CN=46 Runoff=0.11 cfs 0.050 af Subcatchment ES16: Southwest portion of Runoff Area=75,770 sf 0.00% Impervious Runoff Depth=0.49" Flow Length=569' Tc=18.4 min CN=49 Runoff=0.23 cfs 0.072 af Subcatchment ES3: Northern corner portion Runoff Area=15,930 sf 0.00% Impervious Runoff Depth=0.10" Flow Length=130' Slope=0.0400 '/' Tc=10.8 min CN=38 Runoff=0.00 cfs 0.003 af Runoff Area=9,025 sf 0.00% Impervious Runoff Depth=0.00" Subcatchment ES4: North of gravel drive Flow Length=215' Tc=11.7 min CN=30 Runoff=0.00 cfs 0.000 af Runoff Area=13,071 sf 0.00% Impervious Runoff Depth=0.00" Subcatchment ES5: Northwest of gravel Flow Length=100' Tc=11.2 min CN=30 Runoff=0.00 cfs 0.000 af Runoff Area=56,735 sf 0.00% Impervious Runoff Depth=0.54" Subcatchment ES6: East-center portion of Flow Length=417' Tc=14.2 min CN=50 Runoff=0.23 cfs 0.059 af Subcatchment ES7: Northwest portion of Runoff Area=84,458 sf 0.00% Impervious Runoff Depth=1.75" Flow Length=398' Tc=23.9 min CN=70 Runoff=1.86 cfs 0.283 af Runoff Area=55,723 sf 9.96% Impervious Runoff Depth=1.20" Subcatchment ES9: West portion of Flow Length=344' Tc=12.7 min CN=62 Runoff=1.01 cfs 0.128 af Avg. Flow Depth=0.00' Max Vel=0.31 fps Inflow=0.00 cfs 0.003 af **Reach ER70: Wetlands Starting North** n=0.035 L=350.0' S=0.0100 '/' Capacity=328.04 cfs Outflow=0.00 cfs 0.003 af

Turbocam Predevelopment 01 <i>NH Route 9 Barrington NH 24-hr S1 10-</i> Prepared by Microsoft HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC	yr 10-yr Rainfa Printed 2	<i>II=4.61"</i> 2/7/2020 Page 6
Reach ER71: Sheet Flow on Eastern Avg. Flow Depth=0.00' Max Vel=0.00 fps n=0.240 L=210.0' S=0.0548 '/' Capacity=50.29 cfs	Inflow=0.00 cfs Outflow=0.00 cfs	0.000 af 0.000 af
Reach ER72: Northwest WetlandsAvg. Flow Depth=0.02'Max Vel=0.49 fpsn=0.035L=140.0'S=0.0250 '/'Capacity=699.46 cfs	Inflow=0.21 cfs Outflow=0.20 cfs	0.082 af 0.082 af
Reach ER73: Wetlands Flowing on Map Avg. Flow Depth=0.02' Max Vel=0.75 fps n=0.035 L=340.0' S=0.0382 '/' Capacity=771.38 cfs	Inflow=0.39 cfs Outflow=0.38 cfs	0.141 af 0.141 af
Reach ER81: SE Portion of Middle Lot Avg. Flow Depth=0.18' Max Vel=0.11 fps n=0.750 L=370.0' S=0.0554 '/' Capacity=13.04 cfs	Inflow=0.42 cfs Outflow=0.31 cfs	0.189 af 0.189 af
Reach ER83: Swale Located on North Avg. Flow Depth=0.06' Max Vel=0.58 fps n=0.035 L=140.0' S=0.0071 '/' Capacity=123.09 cfs	Inflow=0.31 cfs Outflow=0.31 cfs	0.090 af 0.090 af
Reach ER84: Swale Located on North Avg. Flow Depth=0.08' Max Vel=0.67 fps n=0.035 L=140.0' S=0.0071 '/' Capacity=239.10 cfs	Inflow=0.34 cfs Outflow=0.34 cfs	0.102 af 0.102 af
Reach ER85: End of Swale located n=0.035Avg. Flow Depth=0.17'Max Vel=1.39 fpsn=0.035L=75.0'S=0.0133 '/'Capacity=528.23 cfs	Inflow=1.06 cfs Outflow=1.06 cfs	0.420 af 0.420 af
Pond EP81: Middle Portion of Wetland Peak Elev=233.68' Storage=5,093 c	f Inflow=1.86 cfs Outflow=0.42 cfs	0.283 af 0.189 af
Link L100: Northern Wetlands & North of Site	Inflow=0.00 cfs Primary=0.00 cfs	0.003 af 0.003 af
Link L200: Inlet at Start of Redemption Rd; West Side	Inflow=0.70 cfs Primary=0.70 cfs	0.262 af 0.262 af
Link L300: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=0.08 cfs Primary=0.08 cfs	0.041 af 0.041 af
Link L400: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=1.21 cfs Primary=1.21 cfs	0.443 af 0.443 af
Link L500: Inlet at Start of Gravel Drive; East Side	Inflow=0.77 cfs Primary=0.77 cfs	0.106 af 0.106 af

Total Runoff Area = 16.590 acRunoff Volume = 0.947 afAverage Runoff Depth = 0.68"97.37% Pervious = 16.154 ac2.63% Impervious = 0.436 ac

Summary for Subcatchment ES1: Northwest portion of westernly lot

Runoff = 0.21 cfs @ 12.48 hrs, Volume= 0.079 af, Depth= 0.41"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN D	Description		
	56,403	30 V	Voods, Go	od, HSG A	
	8,020	55 V	Voods, Go	od, HSG B	
	36,985	70 V	Voods, Go	od, HSG C	
1	01,408	47 V	Veighted A	verage	
1	01,408	1	00.00% Pe	ervious Are	а
_					
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
7.6	50	0.0700	0.11		Sheet Flow, Woodland Flow
					Woods: Light underbrush n= 0.400 P2= 3.07"
0.9	65	0.0600	1.22		Shallow Concentrated Flow, Woodland Flow
					Woodland Kv= 5.0 fps
6.9	258	0.0155	0.62		Shallow Concentrated Flow, Wetland flow
					Woodland Kv= 5.0 fps
15.4	373	Total			

Summary for Subcatchment ES10: East portion of easterly lot

Runoff = 0.08 cfs @ 12.61 hrs, Volume= 0.041 af, Depth= 0.29"

A	rea (sf)	CN E	Description		
	31,198	39 >	75% Gras	s cover, Go	ood, HSG A
	23,985	30 V	Voods, Go	od, HSG A	
	19,689	70 V	Voods, Go	od, HSG C	
	74,872	44 V	Veighted A	verage	
	74,872	1	00.00% Pe	ervious Are	a
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.6	50	0.0200	0.07		Sheet Flow, Woods
					Woods: Light underbrush n= 0.400 P2= 3.07"
1.2	50	0.0200	0.71		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
1.0	135	0.1850	2.15		Shallow Concentrated Flow, steep woods
					Woodland Kv= 5.0 fps
14.8	235	Total			

Summary for Subcatchment ES11: South-center portion of easterly lot

Runoff = 0.15 cfs @ 12.13 hrs, Volume= 0.023 af, Depth= 0.79"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN I	Description								
	9,251	39 >	>75% Gras	75% Grass cover, Good, HSG A							
	4,095	70 \	Noods, Go	ods, Good, HSG C							
	2,085	98 I	Paved park	ved parking, HSG A							
	15,431	55 \	Neighted A	Veighted Average							
	13,346	8	36.49% Pei	vious Area							
	2,085		13.51% Imp	pervious Are	ea						
Tc	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
10.7	50	0.0300	0.08		Sheet Flow, Woods						
					Woods: Light underbrush n= 0.400 P2= 3.07"						
0.7	101	0.1240	2.46		Shallow Concentrated Flow, Grass						
					Short Grass Pasture Kv= 7.0 fps						
11.4	151	Total									

Summary for Subcatchment ES12: Southeast portion of middle lot

Runoff = 0.08 cfs @ 12.55 hrs, Volume= 0.028 af, Depth= 0.45"

A	rea (sf)	CN	Description								
	869	39	>75% Gras	s cover, Go	bod, HSG A						
	1,648	61	>75% Gras	5% Grass cover, Good, HSG B							
	16,115	30	Woods, Go	od, HSG A							
	1,651	55	Woods, Go	od, HSG B							
	12,250	70	Woods, Go	od, HSG C							
	32,533	48	Weighted A	verage							
	32,533		100.00% Pe	ervious Are	а						
Тс	Length	Slope	e Velocity	Capacity	Description						
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)							
16.6	50	0.0100	0.05		Sheet Flow, woods						
					Woods: Light underbrush n= 0.400 P2= 3.07"						
3.0	160	0.0313	8 0.88		Shallow Concentrated Flow, woods						
					Woodland Kv= 5.0 fps						
1.8	95	0.0300	0.87		Shallow Concentrated Flow, Woods						
					Woodland Kv= 5.0 fps						
0.2	35	0.1500) 2.71		Shallow Concentrated Flow, Grass						
					Short Grass Pasture Kv= 7.0 fps						
21.6	340	Total									

Summary for Subcatchment ES12A: Eastern Corner of Middle Lot

Runoff = 0.06 cfs @ 12.09 hrs, Volume= 0.012 af, Depth= 0.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN E	Description						
	8,600	39 >	75% Gras	s cover, Go	ood, HSG A				
	2,121	98 F	Paved park	ing, HSG A					
	10,721	51 V	51 Weighted Average						
	8,600	8	80.22% Pervious Area						
	2,121	1	19.78% Impervious Area						
_		. .							
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
5.7	50	0.0200	0.15		Sheet Flow, Grass				
					Grass: Short n= 0.150 P2= 3.07"				
2.0	85	0.0100	0.70		Shallow Concentrated Flow, Grass				
					Short Grass Pasture Kv= 7.0 fps				
7.7	135	Total							

Summary for Subcatchment ES13: South-center portion of middle lot

Runoff = 0.23 cfs @ 12.44 hrs, Volume= 0.062 af, Depth= 0.64"

A	rea (sf)	CN	Description						
	9,045	39	39 >75% Grass cover, Good, HSG A						
	2,932	61	61 >75% Grass cover, Good, HSG B						
	17,458	30	Woods, Go	od, HSG A					
	18,383	70	Woods, Go	od, HSG C					
	2,266	98	Paved park	ing, HSG A					
	996	98	Paved park	ing, HSG B					
	51,080 52 Weighted Average								
	47,818		93.61% Pei	vious Area					
	3,262		6.39% Impe	ervious Area	а				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
21.9	50	0.0050	0.04		Sheet Flow, woods				
					Woods: Light underbrush n= 0.400 P2= 3.07"				
1.8	100	0.0350	0.94		Shallow Concentrated Flow, woods				
					Woodland Kv= 5.0 fps				
0.6	79	0.2280	2.39		Shallow Concentrated Flow, steep woods				
					Woodland Kv= 5.0 fps				
2.3	128	0.0352	0.94		Shallow Concentrated Flow, Woods				
					Woodland Kv= 5.0 fps				
26.6	357	Total							

Summary for Subcatchment ES14: Southwest portion of middle & westernly lot

Revised areas for grass and woods cover 11-26-19

Runoff = 0.77 cfs @ 12.15 hrs, Volume= 0.106 af, Depth= 1.02"	
---	--

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

_	A	rea (sf)	CN [Description				
		13,418 39 >75% Grass cover, Good, HSG A						
26,352 70 Woods, Good, HSG C								
		5,681	98 F	Paved park	ing, HSG A	N N N N N N N N N N N N N N N N N N N		
_		8,782	30 \	Noods, Go	od, HSG A			
		54,233	59 \	Neighted A	verage			
		48,552	8	39.52% Pei	vious Area			
		5,681	1	10.48% Imp	pervious Are	ea		
	Тс	Length	Slope	Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	8.7	50	0.0500	0.10		Sheet Flow, woods		
						Woods: Light underbrush n= 0.400 P2= 3.07"		
	2.1	127	0.0394	0.99		Shallow Concentrated Flow, woods		
						Woodland Kv= 5.0 fps		
	1.4	110	0.0677	1.30		Shallow Concentrated Flow, Woods		
	0.5	044	0 0007	0.70	404.04	Woodland Kv= 5.0 fps		
	0.5	244	0.0287	8.72	401.21	Irap/Vee/Rect Channel Flow, Swale flow		
						BOT.VV=12.00° D=2.00° Z= 8.0 & 3.0 7° 10p.VV=34.00°		
_						n= 0.035 Earth, dense weeds		
	12.7	531	Lotal					

Summary for Subcatchment ES15: 1/2 South-center portion of westernly lot; Flowing to L200

Runoff = 0.11 cfs @ 12.64 hrs, Volume= 0.050 af, Depth= 0.37"

Area (sf)	CN	Description
43,592	30	Woods, Good, HSG A
27,802	70	Woods, Good, HSG C
272	98	Paved parking, HSG A
71,666	46	Weighted Average
71,394		99.62% Pervious Area
272		0.38% Impervious Area

Turbocam Predevelopment 01 NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61" Prepared by Microsoft Printed 2/7/2020 Page 11

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.2	50	0.0800	0.12		Sheet Flow, woods
0.3	35	0.1710	2.07		Woods: Light underbrush n= 0.400 P2= 3.07" Shallow Concentrated Flow, steep woods Woodland Kv= 5.0 fps
2.7	147	0.0340	0.92		Shallow Concentrated Flow, woods
0.2	31	0.2500	2.50		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
0.1	72	0.1110	9.63	616.02	Trap/Vee/Rect Channel Flow, Swale flow
					n = 0.035
9.5	72	0.0833	0.13		Sheet Flow, Woods
0.8	50	0.0400	1.00		Woods: Light underbrush n= 0.400 P2= 3.07" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps

20.8 457 Total

Summary for Subcatchment ES16: Southwest portion of westernly lot

Runoff 0.23 cfs @ 12.37 hrs, Volume= =

0.072 af, Depth= 0.49"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN	Description						
	13,397	39	>75% Grass cover, Good, HSG A						
	29,498	30	Woods, Go	Voods, Good, HSG A					
	32,875	70	Woods, Go	od, HSG C					
	75,770	49	Weighted A	verage					
	75,770		100.00% Pe	ervious Are	а				
Тс	Length	Slope	e Velocity	Capacity	Description				
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
10.7	50	0.0300	0.08		Sheet Flow, Woods				
					Woods: Light underbrush n= 0.400 P2= 3.07"				
4.2	370	0.0875	5 1.48		Shallow Concentrated Flow, Woods				
					Woodland Kv= 5.0 fps				
3.5	149	0.0201	0.71		Shallow Concentrated Flow, Woods/wetlands flow				
					Woodland Kv= 5.0 fps				

18.4 569 Total

Summary for Subcatchment ES3: Northern corner portion of westernly lot

0.00 cfs @ 21.06 hrs, Volume= 0.003 af, Depth= 0.10" Runoff =

A	rea (sf)	CN [Description				
	12,689	30 V	Noods, Good, HSG A				
	3,241	70 V	Woods, Good, HSG C				
	15,930	38 V	Veighted A	verage			
	15,930 100.00% Pervious Area			ervious Are	а		
-		0		0			
IC (min)	Length	Slope (ff/ff)	Velocity	Capacity (cfs)	Description		
				(013)			
9.5	50	0.0400	0.09		Sheet Flow, Woods		
					Woods: Light underbrush n= 0.400 P2= 3.07"		
1.3	80	0.0400	1.00		Shallow Concentrated Flow, Woods		
					Woodland Kv= 5.0 fps		
10.8	130	Total					

Summary for Subcatchment ES4: North of gravel drive portion of westernly lot

[45] Hint: Runoff=Zero

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

 A	rea (sf)	CN [Description						
	9,025	30 V	30 Woods, Good, HSG A						
	9,025	1	100.00% Pe	ervious Are	a				
 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
8.7	50	0.0500	0.10		Sheet Flow, Woods				
2.2	125	0.0360	0.95		Woods: Light underbrush n= 0.400 P2= 3.07" Shallow Concentrated Flow, Woods Woodland, Ky= 5.0 fps				
 0.8	40	0.0250	0.79		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps				
44 7	045	T - 4 - 1							

11.7 215 Total

Summary for Subcatchment ES5: Northwest of gravel drive portion of westernly lot

[45] Hint: Runoff=Zero

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

A	rea (sf)	CN E	Description		
	13,071	30 V	Voods, Go	od, HSG A	
	13,071	1	00.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.7	50	0.0300	0.08		Sheet Flow, Woods
0.5	50	0.1200	1.73		Woods: Light underbrush n= 0.400 P2= 3.07" Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
11.2	100	Total			

Summary for Subcatchment ES6: East-center portion of westernly lot

Runoff = 0.23 cfs @ 12.23 hrs, Volume= 0.059 af, Depth= 0.54"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN D	escription		
	26,865	30 V	Voods, Go	od, HSG A	
	3,861	55 V	Voods, Go	od, HSG B	
	26,009	70 V	Voods, Go	od, HSG C	
	56,735	50 V	Veighted A	verage	
	56,735	1	00.00% Pe	ervious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
9.5	50	0.0400	0.09		Sheet Flow, Woods
					Woods: Light underbrush n= 0.400 P2= 3.07"
1.0	125	0.1680	2.05		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
2.0	122	0.0410	1.01		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
1.0	70	0.0571	1.19		Shallow Concentrated Flow, Woods
- -			4.00		Woodland Kv= 5.0 fps
0.7	50	0.0600	1.22		Shallow Concentrated Flow, Woods
					vvoodland Kv= 5.0 tps
14.2	417	Total			

Summary for Subcatchment ES7: Northwest portion of middle lot

Runoff = 1.86 cfs @ 12.29 hrs, Volume= 0.283 af, Depth= 1.75"

A	rea (sf)	CN E	Description		
	84,458	70 V	Voods, Go	od, HSG C	
84,458		1	00.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.6	50	0.0200	0.07		Sheet Flow, woods
1.1	82	0.0610	1.23		Woods: Light underbrush n= 0.400 P2= 3.07" Shallow Concentrated Flow, woods Woodland Ky= 5.0 fps
10.2	266	0.0075	0.43		Shallow Concentrated Flow, Wetland flow Woodland Kv= 5.0 fps
23.9	398	Total			

Summary for Subcatchment ES9: West portion of easterly lot

Runoff = 1.01 cfs @ 12.14 hrs, Volume= 0.128 af, Depth= 1.20"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	vrea (sf)	CN Description						
	9,841	39 >75% Grass cover, Good, HSG A						
	2,369	30	Woods, Good, HSG A					
	24,652	70	Woods, Good, HSG C					
	5,551	98	Paved parking, HSG A					
	13,310	55 Woods, Good, HSG B						
	55,723	62	Weighted A	verage				
	50,172	90.04% Pervious Area						
5,551 9.96% Impervious Area					а			
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
8.7	50	0.0500	0.10		Sheet Flow, woods			
					Woods: Light underbrush n= 0.400 P2= 3.07"			
1.5	105	0.0524	1.14		Shallow Concentrated Flow, woods			
					Woodland Kv= 5.0 fps			
1.9	99	0.0303	0.87		Shallow Concentrated Flow, Wetland flow			
					Woodland Kv= 5.0 fps			
0.6	90	0.1440	2.66		Shallow Concentrated Flow, Grass			
					Short Grass Pasture Kv= 7.0 fps			
107	211	Total						

12.7 344 Total

Summary for Reach ER70: Wetlands Starting North Flowing Southeast

Inflow Area	a =	0.366 ac,	0.00% Impervious,	Inflow Depth = 0 .	10" for 10-yr event
Inflow	=	0.00 cfs @	21.06 hrs, Volume	= 0.003 af	
Outflow	=	0.00 cfs @	21.28 hrs, Volume	= 0.003 af,	Atten= 0%, Lag= 13.4 min
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 0.31 fps, Min. Travel Time= 18.8 min Avg. Velocity = 0.31 fps, Avg. Travel Time= 18.8 min

Peak Storage= 4 cf @ 21.28 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 2.00' Flow Area= 64.0 sf, Capacity= 328.04 cfs

16.00' x 2.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 8.0 '/' Top Width= 48.00' Length= 350.0' Slope= 0.0100 '/' Inlet Invert= 226.00', Outlet Invert= 222.50'

‡

Summary for Reach ER71: Sheet Flow on Eastern Gravel Path

Inflow /	Area	=	0.507 ac,	0.00% Impervious,	Inflow Depth = 0	.00" for 10-yr event
Inflow		=	0.00 cfs @	0.00 hrs, Volume	= 0.000 af	-
Outflov	v	=	0.00 cfs @	0.00 hrs, Volume	e 0.000 af	, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 2.00' Flow Area= 32.0 sf, Capacity= 50.29 cfs

4.00' x 2.00' deep channel, n= 0.240 Sheet flow over Dense Grass Side Slope Z-value= 6.0 '/' Top Width= 28.00' Length= 210.0' Slope= 0.0548 '/' Inlet Invert= 233.50', Outlet Invert= 222.00'

‡

Summary for Reach ER72: Northwest Wetlands Flowing Southeast to Redemption Rd

[62] Hint: Exceeded Reach ER70 OUTLET depth by 0.02' @ 12.58 hrs [62] Hint: Exceeded Reach ER71 OUTLET depth by 0.52' @ 12.58 hrs

 Inflow Area =
 3.201 ac,
 0.00% Impervious,
 Inflow Depth =
 0.31"
 for
 10-yr event

 Inflow =
 0.21 cfs @
 12.48 hrs,
 Volume=
 0.082 af

 Outflow =
 0.20 cfs @
 12.58 hrs,
 Volume=
 0.082 af,
 Atten= 2%,
 Lag= 6.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 0.49 fps, Min. Travel Time= 4.7 min Avg. Velocity = 0.49 fps, Avg. Travel Time= 4.7 min

Peak Storage= 58 cf @ 12.58 hrs Average Depth at Peak Storage= 0.02' Bank-Full Depth= 2.00' Flow Area= 82.0 sf, Capacity= 699.46 cfs

25.00' x 2.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 8.0 '/' Top Width= 57.00' Length= 140.0' Slope= 0.0250 '/' Inlet Invert= 222.50', Outlet Invert= 219.00'

ŧ

Summary for Reach ER73: Wetlands Flowing on Map 234 Lot 1.2

[62] Hint: Exceeded Reach ER72 OUTLET depth by 0.01' @ 12.99 hrs

 Inflow Area =
 4.503 ac, 0.00% Impervious, Inflow Depth = 0.37" for 10-yr event

 Inflow =
 0.39 cfs @ 12.45 hrs, Volume=
 0.141 af

 Outflow =
 0.38 cfs @ 12.57 hrs, Volume=
 0.141 af, Atten= 2%, Lag= 7.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 0.75 fps, Min. Travel Time= 7.6 min Avg. Velocity = 0.61 fps, Avg. Travel Time= 9.2 min

Peak Storage= 172 cf @ 12.57 hrs Average Depth at Peak Storage= 0.02' Bank-Full Depth= 2.00' Flow Area= 76.0 sf, Capacity= 771.38 cfs

20.00' x 2.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 9.0 '/' Top Width= 56.00' Length= 340.0' Slope= 0.0382 '/' Inlet Invert= 219.00', Outlet Invert= 206.00' Turbocam Predevelopment 01 NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61" Prepared by Microsoft Printed 2/7/2020 HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC Page 17 ‡ Summary for Reach ER81: SE Portion of Middle Lot Wetlands 1.939 ac, 0.00% Impervious, Inflow Depth > 1.17" for 10-yr event Inflow Area = Inflow 0.42 cfs @ 13.30 hrs, Volume= 0.189 af = Outflow = 0.31 cfs @ 14.38 hrs, Volume= 0.189 af, Atten= 25%, Lag= 64.9 min Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 0.11 fps, Min. Travel Time= 54.7 min Avg. Velocity = 0.05 fps, Avg. Travel Time= 123.2 min Peak Storage= 1,023 cf @ 14.38 hrs Average Depth at Peak Storage= 0.18' Bank-Full Depth= 1.00' Flow Area= 36.7 sf, Capacity= 13.04 cfs 55.00' x 1.00' deep Parabolic Channel, n= 0.750 Length= 370.0' Slope= 0.0554 '/' Inlet Invert= 233.00', Outlet Invert= 212.50' ŧ

Summary for Reach ER83: Swale Located on North Side of Redemption Rd Flowing Northeast

 Inflow Area =
 1.919 ac, 3.90% Impervious, Inflow Depth = 0.56" for 10-yr event

 Inflow =
 0.31 cfs @ 12.44 hrs, Volume=
 0.090 af

 Outflow =
 0.31 cfs @ 12.50 hrs, Volume=
 0.090 af, Atten= 1%, Lag= 3.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 0.58 fps, Min. Travel Time= 4.1 min Avg. Velocity = 0.34 fps, Avg. Travel Time= 6.8 min

Peak Storage= 75 cf @ 12.50 hrs Average Depth at Peak Storage= 0.06' Bank-Full Depth= 2.00' Flow Area= 28.0 sf, Capacity= 123.09 cfs

8.00' x 2.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 3.0 '/' Top Width= 20.00' Length= 140.0' Slope= 0.0071 '/' Inlet Invert= 214.00', Outlet Invert= 213.00'

Summary for Reach ER84: Swale Located on North Side of Redemption Rd Flowing Northeast

Inflow Area = 2.166 ac, 5.71% Impervious, Inflow Depth = 0.57" for 10-yr event 0.34 cfs @ 12.48 hrs, Volume= Inflow = 0.102 af Outflow = 0.34 cfs @ 12.54 hrs, Volume= 0.102 af, Atten= 1%, Lag= 3.1 min Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 0.67 fps, Min. Travel Time= 3.5 min Avg. Velocity = 0.40 fps, Avg. Travel Time= 5.8 min Peak Storage= 71 cf @ 12.54 hrs Average Depth at Peak Storage= 0.08' Bank-Full Depth= 3.00' Flow Area= 45.0 sf, Capacity= 239.10 cfs 6.00' x 3.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 3.0 '/' Top Width= 24.00' Length= 140.0' Slope= 0.0071 '/' Inlet Invert= 212.00', Outlet Invert= 211.00' ‡

Summary for Reach ER85: End of Swale located North of Redemption Rd Circle

[62] Hint: Exceeded Reach ER84 OUTLET depth by 0.14' @ 12.13 hrs

Inflow A	vrea =	5.384 ac,	4.66% Impervious,	Inflow Depth > 0.9	94" for 10-yr event
Inflow	=	1.06 cfs @	12.15 hrs, Volume	= 0.420 af	
Outflow	=	1.06 cfs @	12.15 hrs, Volume	= 0.420 af,	Atten= 0%, Lag= 0.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 1.39 fps, Min. Travel Time= 0.9 min Avg. Velocity = 0.69 fps, Avg. Travel Time= 1.8 min

Peak Storage= 57 cf @ 12.15 hrs Average Depth at Peak Storage= 0.17' Bank-Full Depth= 4.00' Flow Area= 64.0 sf, Capacity= 528.23 cfs

4.00' x 4.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 3.0 '/' Top Width= 28.00' Length= 75.0' Slope= 0.0133 '/' Inlet Invert= 211.00', Outlet Invert= 210.00'

Summary for Pond EP81: Middle Portion of Wetland

Inflow Area	=	1.939 ac,	0.00% Impervious, In	flow Depth = 1.75"	for 10-yr event
Inflow	=	1.86 cfs @	12.29 hrs, Volume=	0.283 af	-
Outflow	=	0.42 cfs @	13.30 hrs, Volume=	0.189 af, Atte	en= 78%, Lag= 60.2 min
Primary	=	0.42 cfs @	13.30 hrs, Volume=	0.189 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 233.68' @ 13.30 hrs Surf.Area= 5,837 sf Storage= 5,093 cf

Plug-Flow detention time= 278.2 min calculated for 0.189 af (67% of inflow) Center-of-Mass det. time= 144.7 min (1,053.2 - 908.5)

Volume	Inv	ert Ava	il.Storage	Storage Description	on		
#1	232.0	00'	7,132 cf	Wetland Low Poi	int (Irregular)Liste	d below (Recalc)	
Elevatio (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
232.0	0	520 3 700	90.0 245.0	0	0	520 4 655	
234.0	0	7,000	381.0	5,263	7,132	11,438	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	233	8.50' 2.0' Head Coef	long x 21.0' breac d (feet) 0.20 0.40 f. (English) 2.68 2	1th Weir Between 0.60 0.80 1.00 .70 2.70 2.64 2.6	ES8-ES9 1.20 1.40 1.60 53 2.64 2.64 2.63	

Primary OutFlow Max=0.42 cfs @ 13.30 hrs HW=233.68' TW=233.13' (Dynamic Tailwater) 1=Weir Between ES8-ES9 (Weir Controls 0.42 cfs @ 1.14 fps)

Summary for Link L100: Northern Wetlands & North of Site

Inflow Area	a =	0.366 ac,	0.00% Imper	rvious, Inflow D	epth = 0.10)" for 10-yr event
Inflow	=	0.00 cfs @	21.06 hrs, \	Volume=	0.003 af	-
Primary	=	0.00 cfs @	21.06 hrs, \	Volume=	0.003 af, A	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link L200: Inlet at Start of Redemption Rd; West Side

Inflow Are	a =	7.888 ac,	0.08% Impervious,	Inflow Depth = 0.4	40" for 10-yr event
Inflow	=	0.70 cfs @	12.55 hrs, Volume	= 0.262 af	
Primary	=	0.70 cfs @	12.55 hrs, Volume	= 0.262 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link L300: Southwest Corner of Far-East Lot; Bottom of Hill

Inflow Area	a =	1.719 ac,	0.00% Impervious,	Inflow Depth = 0.2	29" for 10-yr event
Inflow	=	0.08 cfs @	12.61 hrs, Volume	= 0.041 af	
Primary	=	0.08 cfs @	12.61 hrs, Volume	= 0.041 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link L400: Southwest Corner of Far-East Lot; Bottom of Hill

Inflow Area	a =	5.738 ac,	5.21% Impervious,	Inflow Depth > 0.9	93" for 10-yr event
Inflow	=	1.21 cfs @	12.15 hrs, Volume	= 0.443 af	-
Primary	=	1.21 cfs @	12.15 hrs, Volume	= 0.443 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Summary for Link L500: Inlet at Start of Gravel Drive; East Side

Inflow Are	a =	1.245 ac, 1	10.48% Impe	rvious,	Inflow Depth	= 1.0)2" for 10)-yr event
Inflow	=	0.77 cfs @	12.15 hrs, \	Volume	= 0.1	06 af		
Primary	=	0.77 cfs @	12.15 hrs, \	Volume	= 0.1	06 af,	Atten= 0%	, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 3 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method Subcatchment ES1: Northwest portion of Runoff Area=101,408 sf 0.00% Impervious Runoff Depth=4.95" Flow Length=373' Tc=15.4 min CN=47 Runoff=6.25 cfs 0.960 af Runoff Area=74,872 sf 0.00% Impervious Runoff Depth=4.44" Subcatchment ES10: East portion of Flow Length=235' Tc=14.8 min CN=44 Runoff=4.12 cfs 0.636 af Subcatchment ES11: South-center portion Runoff Area=15,431 sf 13.51% Impervious Runoff Depth=6.28" Flow Length=151' Tc=11.4 min CN=55 Runoff=1.39 cfs 0.185 af Runoff Area=32,533 sf 0.00% Impervious Runoff Depth=5.12" Subcatchment ES12: Southeast portion of Flow Length=340' Tc=21.6 min CN=48 Runoff=1.82 cfs 0.319 af Runoff Area=10,721 sf 19.78% Impervious Runoff Depth=5.62" Subcatchment ES12A: Eastern Corner of Flow Length=135' Tc=7.7 min CN=51 Runoff=0.99 cfs 0.115 af Subcatchment ES13: South-center portion Runoff Area=51,080 sf 6.39% Impervious Runoff Depth=5.79" Flow Length=357' Tc=26.6 min CN=52 Runoff=2.99 cfs 0.565 af Subcatchment ES14: Southwest portion of Runoff Area=54,233 sf 10.48% Impervious Runoff Depth=6.92" Flow Length=531' Tc=12.7 min CN=59 Runoff=5.21 cfs 0.718 af Runoff Area=71,666 sf 0.38% Impervious Runoff Depth=4.78" Subcatchment ES15: 1/2 South-center Flow Length=457' Tc=20.8 min CN=46 Runoff=3.75 cfs 0.655 af Subcatchment ES16: Southwest portion of Runoff Area=75,770 sf 0.00% Impervious Runoff Depth=5.29" Flow Length=569' Tc=18.4 min CN=49 Runoff=4.70 cfs 0.766 af Subcatchment ES3: Northern corner portion Runoff Area=15,930 sf 0.00% Impervious Runoff Depth=3.40" Flow Length=130' Slope=0.0400 '/' Tc=10.8 min CN=38 Runoff=0.70 cfs 0.104 af Runoff Area=9,025 sf 0.00% Impervious Runoff Depth=2.01" Subcatchment ES4: North of gravel drive Flow Length=215' Tc=11.7 min CN=30 Runoff=0.17 cfs 0.035 af Subcatchment ES5: Northwest of gravel Runoff Area=13,071 sf 0.00% Impervious Runoff Depth=2.01" Flow Length=100' Tc=11.2 min CN=30 Runoff=0.24 cfs 0.050 af Subcatchment ES6: East-center portion of Runoff Area=56,735 sf 0.00% Impervious Runoff Depth=5.45" Flow Length=417' Tc=14.2 min CN=50 Runoff=4.04 cfs 0.592 af Subcatchment ES7: Northwest portion of Runoff Area=84,458 sf 0.00% Impervious Runoff Depth=8.60" Flow Length=398' Tc=23.9 min CN=70 Runoff=7.75 cfs 1.390 af Runoff Area=55,723 sf 9.96% Impervious Runoff Depth=7.39" Subcatchment ES9: West portion of Flow Length=344' Tc=12.7 min CN=62 Runoff=5.72 cfs 0.788 af Avg. Flow Depth=0.06' Max Vel=0.61 fps Inflow=0.70 cfs 0.104 af **Reach ER70: Wetlands Starting North** n=0.035 L=350.0' S=0.0100 '/' Capacity=328.04 cfs Outflow=0.56 cfs 0.104 af

Turbocam Predevelopmen <i>NH Route 9 Barrington NH 24-hr S1 500-y</i> Prepared by Microsoft HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC	r 500-yr Rainfall=12.60" Printed 2/7/2020 Page 22
Reach FR71: Sheet Flow on Fastern Avg. Flow Depth=0.17' Max Vel=0.39	fps Inflow=0.41 cfs 0.085 af
n=0.240 L=210.0' S=0.0548 '/' Capacity=50.29 cf	s Outflow=0.33 cfs 0.085 af
Reach ER72: Northwest WetlandsAvg. Flow Depth=0.15'Max Vel=1.82 flown=0.035L=140.0'S=0.0250 '/'Capacity=699.46 cflow	fps Inflow=7.07 cfs 1.149 af s Outflow=7.04 cfs 1.149 af
Reach ER73: Wetlands Flowing on Map Avg. Flow Depth=0.19' Max Vel=2.62 fp n=0.035 L=340.0' S=0.0382 '/' Capacity=771.38 cfs	s Inflow=10.99 cfs 1.741 af Outflow=10.84 cfs 1.741 af
Reach ER81: SE Portion of Middle Lot Avg. Flow Depth=0.68' Max Vel=0.27 the n=0.750 L=370.0' S=0.0554 '/' Capacity=13.04 cfs	fps Inflow=8.60 cfs 1.296 af s Outflow=5.61 cfs 1.296 af
Reach ER83: Swale Located on North Avg. Flow Depth=0.33' Max Vel=1.59 the n=0.035 L=140.0' S=0.0071 '/' Capacity=123.09 cfs	fps Inflow=4.75 cfs 0.884 af s Outflow=4.74 cfs 0.884 af
Reach ER84: Swale Located on North Avg. Flow Depth=0.41' Max Vel=1.76 to n=0.035 L=140.0' S=0.0071 '/' Capacity=239.10 cfs	fps Inflow=5.16 cfs 0.999 af s Outflow=5.15 cfs 0.999 af
Reach ER85: End of Swale located Avg. Flow Depth=0.70' Max Vel=3.12 fp n=0.035 L=75.0' S=0.0133 '/' Capacity=528.23 cfs	s Inflow=13.29 cfs 3.083 af Outflow=13.29 cfs 3.083 af
Pond EP81: Middle Portion of Wetland Peak Elev=234.89' Storage=7,132	cf Inflow=7.75 cfs 1.390 af Outflow=8.60 cfs 1.296 af
Link L100: Northern Wetlands & North of Site	Inflow=0.70 cfs 0.104 af
	Primary=0.70 cfs 0.104 af
Link L200: Inlet at Start of Redemption Rd; West Side	Inflow=19.19 cfs 3.162 af Primary=19.19 cfs 3.162 af
Link L300: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=4.12 cfs 0.636 af Primary=4.12 cfs 0.636 af
Link L400: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=14.07 cfs 3.269 af
	Phimary=14.07 cis 3.269 at
Link L500: Inlet at Start of Gravel Drive; East Side	Inflow=5.21 cfs 0.718 af Primary=5.21 cfs 0.718 af

Total Runoff Area = 16.590 acRunoff Volume = 7.879 afAverage Runoff Depth = 5.70"97.37% Pervious = 16.154 ac2.63% Impervious = 0.436 ac

Summary for Subcatchment ES1: Northwest portion of westernly lot

Runoff = 6.25 cfs @ 12.17 hrs, Volume= 0.960 af, Depth= 4.95"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 500-yr 500-yr Rainfall=12.60"

A	rea (sf)	CN D	Description		
	56,403	30 V	Voods, Go	od, HSG A	
	8,020	55 V	Voods, Go	od, HSG B	
	36,985	70 V	Voods, Go	od, HSG C	
1	01,408	47 V	Veighted A	verage	
1	01,408	1	00.00% Pe	ervious Are	а
_				_	
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
7.6	50	0.0700	0.11		Sheet Flow, Woodland Flow
					Woods: Light underbrush n= 0.400 P2= 3.07"
0.9	65	0.0600	1.22		Shallow Concentrated Flow, Woodland Flow
					Woodland Kv= 5.0 fps
6.9	258	0.0155	0.62		Shallow Concentrated Flow, Wetland flow
					Woodland Kv= 5.0 fps
15.4	373	Total			

Summary for Subcatchment ES10: East portion of easterly lot

Runoff = 4.12 cfs @ 12.16 hrs, Volume= 0.636 af, Depth= 4.44"

A	rea (sf)	CN E	Description					
	31,198	39 >	39 >75% Grass cover, Good, HSG A					
	23,985	30 V	Voods, Go	od, HSG A				
	19,689	70 V	Voods, Go	od, HSG C				
	74,872	44 V	Veighted A	verage				
	74,872	1	00.00% Pe	ervious Are	a			
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
12.6	50	0.0200	0.07		Sheet Flow, Woods			
					Woods: Light underbrush n= 0.400 P2= 3.07"			
1.2	50	0.0200	0.71		Shallow Concentrated Flow, Woods			
					Woodland Kv= 5.0 fps			
1.0	135	0.1850	2.15		Shallow Concentrated Flow, steep woods			
					Woodland Kv= 5.0 fps			
14.8	235	Total						

Summary for Subcatchment ES11: South-center portion of easterly lot

Runoff = 1.39 cfs @ 12.11 hrs, Volume= 0.185 af, Depth= 6.28"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 500-yr 500-yr Rainfall=12.60"

A	rea (sf)	CN I	Description					
	9,251	39 >	>75% Grass cover, Good, HSG A					
	4,095	70 \	Noods, Go	od, HSG C				
	2,085	98 I	Paved park	ing, HSG A	N			
	15,431	55 \	Neighted A	verage				
	13,346	8	36.49% Pei	vious Area				
	2,085		13.51% Imp	pervious Are	ea			
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
10.7	50	0.0300	0.08		Sheet Flow, Woods			
					Woods: Light underbrush n= 0.400 P2= 3.07"			
0.7	101	0.1240	2.46		Shallow Concentrated Flow, Grass			
					Short Grass Pasture Kv= 7.0 fps			
11.4	151	Total						

Summary for Subcatchment ES12: Southeast portion of middle lot

Runoff = 1.82 cfs @ 12.26 hrs, Volume= 0.319 af, Depth= 5.12"

A	rea (sf)	CN	Description						
	869	39	>75% Grass cover, Good, HSG A						
	1,648	61	>75% Gras	s cover, Go	ood, HSG B				
	16,115	30	Woods, Go	od, HSG A					
	1,651	55	Woods, Go	od, HSG B					
	12,250	70	Woods, Go	od, HSG C					
	32,533	48	Weighted A	verage					
	32,533		100.00% Pe	ervious Are	а				
Тс	Length	Slope	e Velocity	Capacity	Description				
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
16.6	50	0.0100	0.05		Sheet Flow, woods				
					Woods: Light underbrush n= 0.400 P2= 3.07"				
3.0	160	0.0313	3 0.88		Shallow Concentrated Flow, woods				
					Woodland Kv= 5.0 fps				
1.8	95	0.0300) 0.87		Shallow Concentrated Flow, Woods				
					Woodland Kv= 5.0 fps				
0.2	35	0.1500) 2.71		Shallow Concentrated Flow, Grass				
					Short Grass Pasture Kv= 7.0 fps				
21.6	340	Total							

Summary for Subcatchment ES12A: Eastern Corner of Middle Lot

Runoff = 0.99 cfs @ 12.06 hrs, Volume= 0.115 af, Depth= 5.62"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 500-yr 500-yr Rainfall=12.60"

A	rea (sf)	CN [Description						
	8,600	39 >	·75% Grass cover, Good, HSG A						
	2,121	98 F	Paved parking, HSG A						
	10,721	51 V	Weighted Average						
	8,600	8	80.22% Per	vious Area					
	2,121	1	19.78% Impervious Area						
_		. .							
TC	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
5.7	50	0.0200	0.15		Sheet Flow, Grass				
					Grass: Short n= 0.150 P2= 3.07"				
2.0	85	0.0100	0.70		Shallow Concentrated Flow, Grass				
					Short Grass Pasture Kv= 7.0 fps				
7.7	135	Total							

Summary for Subcatchment ES13: South-center portion of middle lot

Runoff = 2.99 cfs @ 12.32 hrs, Volume= 0.565 af, Depth= 5.79"

A	rea (sf)	CN	Description						
	9,045	39	39 >75% Grass cover, Good, HSG A						
	2,932	61	61 >75% Grass cover, Good, HSG B						
	17,458	30	Woods, Go	od, HSG A					
	18,383	70	Woods, Go	od, HSG C					
	2,266	98	Paved park	ing, HSG A					
	996	98	Paved park	ing, HSG B					
	51,080	52	Weighted A	verage					
	47,818	1	93.61% Pei	vious Area					
	3,262		6.39% Impe	ervious Area	a				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
21.9	50	0.0050	0.04		Sheet Flow, woods				
					Woods: Light underbrush n= 0.400 P2= 3.07"				
1.8	100	0.0350	0.94		Shallow Concentrated Flow, woods				
					Woodland Kv= 5.0 fps				
0.6	79	0.2280	2.39		Shallow Concentrated Flow, steep woods				
					Woodland Kv= 5.0 fps				
2.3	128	0.0352	0.94		Shallow Concentrated Flow, Woods				
					Woodland Kv= 5.0 fps				
26.6	357	Total							

Summary for Subcatchment ES14: Southwest portion of middle & westernly lot

Revised areas for grass and woods cover 11-26-19

Runoff	=	5.21 cfs @	12.12 hrs,	Volume=	0.718 af,	Depth= 6.92"
--------	---	------------	------------	---------	-----------	--------------

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 500-yr 500-yr Rainfall=12.60"

_	A	rea (sf)	CN	Description		
		13,418	39	>75% Gras	s cover, Go	ood, HSG A
		26,352	70	Woods, Go	od, HSG C	
		5,681	98	Paved park	ing, HSG A	N N N N N N N N N N N N N N N N N N N
_		8,782	30	Woods, Go	od, HSG A	
		54,233	59	Weighted A	verage	
		48,552		89.52% Pe	rvious Area	
		5,681		10.48% Imp	pervious Are	ea
	Тс	Length	Slope	 Velocity 	Capacity	Description
_	(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)	
	8.7	50	0.0500	0.10		Sheet Flow, woods
						Woods: Light underbrush n= 0.400 P2= 3.07"
	2.1	127	0.0394	0.99		Shallow Concentrated Flow, woods
						Woodland Kv= 5.0 fps
	1.4	110	0.0677	1.30		Shallow Concentrated Flow, Woods
	0.5	0.4.4	0 0007		101.01	Woodland Kv= 5.0 fps
	0.5	244	0.0287	8.72	401.21	Irap/Vee/Rect Channel Flow, Swale flow
						BOT.W=12.00° D=2.00° Z= 8.0 & 3.0 7° 10p.W=34.00°
_						n= 0.035 Earth, dense weeds
	12.7	531	Lotal			

Summary for Subcatchment ES15: 1/2 South-center portion of westernly lot; Flowing to L200

Runoff = 3.75 cfs @ 12.25 hrs, Volume= 0.655 af, Depth= 4.78"

Area (sf)	CN	Description				
43,592	30	Woods, Good, HSG A				
27,802	70	Woods, Good, HSG C				
272	98	Paved parking, HSG A				
71,666	46	Weighted Average				
71,394		99.62% Pervious Area				
272		0.38% Impervious Area				

Turbocam Predevelopmen NH Route 9 Barrington NH 24-hr S1 500-yr500-yr Rainfall=12.60"Prepared by MicrosoftPrinted 2/7/2020

	HydroCAD® 10.00	s/n 01104 © 2011 HydroCAD Software Solutions LLC	
--	-----------------	--	--

Page 27

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.2	50	0.0800	0.12		Sheet Flow, woods
0.3	35	0.1710	2.07		Woods: Light underbrush n= 0.400 P2= 3.07" Shallow Concentrated Flow, steep woods Woodland Ky= 5.0 fps
2.7	147	0.0340	0.92		Shallow Concentrated Flow, woods
					Woodland Kv= 5.0 fps
0.2	31	0.2500	2.50		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
0.1	72	0.1110	9.63	616.02	Trap/Vee/Rect Channel Flow, Swale flow
					Bot.W=14.00' D=1.00' Z= 50.0 '/' Top.W=114.00'
					n= 0.035
9.5	72	0.0833	0.13		Sheet Flow, Woods
					Woods: Light underbrush n= 0.400 P2= 3.07"
0.8	50	0.0400	1.00		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
		T ()			

20.8 457 Total

Summary for Subcatchment ES16: Southwest portion of westernly lot

Runoff = 4.70 cfs @ 12.21 hrs, Volume=

0.766 af, Depth= 5.29"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 500-yr 500-yr Rainfall=12.60"

A	rea (sf)	CN	Description					
	13,397	39	>75% Gras	>75% Grass cover, Good, HSG A				
	29,498	30	Woods, Go	od, HSG A				
	32,875	70	Woods, Go	od, HSG C				
	75,770	49	Weighted A	verage				
	75,770		100.00% Pe	ervious Are	а			
Тс	Length	Slope	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
10.7	50	0.0300	0.08		Sheet Flow, Woods			
					Woods: Light underbrush n= 0.400 P2= 3.07"			
4.2	370	0.0875	5 1.48		Shallow Concentrated Flow, Woods			
					Woodland Kv= 5.0 fps			
3.5	149	0.0201	0.71		Shallow Concentrated Flow, Woods/wetlands flow			
					Woodland Kv= 5.0 fps			

18.4 569 Total

Summary for Subcatchment ES3: Northern corner portion of westernly lot

Runoff = 0.70 cfs @ 12.11 hrs, Volume= 0.104 af, Depth= 3.40"

A	rea (sf)	CN	Description		
	12,689	30	Woods, Go	od, HSG A	
	3,241	70	Woods, Go	od, HSG C	
	15,930	38	Weighted A	verage	
	15,930		100.00% P	ervious Are	а
Тс	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
9.5	50	0.0400	0.09		Sheet Flow, Woods
					Woods: Light underbrush n= 0.400 P2= 3.07"
1.3	80	0.0400	1.00		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
10.8	130	Total			

Summary for Subcatchment ES4: North of gravel drive portion of westernly lot

Runoff = 0.17 cfs @ 12.15 hrs, Volume= 0.035 af, Depth= 2.01"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 500-yr 500-yr Rainfall=12.60"

A	vrea (sf)	CN [Description		
	9,025	30 \	Noods, Go	od, HSG A	
	9,025	-	100.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
8.7	50	0.0500	0.10		Sheet Flow, Woods
2.2	125	0.0360	0.95		Woods: Light underbrush n= 0.400 P2= 3.07" Shallow Concentrated Flow, Woods Woodland Ky= 5.0 fps
0.8	40	0.0250	0.79		Shallow Concentrated Flow, Woods Woodland Kv= 5.0 fps
11.7	215	Total			

Summary for Subcatchment ES5: Northwest of gravel drive portion of westernly lot

Runoff = 0.24 cfs @ 12.13 hrs, Volume= 0.050 af, Depth= 2.01"

Area (sf)	CN	Description	
13,071	30	Woods, Good, HSG A	
13,071		100.00% Pervious Area	

Turbocam Predevelopmen NH Route 9 Barrington NH 24-hr S1 500-yr 500-yr Rainfall=12.60" Prepared by Microsoft Printed 2/7/2020 Page 29

HydroCAD® 10.00	s/n 01104	© 2011 HydroCAD Software Solutions LLC	

Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
10.7	50	0.0300	0.08		Sheet Flow, Woods
					Woods: Light underbrush n= 0.400 P2= 3.07"
0.5	50	0.1200	1.73		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
11.2	100	Total			

Summary for Subcatchment ES6: East-center portion of westernly lot

Runoff 4.04 cfs @ 12.15 hrs, Volume= 0.592 af, Depth= 5.45" =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 500-yr 500-yr Rainfall=12.60"

A	rea (sf)	CN [Description		
	26,865	30 \	Voods, Go	od, HSG A	
	3,861	55 \	Voods, Go	od, HSG B	
	26,009	70 \	Voods, Go	od, HSG C	
	56,735	50 \	Veighted A	verage	
	56,735		00.00% Pe	ervious Are	а
Тс	Length	Slope	Velocity	Capacity	Description
nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
9.5	50	0.0400	0.09		Sheet Flow, Woods
					Woods: Light underbrush n= 0.400 P2= 3.07"
1.0	125	0.1680	2.05		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
2.0	122	0.0410	1.01		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
1.0	70	0.0571	1.19		Shallow Concentrated Flow, Woods
o -		0 0000	4.00		Woodland Kv= 5.0 fps
0.7	50	0.0600	1.22		Shallow Concentrated Flow, Woods
4.0	447	T ()			
	Tc nin) 9.5 1.0 2.0 1.0 0.7	Area (sf) 26,865 3,861 26,009 56,735 56,735 Tc Length nin) (feet) 9.5 50 1.0 125 2.0 122 1.0 70 0.7 50	Area (sf) CN E 26,865 30 V 3,861 55 V 26,009 70 V 26,735 50 V 56,735 50 V 56,735 1 Tc Length Slope nin) (feet) (ft/ft) 9.5 50 0.0400 1.0 125 0.1680 2.0 122 0.0410 1.0 70 0.0571 0.7 50 0.0600	Area (sf) CN Description 26,865 30 Woods, God 3,861 55 Woods, God 26,009 70 Woods, God 26,009 70 Woods, God 26,735 50 Weighted A 56,735 100.00% Pe Tc Length Slope Velocity nin) (feet) (ft/ft) (ft/sec) 9.5 50 0.0400 0.09 1.0 125 0.1680 2.05 2.0 122 0.0410 1.01 1.0 70 0.0571 1.19 0.7 50 0.0600 1.22	Area (sf) CN Description 26,865 30 Woods, Good, HSG A 3,861 55 Woods, Good, HSG B 26,009 70 Woods, Good, HSG C 56,735 50 Weighted Average 56,735 100.00% Pervious Are Tc Length Slope Velocity Capacity 9.5 50 0.0400 0.09 1.0 125 0.1680 2.05 2.0 122 0.0410 1.01 1.01 1.0 70 0.0571 1.19 0.7 50 0.0600 1.22 1.22 1.22 1.22

14.2 417 Total

Summary for Subcatchment ES7: Northwest portion of middle lot

Runoff 7.75 cfs @ 12.28 hrs, Volume= 1.390 af, Depth= 8.60" =

Area (sf)	CN	Description	
84,458	70	Woods, Good, HSG C	
84,458		100.00% Pervious Area	

Turbocam Predevelopmen NH Route 9 Barrington NH 24-hr S1 500-yr500-yr Rainfall=12.60"Prepared by MicrosoftPrinted 2/7/2020

Page 30

HydroCAD® 10.00	s/n 01104	© 2011 HydroCAD Software Solutions LLC

Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.6	50	0.0200	0.07		Sheet Flow, woods
					Woods: Light underbrush n= 0.400 P2= 3.07"
1.1	82	0.0610	1.23		Shallow Concentrated Flow, woods
					Woodland Kv= 5.0 fps
10.2	266	0.0075	0.43		Shallow Concentrated Flow, Wetland flow
					Woodland Kv= 5.0 fps
23.9	398	Total			

Summary for Subcatchment ES9: West portion of easterly lot

Runoff = 5.72 cfs @ 12.12 hrs, Volume= 0.788 af, Depth= 7.39"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 500-yr 500-yr Rainfall=12.60"

A	rea (sf)	CN I	Description		
	9,841	39 >	>75% Gras	s cover, Go	ood, HSG A
	2,369	30 \	Noods, Go	od, HSG A	
	24,652	70 \	Noods, Go	od, HSG C	
	5,551	98 I	Paved park	ing, HSG A	N N N N N N N N N N N N N N N N N N N
	13,310	55 \	Noods, Go	od, HSG B	
	55,723	62 \	Neighted A	verage	
	50,172	ę	90.04% Per	vious Area	
	5,551	ç	9.96% Impe	ervious Area	а
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
8.7	50	0.0500	0.10		Sheet Flow, woods
					Woods: Light underbrush n= 0.400 P2= 3.07"
1.5	105	0.0524	1.14		Shallow Concentrated Flow, woods
					Woodland Kv= 5.0 fps
1.9	99	0.0303	0.87		Shallow Concentrated Flow, Wetland flow
	~~~				Woodland Kv= 5.0 fps
0.6	90	0.1440	2.66		Shallow Concentrated Flow, Grass
					Short Grass Pasture KV= 7.0 tps
12.7	344	Total			

## Summary for Reach ER70: Wetlands Starting North Flowing Southeast

 Inflow Area =
 0.366 ac,
 0.00% Impervious, Inflow Depth =
 3.40" for 500-yr event

 Inflow =
 0.70 cfs @
 12.11 hrs, Volume=
 0.104 af

 Outflow =
 0.56 cfs @
 12.21 hrs, Volume=
 0.104 af, Atten= 21%, Lag= 6.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 0.61 fps, Min. Travel Time= 9.5 min Avg. Velocity = 0.33 fps, Avg. Travel Time= 17.8 min

Peak Storage= 317 cf @ 12.21 hrs Average Depth at Peak Storage= 0.06' Bank-Full Depth= 2.00' Flow Area= 64.0 sf, Capacity= 328.04 cfs

16.00' x 2.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 8.0 '/' Top Width= 48.00' Length= 350.0' Slope= 0.0100 '/' Inlet Invert= 226.00', Outlet Invert= 222.50'

**±** 

Summary for Reach ER71: Sheet Flow on Eastern Gravel Path

Inflow Area	a =	0.507 ac,	0.00% Impervious,	Inflow Depth =	2.01" for	500-yr event
Inflow	=	0.41 cfs @	12.14 hrs, Volume	= 0.085 a	af	
Outflow	=	0.33 cfs @	12.27 hrs, Volume	= 0.085 a	af, Atten=	20%, Lag= 8.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 0.39 fps, Min. Travel Time= 9.0 min Avg. Velocity = 0.20 fps, Avg. Travel Time= 17.3 min

Peak Storage= 177 cf @ 12.27 hrs Average Depth at Peak Storage= 0.17' Bank-Full Depth= 2.00' Flow Area= 32.0 sf, Capacity= 50.29 cfs

4.00' x 2.00' deep channel, n= 0.240 Sheet flow over Dense Grass Side Slope Z-value= 6.0 '/' Top Width= 28.00' Length= 210.0' Slope= 0.0548 '/' Inlet Invert= 233.50', Outlet Invert= 222.00'

‡

Summary for Reach ER72: Northwest Wetlands Flowing Southeast to Redemption Rd

[62] Hint: Exceeded Reach ER70 OUTLET depth by 0.09' @ 12.18 hrs [62] Hint: Exceeded Reach ER71 OUTLET depth by 0.55' @ 11.80 hrs

Inflow A	rea =	3.201 ac,	0.00% Impervious,	Inflow Depth = $4.3$	31" for 500-yr event
Inflow	=	7.07 cfs @	12.17 hrs, Volume	= 1.149 af	
Outflow	=	7.04 cfs @	12.19 hrs, Volume	= 1.149 af,	Atten= 0%, Lag= 1.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 1.82 fps, Min. Travel Time= 1.3 min Avg. Velocity = 0.72 fps, Avg. Travel Time= 3.3 min

Peak Storage= 541 cf @ 12.19 hrs Average Depth at Peak Storage= 0.15' Bank-Full Depth= 2.00' Flow Area= 82.0 sf, Capacity= 699.46 cfs

25.00' x 2.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 8.0 '/' Top Width= 57.00' Length= 140.0' Slope= 0.0250 '/' Inlet Invert= 222.50', Outlet Invert= 219.00'

‡



[62] Hint: Exceeded Reach ER72 OUTLET depth by 0.04' @ 12.23 hrs

 Inflow Area =
 4.503 ac, 0.00% Impervious, Inflow Depth = 4.64" for 500-yr event

 Inflow =
 10.99 cfs @ 12.18 hrs, Volume=
 1.741 af

 Outflow =
 10.84 cfs @ 12.20 hrs, Volume=
 1.741 af, Atten= 1%, Lag= 1.6 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 2.62 fps, Min. Travel Time= 2.2 min Avg. Velocity = 0.99 fps, Avg. Travel Time= 5.7 min

Peak Storage= 1,409 cf @ 12.20 hrs Average Depth at Peak Storage= 0.19' Bank-Full Depth= 2.00' Flow Area= 76.0 sf, Capacity= 771.38 cfs

20.00' x 2.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 9.0 '/' Top Width= 56.00' Length= 340.0' Slope= 0.0382 '/' Inlet Invert= 219.00', Outlet Invert= 206.00'

‡

#### Summary for Reach ER81: SE Portion of Middle Lot Wetlands

Inflow Area = 1.939 ac, 0.00% Impervious, Inflow Depth = 8.02" for 500-yr event 8.60 cfs @ 12.29 hrs. Volume= Inflow 1.296 af = 5.61 cfs @ 12.50 hrs, Volume= Outflow = 1.296 af, Atten= 35%, Lag= 12.4 min Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 0.27 fps, Min. Travel Time= 22.5 min Avg. Velocity = 0.08 fps, Avg. Travel Time= 78.8 min Peak Storage= 7,561 cf @ 12.50 hrs Average Depth at Peak Storage= 0.68' Bank-Full Depth= 1.00' Flow Area= 36.7 sf, Capacity= 13.04 cfs 55.00' x 1.00' deep Parabolic Channel, n= 0.750

Length= 370.0' Slope= 0.0554 '/' Inlet Invert= 233.00', Outlet Invert= 212.50'

‡

## Summary for Reach ER83: Swale Located on North Side of Redemption Rd Flowing Northeast

Inflow A	Area	=	1.919 ac,	3.90% Impervious, Inf	low Depth = $5.53$ "	for 500-yr event
Inflow	:	=	4.75 cfs @	12.30 hrs, Volume=	0.884 af	-
Outflow	/ =	=	4.74 cfs @	12.31 hrs, Volume=	0.884 af, Atte	en= 0%, Lag= 1.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 1.59 fps, Min. Travel Time= 1.5 min Avg. Velocity = 0.64 fps, Avg. Travel Time= 3.6 min

Peak Storage= 417 cf @ 12.31 hrs Average Depth at Peak Storage= 0.33' Bank-Full Depth= 2.00' Flow Area= 28.0 sf, Capacity= 123.09 cfs

8.00' x 2.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 3.0 '/' Top Width= 20.00' Length= 140.0' Slope= 0.0071 '/' Inlet Invert= 214.00', Outlet Invert= 213.00'

‡

## Summary for Reach ER84: Swale Located on North Side of Redemption Rd Flowing Northeast

Inflow Area = 2.166 ac, 5.71% Impervious, Inflow Depth = 5.54" for 500-yr event 5.16 cfs @ 12.30 hrs, Volume= Inflow 0.999 af = Outflow = 5.15 cfs @ 12.32 hrs, Volume= 0.999 af, Atten= 0%, Lag= 1.0 min Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 1.76 fps, Min. Travel Time= 1.3 min Avg. Velocity = 0.74 fps, Avg. Travel Time= 3.1 min Peak Storage= 410 cf @ 12.32 hrs Average Depth at Peak Storage= 0.41' Bank-Full Depth= 3.00' Flow Area= 45.0 sf, Capacity= 239.10 cfs 6.00' x 3.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 3.0 '/' Top Width= 24.00' Length= 140.0' Slope= 0.0071 '/' Inlet Invert= 212.00', Outlet Invert= 211.00' ‡

## Summary for Reach ER85: End of Swale located North of Redemption Rd Circle

[62] Hint: Exceeded Reach ER84 OUTLET depth by 0.32' @ 12.14 hrs

 Inflow Area =
 5.384 ac,
 4.66% Impervious, Inflow Depth =
 6.87" for 500-yr event

 Inflow =
 13.29 cfs @
 12.32 hrs, Volume=
 3.083 af

 Outflow =
 13.29 cfs @
 12.33 hrs, Volume=
 3.083 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 3.12 fps, Min. Travel Time= 0.4 min Avg. Velocity = 0.98 fps, Avg. Travel Time= 1.3 min

Peak Storage= 320 cf @ 12.33 hrs Average Depth at Peak Storage= 0.70' Bank-Full Depth= 4.00' Flow Area= 64.0 sf, Capacity= 528.23 cfs

4.00' x 4.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 3.0 '/' Top Width= 28.00' Length= 75.0' Slope= 0.0133 '/' Inlet Invert= 211.00', Outlet Invert= 210.00'



Summary for Pond EP81: Middle Portion of Wetland

[93] Warning: Storage range exceeded by 0.89'

[90] Warning: Qout>Qin may require Finer Routing or smaller dt

[87] Warning: Oscillations may require Finer Routing or smaller dt

Inflow Area	=	1.939 ac,	0.00% Impervious,	Inflow Depth =	8.60" for	500-yr event
Inflow	=	7.75 cfs @	12.28 hrs, Volume	= 1.390	af	
Outflow	=	8.60 cfs @	12.29 hrs, Volume	= 1.296	af, Atten=	0%, Lag= 0.4 min
Primary	=	8.60 cfs @	12.29 hrs, Volume	= 1.296	af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 234.89' @ 12.29 hrs Surf.Area= 7,000 sf Storage= 7,132 cf

Plug-Flow detention time= 93.0 min calculated for 1.296 af (93% of inflow) Center-of-Mass det. time= 54.8 min ( 904.9 - 850.0 )

Volume	Inv	ert Ava	il.Storage	Storage Description	on		
#1	232.	00'	7,132 cf	Wetland Low Po	int (Irregular)Liste	ed below (Recalc)	
Elevatio (fee	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
232.0 233.0 234.0	00 00 00	520 3,700 7,000	90.0 245.0 381.0	0 1,869 5,263	0 1,869 7,132	520 4,655 11,438	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	233	8.50' <b>2.0'</b> Head Coet	<b>long x 21.0' bread</b> d (feet) 0.20 0.40 f. (English) 2.68 2	dth Weir Betweer 0.60 0.80 1.00 2.70 2.70 2.64 2.	<b>ES8-ES9</b> 1.20 1.40 1.60 63 2.64 2.64 2.63	3

Primary OutFlow Max=8.60 cfs @ 12.29 hrs HW=234.89' TW=233.60' (Dynamic Tailwater) 1=Weir Between ES8-ES9 (Weir Controls 8.60 cfs @ 3.09 fps)

## Summary for Link L100: Northern Wetlands & North of Site

Inflow Area	a =	0.366 ac,	0.00% Impervious,	Inflow Depth = $3.4$	40" for 500-yr event
Inflow	=	0.70 cfs @	12.11 hrs, Volume	= 0.104 af	-
Primary	=	0.70 cfs @	12.11 hrs, Volume	= 0.104 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

# Summary for Link L200: Inlet at Start of Redemption Rd; West Side

Inflow /	Area	=	7.888 ac,	0.08% Impervious,	Inflow Depth = $4.8$	31" for 500-yr event
Inflow		=	19.19 cfs @	12.21 hrs, Volume	= 3.162 af	-
Primar	у	=	19.19 cfs @	12.21 hrs, Volume	= 3.162 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

# Summary for Link L300: Southwest Corner of Far-East Lot; Bottom of Hill

Inflow A	Area =	:	1.719 ac,	0.00% Impervious,	Inflow Depth = 4.4	44" for 500-yr event
Inflow	=		4.12 cfs @	12.16 hrs, Volume	= 0.636 af	
Primary	/ =		4.12 cfs @	12.16 hrs, Volume	= 0.636 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

## Summary for Link L400: Southwest Corner of Far-East Lot; Bottom of Hill

Inflow Area	a =	5.738 ac,	5.21% Impervious,	Inflow Depth = $6.8$	34" for 500-yr event
Inflow	=	14.07 cfs @	12.30 hrs, Volume	= 3.269 af	-
Primary	=	14.07 cfs @	12.30 hrs, Volume	= 3.269 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

## Summary for Link L500: Inlet at Start of Gravel Drive; East Side

Inflow Area	a =	1.245 ac,	10.48% Imp	ervious,	Inflow De	pth = 6	6.92" fo	or 500	)-yr event	
Inflow	=	5.21 cfs @	12.12 hrs,	Volume	=	0.718 at	F			
Primary	=	5.21 cfs @	12.12 hrs,	Volume	=	0.718 at	f, Atten=	= 0%,	Lag= 0.0	min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 3 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method Subcatchment ES1: Northwest portion of Runoff Area=101,408 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=373' Tc=15.4 min CN=47 Runoff=0.00 cfs 0.000 af Runoff Area=74,872 sf 0.00% Impervious Runoff Depth=0.00" Subcatchment ES10: East portion of Flow Length=235' Tc=14.8 min CN=44 Runoff=0.00 cfs 0.000 af Subcatchment ES11: South-center portion Runoff Area=15,431 sf 13.51% Impervious Runoff Depth=0.00" Flow Length=151' Tc=11.4 min CN=55 Runoff=0.00 cfs 0.000 af Runoff Area=32,533 sf 0.00% Impervious Runoff Depth=0.00" Subcatchment ES12: Southeast portion of Flow Length=340' Tc=21.6 min CN=48 Runoff=0.00 cfs 0.000 af Runoff Area=10,721 sf 19.78% Impervious Runoff Depth=0.00" Subcatchment ES12A: Eastern Corner of Flow Length=135' Tc=7.7 min CN=51 Runoff=0.00 cfs 0.000 af Subcatchment ES13: South-center portion Runoff Area=51,080 sf 6.39% Impervious Runoff Depth=0.00" Flow Length=357' Tc=26.6 min CN=52 Runoff=0.00 cfs 0.000 af Subcatchment ES14: Southwest portion of Runoff Area=54,233 sf 10.48% Impervious Runoff Depth=0.00" Flow Length=531' Tc=12.7 min CN=59 Runoff=0.00 cfs 0.000 af Runoff Area=71,666 sf 0.38% Impervious Runoff Depth=0.00" Subcatchment ES15: 1/2 South-center Flow Length=457' Tc=20.8 min CN=46 Runoff=0.00 cfs 0.000 af Subcatchment ES16: Southwest portion of Runoff Area=75,770 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=569' Tc=18.4 min CN=49 Runoff=0.00 cfs 0.000 af Subcatchment ES3: Northern corner portion Runoff Area=15,930 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=130' Slope=0.0400 '/' Tc=10.8 min CN=38 Runoff=0.00 cfs 0.000 af Runoff Area=9,025 sf 0.00% Impervious Runoff Depth=0.00" Subcatchment ES4: North of gravel drive Flow Length=215' Tc=11.7 min CN=30 Runoff=0.00 cfs 0.000 af Runoff Area=13,071 sf 0.00% Impervious Runoff Depth=0.00" Subcatchment ES5: Northwest of gravel Flow Length=100' Tc=11.2 min CN=30 Runoff=0.00 cfs 0.000 af Runoff Area=56,735 sf 0.00% Impervious Runoff Depth=0.00" Subcatchment ES6: East-center portion of Flow Length=417' Tc=14.2 min CN=50 Runoff=0.00 cfs 0.000 af Subcatchment ES7: Northwest portion of Runoff Area=84,458 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=398' Tc=23.9 min CN=70 Runoff=0.00 cfs 0.001 af Runoff Area=55,723 sf 9.96% Impervious Runoff Depth=0.00" Subcatchment ES9: West portion of Flow Length=344' Tc=12.7 min CN=62 Runoff=0.00 cfs 0.000 af Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af **Reach ER70: Wetlands Starting North** n=0.035 L=350.0' S=0.0100 '/' Capacity=328.04 cfs Outflow=0.00 cfs 0.000 af

<b>Turbocam Predevelopment 01</b> <i>NH Route 9 Barrington NH 24-hr S1 1-y</i> Prepared by Microsoft HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC	r 1-inch Rainfall=1.00" Printed 2/7/2020 Page 38
Reach ER71: Sheet Flow on Eastern Avg. Flow Depth=0.00' Max Vel=0.00 fp n=0.240 L=210.0' S=0.0548 '/' Capacity=50.29 cfs	s Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach ER72: Northwest Wetlands         Avg. Flow Depth=0.00'         Max Vel=0.00 fp.           n=0.035         L=140.0'         S=0.0250 '/'         Capacity=699.46 cfs	s Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach ER73: Wetlands Flowing on Map Avg. Flow Depth=0.00' Max Vel=0.00 fp n=0.035 L=340.0' S=0.0382 '/' Capacity=771.38 cfs	s Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach ER81: SE Portion of Middle Lot Avg. Flow Depth=0.00' Max Vel=0.00 fp. n=0.750 L=370.0' S=0.0554 '/' Capacity=13.04 cfs	s Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach ER83: Swale Located on North Avg. Flow Depth=0.00' Max Vel=0.00 fp. n=0.035 L=140.0' S=0.0071 '/' Capacity=123.09 cfs	s Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach ER84: Swale Located on North Avg. Flow Depth=0.00' Max Vel=0.00 fp. n=0.035 L=140.0' S=0.0071 '/' Capacity=239.10 cfs	s Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach ER85: End of Swale located n=0.035Avg. Flow Depth=0.00' Max Vel=0.00 fp.n=0.035L=75.0' S=0.0133 '/' Capacity=528.23 cfs	s Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond EP81: Middle Portion of Wetland       Peak Elev=232.06'       Storage=32 c	f Inflow=0.00 cfs 0.001 af Outflow=0.00 cfs 0.000 af
Link L100: Northern Wetlands & North of Site	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af
Link L200: Inlet at Start of Redemption Rd; West Side	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af
Link L300: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af
Link L400: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af
Link L500: Inlet at Start of Gravel Drive; East Side	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Total Runoff Area = 16.590 acRunoff Volume = 0.001 af<br/>97.37% Pervious = 16.154 acAverage Runoff Depth = 0.00"<br/>2.63% Impervious = 0.436 ac

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 3 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method Subcatchment ES1: Northwest portion of Runoff Area=101,408 sf 0.00% Impervious Runoff Depth=0.05" Flow Length=373' Tc=15.4 min CN=47 Runoff=0.01 cfs 0.011 af Runoff Area=74,872 sf 0.00% Impervious Runoff Depth=0.02" Subcatchment ES10: East portion of Flow Length=235' Tc=14.8 min CN=44 Runoff=0.01 cfs 0.003 af Subcatchment ES11: South-center portion Runoff Area=15,431 sf 13.51% Impervious Runoff Depth=0.21" Flow Length=151' Tc=11.4 min CN=55 Runoff=0.01 cfs 0.006 af Runoff Area=32,533 sf 0.00% Impervious Runoff Depth=0.07" Subcatchment ES12: Southeast portion of Flow Length=340' Tc=21.6 min CN=48 Runoff=0.01 cfs 0.004 af Runoff Area=10,721 sf 19.78% Impervious Runoff Depth=0.12" Subcatchment ES12A: Eastern Corner of Flow Length=135' Tc=7.7 min CN=51 Runoff=0.00 cfs 0.003 af Subcatchment ES13: South-center portion Runoff Area=51,080 sf 6.39% Impervious Runoff Depth=0.14" Flow Length=357' Tc=26.6 min CN=52 Runoff=0.02 cfs 0.014 af Subcatchment ES14: Southwest portion of Runoff Area=54,233 sf 10.48% Impervious Runoff Depth=0.33" Flow Length=531' Tc=12.7 min CN=59 Runoff=0.13 cfs 0.034 af Runoff Area=71,666 sf 0.38% Impervious Runoff Depth=0.04" Subcatchment ES15: 1/2 South-center Flow Length=457' Tc=20.8 min CN=46 Runoff=0.01 cfs 0.006 af Subcatchment ES16: Southwest portion of Runoff Area=75,770 sf 0.00% Impervious Runoff Depth=0.09" Flow Length=569' Tc=18.4 min CN=49 Runoff=0.01 cfs 0.012 af Subcatchment ES3: Northern corner portion Runoff Area=15,930 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=130' Slope=0.0400 '/' Tc=10.8 min CN=38 Runoff=0.00 cfs 0.000 af Runoff Area=9,025 sf 0.00% Impervious Runoff Depth=0.00" Subcatchment ES4: North of gravel drive Flow Length=215' Tc=11.7 min CN=30 Runoff=0.00 cfs 0.000 af Runoff Area=13,071 sf 0.00% Impervious Runoff Depth=0.00" Subcatchment ES5: Northwest of gravel Flow Length=100' Tc=11.2 min CN=30 Runoff=0.00 cfs 0.000 af Runoff Area=56,735 sf 0.00% Impervious Runoff Depth=0.10" Subcatchment ES6: East-center portion of Flow Length=417' Tc=14.2 min CN=50 Runoff=0.01 cfs 0.011 af Subcatchment ES7: Northwest portion of Runoff Area=84,458 sf 0.00% Impervious Runoff Depth=0.75" Flow Length=398' Tc=23.9 min CN=70 Runoff=0.78 cfs 0.122 af Runoff Area=55,723 sf 9.96% Impervious Runoff Depth=0.43" Subcatchment ES9: West portion of Flow Length=344' Tc=12.7 min CN=62 Runoff=0.26 cfs 0.045 af Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af **Reach ER70: Wetlands Starting North** n=0.035 L=350.0' S=0.0100 '/' Capacity=328.04 cfs Outflow=0.00 cfs 0.000 af

Turbocam Predevelopment 01-3 NH Route 9 Barrington NH 24-hr S1 2 Prepared by Microsoft HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC	yr 2-yr Rainfall=3.07'? Printed 2/7/2020 Page 40?
Reach ER71: Sheet Flow on Eastern n=0.240Avg. Flow Depth=0.00' Max Vel=0.00 fpsn=0.240L=210.0' S=0.0548 '/' Capacity=50.29 cfs	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach ER72: Northwest WetlandsAvg. Flow Depth=0.00'Max Vel=0.49 fpsn=0.035L=140.0'S=0.0250 '/'Capacity=699.46 cfs	Inflow=0.01 cfs 0.011 af Outflow=0.01 cfs 0.011 af
Reach ER73: Wetlands Flowing on Map Avg. Flow Depth=0.00' Max Vel=0.61 fps n=0.035 L=340.0' S=0.0382 '/' Capacity=771.38 cfs	Inflow=0.03 cfs 0.022 af Outflow=0.03 cfs 0.022 af
Reach ER81: SE Portion of Middle Lot Avg. Flow Depth=0.08' Max Vel=0.07 fps n=0.750 L=370.0' S=0.0554 '/' Capacity=13.04 cfs	Inflow=0.06 cfs 0.028 af Outflow=0.05 cfs 0.028 af
Reach ER83: Swale Located on North Avg. Flow Depth=0.01' Max Vel=0.26 fps n=0.035 L=140.0' S=0.0071 '/' Capacity=123.09 cfs	Inflow=0.02 cfs 0.018 af Outflow=0.02 cfs 0.018 af
Reach ER84: Swale Located on North Avg. Flow Depth=0.01' Max Vel=0.34 fps n=0.035 L=140.0' S=0.0071 '/' Capacity=239.10 cfs	Inflow=0.02 cfs 0.021 af Outflow=0.02 cfs 0.021 af
Reach ER85: End of Swale located n=0.035Avg. Flow Depth=0.07'Max Vel=0.84 fpsn=0.035L=75.0'S=0.0133 '/'Capacity=528.23 cfs	Inflow=0.26 cfs 0.094 af Outflow=0.26 cfs 0.094 af
Pond EP81: Middle Portion of Wetland       Peak Elev=233.55'       Storage=4,343 c	f Inflow=0.78 cfs 0.122 af Outflow=0.06 cfs 0.028 af
Link L100: Northern Wetlands & North of Site	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af
Link L200: Inlet at Start of Redemption Rd; West Side	Inflow=0.05 cfs 0.040 af Primary=0.05 cfs 0.040 af
Link L300: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=0.01 cfs 0.003 af Primary=0.01 cfs 0.003 af
Link L400: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=0.26 cfs 0.100 af Primary=0.26 cfs 0.100 af
Link L500: Inlet at Start of Gravel Drive; East Side	Inflow=0.13 cfs 0.034 af Primary=0.13 cfs 0.034 af

Total Runoff Area = 16.590 acRunoff Volume = 0.271 afAverage Runoff Depth = 0.20"97.37% Pervious = 16.154 ac2.63% Impervious = 0.436 ac

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 3 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method Subcatchment ES1: Northwest portion of Runoff Area=101,408 sf 0.00% Impervious Runoff Depth=0.41" Flow Length=373' Tc=15.4 min CN=47 Runoff=0.21 cfs 0.079 af Runoff Area=74,872 sf 0.00% Impervious Runoff Depth=0.29" Subcatchment ES10: East portion of Flow Length=235' Tc=14.8 min CN=44 Runoff=0.08 cfs 0.041 af Subcatchment ES11: South-center portion Runoff Area=15,431 sf 13.51% Impervious Runoff Depth=0.79" Flow Length=151' Tc=11.4 min CN=55 Runoff=0.15 cfs 0.023 af Runoff Area=32,533 sf 0.00% Impervious Runoff Depth=0.45" Subcatchment ES12: Southeast portion of Flow Length=340' Tc=21.6 min CN=48 Runoff=0.08 cfs 0.028 af Runoff Area=10,721 sf 19.78% Impervious Runoff Depth=0.59" Subcatchment ES12A: Eastern Corner of Flow Length=135' Tc=7.7 min CN=51 Runoff=0.06 cfs 0.012 af Subcatchment ES13: South-center portion Runoff Area=51,080 sf 6.39% Impervious Runoff Depth=0.64" Flow Length=357' Tc=26.6 min CN=52 Runoff=0.23 cfs 0.062 af Subcatchment ES14: Southwest portion of Runoff Area=54,233 sf 10.48% Impervious Runoff Depth=1.02" Flow Length=531' Tc=12.7 min CN=59 Runoff=0.77 cfs 0.106 af Runoff Area=71,666 sf 0.38% Impervious Runoff Depth=0.37" Subcatchment ES15: 1/2 South-center Flow Length=457' Tc=20.8 min CN=46 Runoff=0.11 cfs 0.050 af Subcatchment ES16: Southwest portion of Runoff Area=75,770 sf 0.00% Impervious Runoff Depth=0.49" Flow Length=569' Tc=18.4 min CN=49 Runoff=0.23 cfs 0.072 af Subcatchment ES3: Northern corner portion Runoff Area=15,930 sf 0.00% Impervious Runoff Depth=0.10" Flow Length=130' Slope=0.0400 '/' Tc=10.8 min CN=38 Runoff=0.00 cfs 0.003 af Runoff Area=9,025 sf 0.00% Impervious Runoff Depth=0.00" Subcatchment ES4: North of gravel drive Flow Length=215' Tc=11.7 min CN=30 Runoff=0.00 cfs 0.000 af Runoff Area=13,071 sf 0.00% Impervious Runoff Depth=0.00" Subcatchment ES5: Northwest of gravel Flow Length=100' Tc=11.2 min CN=30 Runoff=0.00 cfs 0.000 af Runoff Area=56,735 sf 0.00% Impervious Runoff Depth=0.54" Subcatchment ES6: East-center portion of Flow Length=417' Tc=14.2 min CN=50 Runoff=0.23 cfs 0.059 af Subcatchment ES7: Northwest portion of Runoff Area=84,458 sf 0.00% Impervious Runoff Depth=1.75" Flow Length=398' Tc=23.9 min CN=70 Runoff=1.86 cfs 0.283 af Runoff Area=55,723 sf 9.96% Impervious Runoff Depth=1.20" Subcatchment ES9: West portion of Flow Length=344' Tc=12.7 min CN=62 Runoff=1.01 cfs 0.128 af Avg. Flow Depth=0.00' Max Vel=0.31 fps Inflow=0.00 cfs 0.003 af **Reach ER70: Wetlands Starting North** n=0.035 L=350.0' S=0.0100 '/' Capacity=328.04 cfs Outflow=0.00 cfs 0.003 af

<b>Turbocam Predevelopment 01</b> <i>NH Route 9 Barrington NH 24-hr S1 10-</i> Prepared by Microsoft	yr 10-yr Rainfall=4.61" Printed 2/7/2020
	Page 42
Reach ER71: Sheet Flow on EasternAvg. Flow Depth=0.00'Max Vel=0.00 fpsn=0.240L=210.0'S=0.0548 '/'Capacity=50.29 cfs	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach ER72: Northwest WetlandsAvg. Flow Depth=0.02'Max Vel=0.49 fpsn=0.035L=140.0'S=0.0250 '/'Capacity=699.46 cfs	Inflow=0.21 cfs 0.082 af Outflow=0.20 cfs 0.082 af
Reach ER73: Wetlands Flowing on Map Avg. Flow Depth=0.02' Max Vel=0.75 fps n=0.035 L=340.0' S=0.0382 '/' Capacity=771.38 cfs	Inflow=0.39 cfs 0.141 af Outflow=0.38 cfs 0.141 af
Reach ER81: SE Portion of Middle Lot Avg. Flow Depth=0.18' Max Vel=0.11 fps n=0.750 L=370.0' S=0.0554 '/' Capacity=13.04 cfs	Inflow=0.42 cfs 0.189 af Outflow=0.31 cfs 0.189 af
Reach ER83: Swale Located on North Avg. Flow Depth=0.06' Max Vel=0.58 fps n=0.035 L=140.0' S=0.0071 '/' Capacity=123.09 cfs	Inflow=0.31 cfs 0.090 af Outflow=0.31 cfs 0.090 af
Reach ER84: Swale Located on North Avg. Flow Depth=0.08' Max Vel=0.67 fps n=0.035 L=140.0' S=0.0071 '/' Capacity=239.10 cfs	Inflow=0.34 cfs 0.102 af Outflow=0.34 cfs 0.102 af
Reach ER85: End of Swale located n=0.035Avg. Flow Depth=0.17'Max Vel=1.39 fpsn=0.035L=75.0'S=0.0133 '/'Capacity=528.23 cfs	Inflow=1.06 cfs 0.420 af Outflow=1.06 cfs 0.420 af
Pond EP81: Middle Portion of Wetland       Peak Elev=233.68'       Storage=5,093 c	f Inflow=1.86 cfs 0.283 af Outflow=0.42 cfs 0.189 af
Link L100: Northern Wetlands & North of Site	Inflow=0.00 cfs 0.003 af Primary=0.00 cfs 0.003 af
Link L200: Inlet at Start of Redemption Rd; West Side	Inflow=0.70 cfs 0.262 af Primary=0.70 cfs 0.262 af
Link L300: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=0.08 cfs 0.041 af Primary=0.08 cfs 0.041 af
Link L400: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=1.21 cfs 0.443 af Primary=1.21 cfs 0.443 af
Link L500: Inlet at Start of Gravel Drive; East Side	Inflow=0.77 cfs 0.106 af Primary=0.77 cfs 0.106 af

Total Runoff Area = 16.590 acRunoff Volume = 0.947 afAverage Runoff Depth = 0.68"97.37% Pervious = 16.154 ac2.63% Impervious = 0.436 ac

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 3 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method Subcatchment ES1: Northwest portion of Runoff Area=101,408 sf 0.00% Impervious Runoff Depth=0.86" Flow Length=373' Tc=15.4 min CN=47 Runoff=0.79 cfs 0.167 af Runoff Area=74,872 sf 0.00% Impervious Runoff Depth=0.67" Subcatchment ES10: East portion of Flow Length=235' Tc=14.8 min CN=44 Runoff=0.34 cfs 0.097 af Subcatchment ES11: South-center portion Runoff Area=15,431 sf 13.51% Impervious Runoff Depth=1.42" Flow Length=151' Tc=11.4 min CN=55 Runoff=0.32 cfs 0.042 af Runoff Area=32,533 sf 0.00% Impervious Runoff Depth=0.93" Subcatchment ES12: Southeast portion of Flow Length=340' Tc=21.6 min CN=48 Runoff=0.26 cfs 0.058 af Runoff Area=10,721 sf 19.78% Impervious Runoff Depth=1.13" Subcatchment ES12A: Eastern Corner of Flow Length=135' Tc=7.7 min CN=51 Runoff=0.18 cfs 0.023 af Subcatchment ES13: South-center portion Runoff Area=51,080 sf 6.39% Impervious Runoff Depth=1.20" Flow Length=357' Tc=26.6 min CN=52 Runoff=0.57 cfs 0.117 af Subcatchment ES14: Southwest portion of Runoff Area=54,233 sf 10.48% Impervious Runoff Depth=1.73" Flow Length=531' Tc=12.7 min CN=59 Runoff=1.41 cfs 0.180 af Runoff Area=71,666 sf 0.38% Impervious Runoff Depth=0.80" Subcatchment ES15: 1/2 South-center Flow Length=457' Tc=20.8 min CN=46 Runoff=0.43 cfs 0.109 af Subcatchment ES16: Southwest portion of Runoff Area=75,770 sf 0.00% Impervious Runoff Depth=0.99" Flow Length=569' Tc=18.4 min CN=49 Runoff=0.73 cfs 0.144 af Subcatchment ES3: Northern corner portion Runoff Area=15,930 sf 0.00% Impervious Runoff Depth=0.35" Flow Length=130' Slope=0.0400 '/' Tc=10.8 min CN=38 Runoff=0.02 cfs 0.011 af Runoff Area=9,025 sf 0.00% Impervious Runoff Depth=0.06" Subcatchment ES4: North of gravel drive Flow Length=215' Tc=11.7 min CN=30 Runoff=0.00 cfs 0.001 af Runoff Area=13,071 sf 0.00% Impervious Runoff Depth=0.06" Subcatchment ES5: Northwest of gravel Flow Length=100' Tc=11.2 min CN=30 Runoff=0.00 cfs 0.001 af Runoff Area=56,735 sf 0.00% Impervious Runoff Depth=1.06" Subcatchment ES6: East-center portion of Flow Length=417' Tc=14.2 min CN=50 Runoff=0.68 cfs 0.115 af Subcatchment ES7: Northwest portion of Runoff Area=84,458 sf 0.00% Impervious Runoff Depth=2.67" Flow Length=398' Tc=23.9 min CN=70 Runoff=2.79 cfs 0.432 af Runoff Area=55,723 sf 9.96% Impervious Runoff Depth=1.98" Subcatchment ES9: West portion of Flow Length=344' Tc=12.7 min CN=62 Runoff=1.71 cfs 0.211 af Avg. Flow Depth=0.00' Max Vel=0.31 fps Inflow=0.02 cfs 0.011 af **Reach ER70: Wetlands Starting North** n=0.035 L=350.0' S=0.0100 '/' Capacity=328.04 cfs Outflow=0.01 cfs 0.011 af

<b>Turbocam Predevelopment 01</b> <i>NH Route 9 Barrington NH 24-hr S1 25-</i> Prepared by Microsoft HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC	yr 25-yr Rainfall=5.83" Printed 2/7/2020 Page 44
Reach ER71: Sheet Flow on Eastern Avg. Flow Depth=0.01' Max Vel=0.10 fps n=0.240 L=210.0' S=0.0548 '/' Capacity=50.29 cfs	Inflow=0.00 cfs 0.002 af Outflow=0.00 cfs 0.002 af
Reach ER72: Northwest WetlandsAvg. Flow Depth=0.04'Max Vel=0.77 fpsn=0.035L=140.0'S=0.0250 '/'Capacity=699.46 cfs	Inflow=0.79 cfs 0.180 af Outflow=0.77 cfs 0.180 af
Reach ER73: Wetlands Flowing on Map Avg. Flow Depth=0.05' Max Vel=1.19 fps n=0.035 L=340.0' S=0.0382 '/' Capacity=771.38 cfs	Inflow=1.40 cfs 0.295 af Outflow=1.32 cfs 0.295 af
Reach ER81: SE Portion of Middle Lot Avg. Flow Depth=0.28' Max Vel=0.15 fps n=0.750 L=370.0' S=0.0554 '/' Capacity=13.04 cfs	Inflow=1.25 cfs 0.338 af Outflow=0.84 cfs 0.338 af
Reach ER83: Swale Located on North Avg. Flow Depth=0.12' Max Vel=0.83 fps n=0.035 L=140.0' S=0.0071 '/' Capacity=123.09 cfs	Inflow=0.82 cfs 0.175 af Outflow=0.81 cfs 0.175 af
Reach ER84: Swale Located on North Avg. Flow Depth=0.15' Max Vel=0.95 fps n=0.035 L=140.0' S=0.0071 '/' Capacity=239.10 cfs	Inflow=0.89 cfs 0.198 af Outflow=0.89 cfs 0.198 af
Reach ER85: End of Swale located n=0.035Avg. Flow Depth=0.25'Max Vel=1.76 fpsn=0.035L=75.0'S=0.0133 '/'Capacity=528.23 cfs	Inflow=2.12 cfs 0.746 af Outflow=2.12 cfs 0.746 af
Pond EP81: Middle Portion of Wetland       Peak Elev=233.88'       Storage=6,305 c	f Inflow=2.79 cfs 0.432 af Outflow=1.25 cfs 0.338 af
Link L100: Northern Wetlands & North of Site	Inflow=0.02 cfs 0.011 af Primary=0.02 cfs 0.011 af
Link L200: Inlet at Start of Redemption Rd; West Side	Inflow=2.46 cfs 0.548 af Primary=2.46 cfs 0.548 af
Link L300: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=0.34 cfs 0.097 af Primary=0.34 cfs 0.097 af
Link L400: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=2.42 cfs 0.788 af Primary=2.42 cfs 0.788 af
Link L500: Inlet at Start of Gravel Drive; East Side	Inflow=1.41 cfs 0.180 af Primary=1.41 cfs 0.180 af

Total Runoff Area = 16.590 acRunoff Volume = 1.706 afAverage Runoff Depth = 1.23"97.37% Pervious = 16.154 ac2.63% Impervious = 0.436 ac

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 3 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method Subcatchment ES1: Northwest portion of Runoff Area=101,408 sf 0.00% Impervious Runoff Depth=1.39" Flow Length=373' Tc=15.4 min CN=47 Runoff=1.57 cfs 0.270 af Runoff Area=74,872 sf 0.00% Impervious Runoff Depth=1.14" Subcatchment ES10: East portion of Flow Length=235' Tc=14.8 min CN=44 Runoff=0.84 cfs 0.163 af Subcatchment ES11: South-center portion Runoff Area=15,431 sf 13.51% Impervious Runoff Depth=2.10" Flow Length=151' Tc=11.4 min CN=55 Runoff=0.49 cfs 0.062 af Runoff Area=32,533 sf 0.00% Impervious Runoff Depth=1.48" Subcatchment ES12: Southeast portion of Flow Length=340' Tc=21.6 min CN=48 Runoff=0.48 cfs 0.092 af Runoff Area=10,721 sf 19.78% Impervious Runoff Depth=1.74" Subcatchment ES12A: Eastern Corner of Flow Length=135' Tc=7.7 min CN=51 Runoff=0.30 cfs 0.036 af Subcatchment ES13: South-center portion Runoff Area=51,080 sf 6.39% Impervious Runoff Depth=1.83" Flow Length=357' Tc=26.6 min CN=52 Runoff=0.93 cfs 0.179 af Subcatchment ES14: Southwest portion of Runoff Area=54,233 sf 10.48% Impervious Runoff Depth=2.49" Flow Length=531' Tc=12.7 min CN=59 Runoff=2.01 cfs 0.258 af Runoff Area=71,666 sf 0.38% Impervious Runoff Depth=1.31" Subcatchment ES15: 1/2 South-center Flow Length=457' Tc=20.8 min CN=46 Runoff=0.88 cfs 0.179 af Subcatchment ES16: Southwest portion of Runoff Area=75,770 sf 0.00% Impervious Runoff Depth=1.56" Flow Length=569' Tc=18.4 min CN=49 Runoff=1.31 cfs 0.226 af Subcatchment ES3: Northern corner portion Runoff Area=15,930 sf 0.00% Impervious Runoff Depth=0.69" Flow Length=130' Slope=0.0400 '/' Tc=10.8 min CN=38 Runoff=0.06 cfs 0.021 af Runoff Area=9,025 sf 0.00% Impervious Runoff Depth=0.21" Subcatchment ES4: North of gravel drive Flow Length=215' Tc=11.7 min CN=30 Runoff=0.00 cfs 0.004 af Runoff Area=13,071 sf 0.00% Impervious Runoff Depth=0.21" Subcatchment ES5: Northwest of gravel Flow Length=100' Tc=11.2 min CN=30 Runoff=0.01 cfs 0.005 af Subcatchment ES6: East-center portion of Runoff Area=56,735 sf 0.00% Impervious Runoff Depth=1.65" Flow Length=417' Tc=14.2 min CN=50 Runoff=1.18 cfs 0.179 af Subcatchment ES7: Northwest portion of Runoff Area=84,458 sf 0.00% Impervious Runoff Depth=3.59" Flow Length=398' Tc=23.9 min CN=70 Runoff=3.63 cfs 0.581 af Runoff Area=55,723 sf 9.96% Impervious Runoff Depth=2.78" Subcatchment ES9: West portion of Flow Length=344' Tc=12.7 min CN=62 Runoff=2.36 cfs 0.296 af Avg. Flow Depth=0.01' Max Vel=0.31 fps Inflow=0.06 cfs 0.021 af **Reach ER70: Wetlands Starting North** n=0.035 L=350.0' S=0.0100 '/' Capacity=328.04 cfs Outflow=0.04 cfs 0.021 af

<b>Turbocam Predevelopment 01</b> <i>NH Route 9 Barrington NH 24-hr S1 50-</i> Prepared by Microsoft	yr 50-yr Rainfall=6.97" Printed 2/7/2020
HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC	Page 46
Reach ER71: Sheet Flow on Eastern Avg. Flow Depth=0.02' Max Vel=0.11 fps n=0.240 L=210.0' S=0.0548 '/' Capacity=50.29 cfs	Inflow=0.01 cfs 0.009 af Outflow=0.01 cfs 0.009 af
Reach ER72: Northwest WetlandsAvg. Flow Depth=0.06'Max Vel=1.02 fpsn=0.035L=140.0'S=0.0250 '/'Capacity=699.46 cfs	Inflow=1.58 cfs 0.299 af Outflow=1.56 cfs 0.299 af
Reach ER73: Wetlands Flowing on Map Avg. Flow Depth=0.08' Max Vel=1.53 fps n=0.035 L=340.0' S=0.0382 '/' Capacity=771.38 cfs	Inflow=2.68 cfs 0.478 af Outflow=2.59 cfs 0.478 af
Reach ER81: SE Portion of Middle Lot Avg. Flow Depth=0.37' Max Vel=0.18 fps n=0.750 L=370.0' S=0.0554 '/' Capacity=13.04 cfs	Inflow=3.45 cfs 0.487 af Outflow=1.49 cfs 0.487 af
Reach ER83: Swale Located on North Avg. Flow Depth=0.16' Max Vel=1.02 fps n=0.035 L=140.0' S=0.0071 '/' Capacity=123.09 cfs	Inflow=1.40 cfs 0.271 af Outflow=1.39 cfs 0.271 af
Reach ER84: Swale Located on North Avg. Flow Depth=0.20' Max Vel=1.15 fps n=0.035 L=140.0' S=0.0071 '/' Capacity=239.10 cfs	Inflow=1.51 cfs 0.306 af Outflow=1.51 cfs 0.306 af
Reach ER85: End of Swale located n=0.035Avg. Flow Depth=0.32'Max Vel=2.03 fpsn=0.035L=75.0'S=0.0133 '/'Capacity=528.23 cfs	Inflow=3.28 cfs 1.089 af Outflow=3.27 cfs 1.089 af
Pond EP81: Middle Portion of Wetland       Peak Elev=234.25'       Storage=7,132 c	f Inflow=3.63 cfs 0.581 af Outflow=3.45 cfs 0.487 af
Link L100: Northern Wetlands & North of Site	Inflow=0.06 cfs 0.021 af Primary=0.06 cfs 0.021 af
Link L200: Inlet at Start of Redemption Rd; West Side	Inflow=4.75 cfs 0.884 af Primary=4.75 cfs 0.884 af
Link L300: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=0.84 cfs 0.163 af Primary=0.84 cfs 0.163 af
Link L400: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=3.73 cfs 1.151 af Primary=3.73 cfs 1.151 af
Link L500: Inlet at Start of Gravel Drive; East Side	Inflow=2.01 cfs 0.258 af Primary=2.01 cfs 0.258 af

Total Runoff Area = 16.590 acRunoff Volume = 2.550 afAverage Runoff Depth = 1.84"97.37% Pervious = 16.154 ac2.63% Impervious = 0.436 ac

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 3 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method Subcatchment ES1: Northwest portion of Runoff Area=101,408 sf 0.00% Impervious Runoff Depth=4.95" Flow Length=373' Tc=15.4 min CN=47 Runoff=6.25 cfs 0.960 af Runoff Area=74,872 sf 0.00% Impervious Runoff Depth=4.44" Subcatchment ES10: East portion of Flow Length=235' Tc=14.8 min CN=44 Runoff=4.12 cfs 0.636 af Subcatchment ES11: South-center portion Runoff Area=15,431 sf 13.51% Impervious Runoff Depth=6.28" Flow Length=151' Tc=11.4 min CN=55 Runoff=1.39 cfs 0.185 af Runoff Area=32,533 sf 0.00% Impervious Runoff Depth=5.12" Subcatchment ES12: Southeast portion of Flow Length=340' Tc=21.6 min CN=48 Runoff=1.82 cfs 0.319 af Runoff Area=10,721 sf 19.78% Impervious Runoff Depth=5.62" Subcatchment ES12A: Eastern Corner of Flow Length=135' Tc=7.7 min CN=51 Runoff=0.99 cfs 0.115 af Subcatchment ES13: South-center portion Runoff Area=51,080 sf 6.39% Impervious Runoff Depth=5.79" Flow Length=357' Tc=26.6 min CN=52 Runoff=2.99 cfs 0.565 af Subcatchment ES14: Southwest portion of Runoff Area=54,233 sf 10.48% Impervious Runoff Depth=6.92" Flow Length=531' Tc=12.7 min CN=59 Runoff=5.21 cfs 0.718 af Runoff Area=71,666 sf 0.38% Impervious Runoff Depth=4.78" Subcatchment ES15: 1/2 South-center Flow Length=457' Tc=20.8 min CN=46 Runoff=3.75 cfs 0.655 af Subcatchment ES16: Southwest portion of Runoff Area=75,770 sf 0.00% Impervious Runoff Depth=5.29" Flow Length=569' Tc=18.4 min CN=49 Runoff=4.70 cfs 0.766 af Subcatchment ES3: Northern corner portion Runoff Area=15,930 sf 0.00% Impervious Runoff Depth=3.40" Flow Length=130' Slope=0.0400 '/' Tc=10.8 min CN=38 Runoff=0.70 cfs 0.104 af Runoff Area=9,025 sf 0.00% Impervious Runoff Depth=2.01" Subcatchment ES4: North of gravel drive Flow Length=215' Tc=11.7 min CN=30 Runoff=0.17 cfs 0.035 af Subcatchment ES5: Northwest of gravel Runoff Area=13,071 sf 0.00% Impervious Runoff Depth=2.01" Flow Length=100' Tc=11.2 min CN=30 Runoff=0.24 cfs 0.050 af Subcatchment ES6: East-center portion of Runoff Area=56,735 sf 0.00% Impervious Runoff Depth=5.45" Flow Length=417' Tc=14.2 min CN=50 Runoff=4.04 cfs 0.592 af Subcatchment ES7: Northwest portion of Runoff Area=84,458 sf 0.00% Impervious Runoff Depth=8.60" Flow Length=398' Tc=23.9 min CN=70 Runoff=7.75 cfs 1.390 af Runoff Area=55,723 sf 9.96% Impervious Runoff Depth=7.39" Subcatchment ES9: West portion of Flow Length=344' Tc=12.7 min CN=62 Runoff=5.72 cfs 0.788 af Avg. Flow Depth=0.06' Max Vel=0.61 fps Inflow=0.70 cfs 0.104 af **Reach ER70: Wetlands Starting North** n=0.035 L=350.0' S=0.0100 '/' Capacity=328.04 cfs Outflow=0.56 cfs 0.104 af

<b>Turbocam Predevelopmen</b> <i>NH Route 9 Barrington NH 24-hr S1 500-y</i>	r 500-yr Rainfall=12.60"
Prepared by Microsoft	Printed 2/7/2020
HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC	Page 48
Reach ER71: Sheet Flow on Eastern Avg. Flow Depth=0.17' Max Vel=0.39 f	os Inflow=0.41 cfs 0.085 af
n=0.240 L=210.0' S=0.0548 '/' Capacity=50.29 cfs	Outflow=0.33 cfs 0.085 af
Reach ER72: Northwest Wetlands Avg. Flow Depth=0.15' Max Vel=1.82 f	ps Inflow=7.07 cfs 1.149 af
n=0.035 L=140.0' S=0.0250 '/' Capacity=699.46 cfs	Outflow=7.04 cfs 1.149 af
Reach ER73: Wetlands Flowing on Map Avg. Flow Depth=0.19' Max Vel=2.62 fp	s Inflow=10.99 cfs 1.741 af
n=0.035 L=340.0' S=0.0382 '/' Capacity=771.38 cfs	Outflow=10.84 cfs 1.741 af
Reach ER81: SE Portion of Middle Lot Avg. Flow Depth=0.68' Max Vel=0.27 f	ps Inflow=8.60 cfs 1.296 af
n=0.750 L=370.0' S=0.0554 '/' Capacity=13.04 cfs	Outflow=5.61 cfs 1.296 af
Reach ER83: Swale Located on North Avg. Flow Depth=0.33' Max Vel=1.59 f	ps Inflow=4.75 cfs 0.884 af
n=0.035 L=140.0' S=0.0071 '/' Capacity=123.09 cfs	Outflow=4.74 cfs 0.884 af
Reach ER84: Swale Located on North Avg. Flow Depth=0.41' Max Vel=1.76 f	ps Inflow=5.16 cfs 0.999 af
n=0.035 L=140.0' S=0.0071 '/' Capacity=239.10 cfs	Outflow=5.15 cfs 0.999 af
Reach ER85: End of Swale located Avg. Flow Depth=0.70' Max Vel=3.12 fpa	s Inflow=13.29 cfs 3.083 af
n=0.035 L=75.0' S=0.0133 '/' Capacity=528.23 cfs	Outflow=13.29 cfs 3.083 af
Pond EP81: Middle Portion of Wetland       Peak Elev=234.89'       Storage=7,132	cf Inflow=7.75 cfs 1.390 af Outflow=8.60 cfs 1.296 af
Link L100: Northern Wetlands & North of Site	Inflow=0.70 cfs 0.104 af Primary=0.70 cfs 0.104 af
Link L200: Inlet at Start of Redemption Rd; West Side	Inflow=19.19 cfs 3.162 af Primary=19.19 cfs 3.162 af
Link L300: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=4.12 cfs 0.636 af Primary=4.12 cfs 0.636 af
Link L400: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=14.07 cfs 3.269 af Primary=14.07 cfs 3.269 af
Link L500: Inlet at Start of Gravel Drive; East Side	Inflow=5.21 cfs 0.718 af Primary=5.21 cfs 0.718 af

Total Runoff Area = 16.590 acRunoff Volume = 7.879 af<br/>97.37% Pervious = 16.154 acAverage Runoff Depth = 5.70"<br/>2.63% Impervious = 0.436 ac



NOTES:


**Turbocam Postdevelopment Final 02-21-20** 

Prepared by Microsoft HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC

# Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
2.680	30	Woods, Good, HSG A (PS1, PS11, PS23, PS24, PS25, PS26, PS29, PS3, PS8,
		PS9)
4.299	39	>75% Grass cover, Good, HSG A (PS1, PS10, PS11, PS12, PS13, PS17, PS20,
		PS23, PS24, PS25, PS26, PS28, PS29, PS3, PS30, PS4, PS7, PS8, PS9)
0.472	55	Woods, Good, HSG B (PS1, PS11, PS23, PS8)
0.250	61	>75% Grass cover, Good, HSG B (PS1, PS11, PS12, PS23)
5.050	70	Woods, Good, HSG C (PS1, PS10, PS11, PS23, PS24, PS25, PS26, PS29, PS3,
		PS4, PS6, PS8, PS9)
1.343	74	>75% Grass cover, Good, HSG C (PS11, PS12, PS13, PS14, PS26, PS28, PS30,
		PS4, PS6)
0.033	96	Gravel surface, HSG A (PS25)
1.259	98	Paved parking, HSG A (PS10, PS12, PS13, PS17, PS20, PS25, PS26, PS28, PS29,
		PS30, PS4, PS7, PS8)
0.023	98	Paved parking, HSG B (PS12)
0.502	98	Paved parking, HSG C (PS13, PS14, PS28, PS30, PS4)
0.286	98	Roofs, HSG A (PS16, PS19, PS22, PS4)
0.350	98	Roofs, HSG C (PS15, PS16, PS22)
0.016	98	Water Surface, 0% imp, HSG A (PS16, PS19)
0.027	98	Water Surface, 0% imp, HSG C (PS15, PS16, PS22)
16.590	59	TOTAL AREA

# Soil Listing (all nodes)

Are	a Soil	Subcatchment
(acres	s) Group	Numbers
8.57	3 HSG A	PS1, PS10, PS11, PS12, PS13, PS16, PS17, PS19, PS20, PS22, PS23, PS24,
		PS25, PS26, PS28, PS29, PS3, PS30, PS4, PS7, PS8, PS9
0.74	4 HSG B	PS1, PS11, PS12, PS23, PS8
7.27	3 HSG C	PS1, PS10, PS11, PS12, PS13, PS14, PS15, PS16, PS22, PS23, PS24, PS25,
		PS26, PS28, PS29, PS3, PS30, PS4, PS6, PS8, PS9
0.00	0 HSG D	
0.00	0 Other	
16.59	0	TOTAL AREA

Ground Covers (all nodes)											
	HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment			
	(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers			
	4.299	0.250	1.343	0.000	0.000	5.892	>75% Grass cover, Good	PS1,			
								PS10,			
								PS11,			
								PS12,			
								PS13,			
								PS14,			
								PS17,			
								PS20,			
								PS23,			
								PS24,			
								PS25,			
								PS26,			
								PS28,			
								PS29,			
								PS3,			
								PS30,			
								PS4,			
								PS6,			
								PS7,			
								PS8, PS9			
	1.259	0.023	0.502	0.000	0.000	1.785	Paved parking	PS10,			
								PS12,			
								PS13,			
								PS14,			
								PS17,			
								PS20,			
								PS25,			
								PS26,			
								PS28,			
								PS29,			
								PS30,			
								PS4,			
								PS7, PS8			
	0.286	0.000	0.350	0.000	0.000	0.636	Roofs	PS15,			
								PS16,			
								PS19,			
								PS22,			
	0.000	0.000	0.000	0.000	0.000	0.000		PS4			
	0.033	0.000	0.000	0.000	0.000	0.033		PS25			
	2.680	0.472	5.050	0.000	0.000	8.201	vvoods, Good	PS1,			
								PS10,			
								PST1,			
								P523,			
								PS24			

PS25, PS26,

Ground Govers (an nodes) (continued)											
HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers				
0.016	0.000	0.027	0.000	0.000	0.043	Water Surface, 0% imp	PS15, PS16, PS19, PS22				
8.573	0.744	7.273	0.000	0.000	16.590	TOTAL AREA					

# Ground Covers (all nodes) (continued)

Turbocam Postdevelopment Final 02-21-20 Prepared by Microsoft HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC

Printed 2/26/2020 Page 6

Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Diam/Width	Height	Inside-Fill
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
1	BR1	226.00	224.50	195.0	0.0077	0.010	6.0	0.0	0.0
2	BR1	227.67	226.20	195.0	0.0075	0.013	15.0	0.0	0.0
3	BR2	227.00	226.50	115.0	0.0043	0.010	6.0	0.0	0.0
4	BR2	228.75	228.00	115.0	0.0065	0.013	18.0	0.0	0.0
5	DE1	232.60	232.30	35.0	0.0086	0.010	6.0	0.0	0.0
6	DE2	232.50	232.40	40.0	0.0025	0.010	6.0	0.0	0.0
7	DE3	235.37	235.37	40.0	0.0000	0.010	8.0	0.0	0.0
8	DE4	234.37	234.37	100.0	0.0000	0.010	8.0	0.0	0.0
9	PCB2	211.70	211.10	115.0	0.0052	0.013	12.0	0.0	0.0
10	PCB4	232.37	232.03	135.0	0.0025	0.010	15.0	0.0	0.0
11	PDMH1	231.91	231.40	205.0	0.0025	0.010	15.0	0.0	0.0
12	PP108	211.80	211.80	80.0	0.0000	0.013	6.0	0.0	0.0
13	PPT3	232.03	231.91	50.0	0.0024	0.010	15.0	0.0	0.0
14	SI1	228.25	221.00	70.0	0.1036	0.010	12.0	0.0	0.0

# Pipe Listing (all nodes)

Turbocam Postdevelopment FNH Route 9 Barrington NH 24-hr S1 10-yr10-yr Rainfall=4.61"Prepared by MicrosoftPrinted 2/26/2020HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLCPage 7

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 2 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method Subcatchment PS1: Northwest portion of Runoff Area=101,958 sf 0.00% Impervious Runoff Depth=0.45" Flow Length=373' Tc=15.4 min CN=48 Runoff=0.26 cfs 0.088 af Subcatchment PS10: South-center portion Runoff Area=15,431 sf 13.51% Impervious Runoff Depth=0.79" Flow Length=151' Tc=11.4 min CN=55 Runoff=0.15 cfs 0.023 af Subcatchment PS11: Eastern portion of Runoff Area=33,128 sf 0.00% Impervious Runoff Depth=0.59" Flow Length=312' Tc=20.7 min CN=51 Runoff=0.14 cfs 0.037 af Subcatchment PS12: South-center portion Runoff Area=47,403 sf 8.55% Impervious Runoff Depth=0.96" Flow Length=242' Tc=11.8 min CN=58 Runoff=0.64 cfs 0.087 af Runoff Area=21,222 sf 17.10% Impervious Runoff Depth=1.98" Subcatchment PS13: Area north of prop. Flow Length=245' Tc=8.9 min CN=73 Runoff=0.83 cfs 0.080 af Runoff Area=7,728 sf 70.54% Impervious Runoff Depth=3.60" Subcatchment PS14: Area at Flow Length=107' Tc=3.4 min CN=91 Runoff=0.70 cfs 0.053 af Subcatchment PS15: NE corner of building Runoff Area=8,288 sf 93.93% Impervious Runoff Depth=4.37" Flow Length=62' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.86 cfs 0.069 af Subcatchment PS16: NW corner of building Runoff Area=6,627 sf 93.98% Impervious Runoff Depth=4.37" Flow Length=62' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.68 cfs 0.055 af Subcatchment PS17: Parking Lot West of Runoff Area=13,293 sf 91.70% Impervious Runoff Depth=3.82" Flow Length=110' Tc=1.1 min CN=93 Runoff=1.29 cfs 0.097 af Subcatchment PS19: SW corner of building Runoff Area=6,734 sf 92.81% Impervious Runoff Depth=4.37" Flow Length=50' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.70 cfs 0.056 af Runoff Area=4,622 sf 81.03% Impervious Runoff Depth=3.20" Subcatchment PS20: Parking Lot Flow Length=88' Slope=0.0170 '/' Tc=1.0 min CN=87 Runoff=0.40 cfs 0.028 af Subcatchment PS22: SE corner of building Runoff Area=6,730 sf 92.87% Impervious Runoff Depth=4.37" Flow Length=50' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.70 cfs 0.056 af Subcatchment PS23: Area between building Runoff Area=13,335 sf 0.00% Impervious Runoff Depth=0.69" Flow Length=157' Tc=3.7 min CN=53 Runoff=0.15 cfs 0.018 af Subcatchment PS24: Southwest portion of Runoff Area=75,770 sf 0.00% Impervious Runoff Depth=0.49" Flow Length=569' Tc=18.4 min CN=49 Runoff=0.23 cfs 0.072 af Subcatchment PS25: Area that contains Runoff Area=30,280 sf 1.00% Impervious Runoff Depth=0.29" Flow Length=386' Tc=7.5 min CN=44 Runoff=0.03 cfs 0.017 af Subcatchment PS26: Area containg Link Runoff Area=16,294 sf 25.02% Impervious Runoff Depth=0.96" Flow Length=252' Tc=5.0 min CN=58 Runoff=0.30 cfs 0.030 af

urbocam Postdevelopment FNH Route 9 Barrington NH 24-hr S1 10-yr10-yr Rainfall=4.61repared by MicrosoftPrinted 2/26/2020ydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLCPage 8
ubcatchment PS28: area at south edge of Runoff Area=9,699 sf 56.14% Impervious Runoff Depth=2.30 Flow Length=168' Tc=0.9 min CN=77 Runoff=0.62 cfs 0.043 a
ubcatchment PS29: Area between Prop. Runoff Area=10,273 sf 22.32% Impervious Runoff Depth=0.79 Flow Length=82' Tc=5.3 min CN=55 Runoff=0.13 cfs 0.016 a
ubcatchment PS3: Northern corner portion Runoff Area=20,440 sf 0.00% Impervious Runoff Depth=0.29 Flow Length=222' Slope=0.0100 '/' Tc=11.7 min CN=44 Runoff=0.02 cfs 0.011 a
ubcatchment PS30: Parking LotRunoff Area=26,697 sf62.68% ImperviousRunoff Depth=2.73Flow Length=248'Tc=1.5 minCN=82Runoff=1.99 cfs0.140 a
ubcatchment PS4: Lower north corner of Runoff Area=40,570 sf 27.77% Impervious Runoff Depth=2.38 Flow Length=325' Tc=12.0 min CN=78 Runoff=1.73 cfs 0.185 a
ubcatchment PS6: Northeast area of Runoff Area=64,817 sf 0.00% Impervious Runoff Depth=1.75 Flow Length=294' Tc=23.9 min CN=70 Runoff=1.43 cfs 0.217 a
ubcatchment PS7: Eastern Corner of Runoff Area=10,721 sf 19.78% Impervious Runoff Depth=0.59 Flow Length=135' Tc=7.7 min CN=51 Runoff=0.06 cfs 0.012 a
ubcatchment PS8: West portion of Runoff Area=55,723 sf 9.96% Impervious Runoff Depth=1.20 Flow Length=344' Tc=12.7 min CN=62 Runoff=1.01 cfs 0.128 a
ubcatchment PS9: East portion of easterly Runoff Area=74,872 sf 0.00% Impervious Runoff Depth=0.29 Flow Length=235' Tc=14.8 min CN=44 Runoff=0.08 cfs 0.041 a
each ER70: Wetlands Starting North Avg. Flow Depth=0.00' Max Vel=0.31 fps Inflow=0.02 cfs 0.011 a n=0.035 L=350.0' S=0.0100 '/' Capacity=328.04 cfs Outflow=0.02 cfs 0.011 a
each ER72: Northwest Wetlands   Avg. Flow Depth=0.02'   Max Vel=0.45 fps   Inflow=0.26 cfs   0.099 a     n=0.035   L=221.0'   S=0.0158 '/'   Capacity=556.72 cfs   Outflow=0.25 cfs   0.099 a
each ER73: Wetlands Flowing on Map Avg. Flow Depth=0.02' Max Vel=0.66 fps Inflow=0.30 cfs 0.117 a n=0.035 L=320.0' S=0.0406 '/' Capacity=795.12 cfs Outflow=0.28 cfs 0.117 a
each ER81: SE Portion of Middle Lot Avg. Flow Depth=0.14' Max Vel=0.09 fps Inflow=0.21 cfs 0.123 a n=0.750 L=370.0' S=0.0554 '/' Capacity=13.04 cfs Outflow=0.17 cfs 0.123 a
each ER82: Swale Located on North Avg. Flow Depth=0.07' Max Vel=1.04 fps Inflow=0.83 cfs 0.080 a n=0.035 L=150.0' S=0.0200 '/' Capacity=265.19 cfs Outflow=0.79 cfs 0.080 a
each ER84: Swale Located on North Avg. Flow Depth=0.04' Max Vel=0.41 fps Inflow=0.09 cfs 0.032 a n=0.035 L=140.0' S=0.0071 '/' Capacity=239.10 cfs Outflow=0.09 cfs 0.032 a
each ER85: End of Swale located   Avg. Flow Depth=0.16'   Max Vel=1.37 fps   Inflow=1.01 cfs   0.283 a     n=0.035   L=75.0'   S=0.0133 '/'   Capacity=528.23 cfs   Outflow=1.01 cfs   0.283 a
each PR62: Swale South of Proposed Avg. Flow Depth=0.22' Max Vel=3.45 fps Inflow=0.70 cfs 0.053 a n=0.022 L=130.0' S=0.0500 '/' Capacity=37.30 cfs Outflow=0.70 cfs 0.053 a
each PR63: Swale North of gravel Avg. Flow Depth=0.06' Max Vel=2.02 fps Inflow=0.15 cfs 0.091 a n=0.022 L=80.0' S=0.0500 '/' Capacity=50.13 cfs Outflow=0.15 cfs 0.091 a

Turbocam Postdevelopment FNH Route 9 Barrington NH 24-hr S1 10-yr	10-yr Rainfall=4.61"
Prepared by Microsoft	Printed 2/26/2020
HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC	Page 9

Pond BR1: Bioswale-ISR 1 (CB5)Peak Elev=229.65' Storage=2,75Primary=0.05 cfs0.127 afSecondary=2.32 cfs0.181	6 cf Inflow=2.43 cfs 0.308 af af Outflow=2.37 cfs 0.308 af
Pond BR2: Bioswale - ISR 2 (CB3)Peak Elev=230.80' Storage=3,75Primary=0.05 cfs0.144 afSecondary=4.41 cfs0.232	4 cf Inflow=4.93 cfs 0.376 af af Outflow=4.46 cfs 0.376 af
Pond DE1: Drip Edge along NortheasternPeak Elev=233.05'Storage=136.0" Round Culvert x 2.00n=0.010L=35.0'S=0.0086	0 cf Inflow=0.86 cfs 0.069 af '/' Outflow=0.84 cfs 0.068 af
Pond DE2: Drip Edge along NorthwesternPeak Elev=233.35'Storage=166.0" Round Culvertn=0.010L=40.0'S=0.0025	3 cf Inflow=0.68 cfs 0.055 af '/' Outflow=0.58 cfs 0.055 af
Pond DE3: Drip Edge along SouthwesternPeak Elev=236.12'Storage=178.0" Round Culvertn=0.010L=40.0'S=0.0000	7 cf Inflow=0.70 cfs 0.056 af '/' Outflow=0.64 cfs 0.056 af
Pond DE4: Drip Edge along SoutheasternPeak Elev=235.22'Storage=198.0" Round Culvertn=0.010L=100.0'S=0.0000	5 cf Inflow=0.70 cfs 0.056 af '/' Outflow=0.59 cfs 0.056 af
Pond EP81: Middle Portion of Wetland Peak Elev=233.61' Storage=4,70	6 cf Inflow=1.43 cfs 0.217 af Outflow=0.21 cfs 0.123 af
Pond PCB2: CB2 - Catch Basin at the end of Bioswale "A" Peak Elev=211 12.0" Round Culvert n=0.013 L=115.0' S=0.0052	.92' Inflow=0.15 cfs 0.091 af '/' Outflow=0.15 cfs 0.091 af
Pond PCB4: Catch Basin #3   Peak Elev=233     15.0" Round Culvert n=0.010 L=135.0' S=0.0025	.27' Inflow=1.29 cfs 0.097 af '/' Outflow=1.29 cfs 0.097 af
Pond PDMH1: Drain Manhole #5 Peak Elev=232 15.0" Round Culvert n=0.010 L=205.0' S=0.0025	.82' Inflow=2.33 cfs 0.181 af '/' Outflow=2.33 cfs 0.181 af
Pond PP108: Bioswale "A"   Peak Elev=215.83' Storage=2,17     Primary=0.15 cfs   0.091 af   Secondary=0.00 cfs   0.000	2 cf Inflow=1.40 cfs 0.112 af af Outflow=0.15 cfs 0.091 af
Pond PP109: Stormwater DetentionPeak Elev=213.56' Storage=3,61Discarded=0.10 cfs0.182 afPrimary=0.08 cfs0.023 afSecondary=0.00 cfs0.000	3 cf Inflow=1.47 cfs 0.205 af af Outflow=0.18 cfs 0.205 af
Pond PP110: Proposed 8" Earthen Berm Peak Elev=212.69' Storage=15	3 cf Inflow=0.09 cfs 0.035 af Outflow=0.09 cfs 0.032 af
Pond PPT3: Catch Basin #4   Peak Elev=233     15.0" Round Culvert n=0.010 L=50.0' S=0.0024	.08' Inflow=2.33 cfs 0.181 af '/' Outflow=2.33 cfs 0.181 af
Pond SI1: Subsurface InfiltrationPeak Elev=227.12' Storage=10,03Discarded=0.66 cfs0.606 afPrimary=0.00 cfs0.000	8 cf Inflow=6.48 cfs 0.684 af af Outflow=0.66 cfs 0.606 af
Link L100: Northern Wetlands & North of Site	Inflow=0.02 cfs 0.011 af Primary=0.02 cfs 0.011 af
Link L200: Inlet at Start of Redemption Rd; West Side	Inflow=0.52 cfs 0.205 af Primary=0.52 cfs 0.205 af

<b>Turbocam Postdevelopment F</b> NH Route 9 Barrington NH 24-hr S	1 10-yr 10-yr Rainfall=4.61" Printed 2/26/2020
HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC	Page 10
Link L300: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=0.08 cfs 0.041 af
	Primary=0.08 cfs 0.041 af
Link L400: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=1.16 cfs 0.307 af
	Primary=1.16 cfs 0.307 af
Link L500: Inlet at Start of Gravel Drive; East Side	Inflow=0.38 cfs 0.121 af
,	Primary=0.38 cfs 0.121 af
Total Runoff Area = 16.590 ac Runoff Volume = 1.661 af 85.41% Pervious = 14.169 ac	Average Runoff Depth = 1.20" 14.59% Impervious = 2.421 ac

## Summary for Subcatchment PS1: Northwest portion of westernly lot (ES1)

Runoff 0.26 cfs @ 12.37 hrs, Volume= 0.088 af, Depth= 0.45" =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN E	Description						
	39,435	30 V	Voods, Go	od, HSG A					
	3,580	55 V	55 Woods, Good, HSG B						
	36,257	70 V	70 Woods, Good, HSG C						
	18,898	39 >	39 >75% Grass cover, Good, HSG A						
	3,788	61 >	•75% Gras	s cover, Go	ood, HSG B				
1	01,958	48 V	Veighted A	verage					
1	01,958	1	00.00% Pe	ervious Are	а				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
7.6	50	0.0700	0.11		Sheet Flow, Woodland Flow				
					Woods: Light underbrush n= 0.400 P2= 3.07"				
0.9	65	0.0600	1.22		Shallow Concentrated Flow, Woodland Flow				
					Woodland Kv= 5.0 fps				
6.9	258	0.0155	0.62		Shallow Concentrated Flow, Wetland flow				
					Woodland Kv= 5.0 fps				
15.4	373	Total							

## Subcatchment PS1: Northwest portion of westernly lot (ES1)



## Summary for Subcatchment PS10: South-center portion of easterly lot (ES11)

Runoff = 0.15 cfs @ 12.13 hrs, Volume= 0.023 af, Depth= 0.79"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

 A	rea (sf)	CN	Description		
	9,251	39	>75% Gras	s cover, Go	bod, HSG A
	4,095	70	Woods, Go	od, HSG C	
	2,085	98	Paved park	ing, HSG A	N
	15,431	55	Weighted A	verage	
	13,346		86.49% Per	vious Area	
	2,085		13.51% Imp	pervious Are	ea
Тс	Length	Slope	e Velocity	Capacity	Description
 (min)	(feet)	(ft/ft	) (ft/sec)	(cfs)	
10.7	50	0.0300	0.08		Sheet Flow, Woods
					Woods: Light underbrush n= 0.400 P2= 3.07"
0.7	101	0.1240	) 2.46		Shallow Concentrated Flow, grass
					Short Grass Pasture Kv= 7.0 fps
11 1	454	Tatal			

11.4 151 Total

## Subcatchment PS10: South-center portion of easterly lot (ES11)



## Summary for Subcatchment PS11: Eastern portion of middle lot

Runoff	=	0.14 cfs @	12.35 hrs.	Volume=	0.037 af. Dept	h= 0.59"
1 (011011						

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN E	escription		
	9,190	39 >	75% Gras	s cover, Go	bod, HSG A
	1,648	61 >	75% Gras	s cover, Go	bod, HSG B
	8,273	74 >	75% Gras	s cover, Go	bod, HSG C
	8,389	30 V	Voods, Go	od, HSG A	
	1,651	55 V	Voods, Go	od, HSG B	
	3,977	70 V	Voods, Go	od, HSG C	
	33,128	51 V	Veighted A	verage	
	33,128	1	00.00% Pe	ervious Are	a
_					
TC	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
16.6	50	0.0100	0.05		Sheet Flow, woods
					Woods: Light underbrush n= 0.400 P2= 3.07"
3.0	160	0.0313	0.88		Shallow Concentrated Flow, woods
					Woodland Kv= 5.0 fps
1.0	80	0.0375	1.36		Shallow Concentrated Flow, grass
					Short Grass Pasture Kv= 7.0 fps
0.1	22	0.3333	4.04		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
20.7	312	Total			



# Subcatchment PS11: Eastern portion of middle lot

## Summary for Subcatchment PS12: South-center portion of middle lot

Runoff = 0.64 cfs @ 12.13 hrs, Volume= 0.087 af, Depth= 0.96"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN I	Description		
	22,740	39 :	>75% Gras	s cover, Go	bod, HSG A
	2,934	61 :	>75% Gras	s cover, Go	bod, HSG B
	17,678	74 :	>75% Gras	s cover, Go	bod, HSG C
	3,055	98	Paved park	ing, HSG A	N
	996	98	Paved park	ing, HSG E	}
	47,403	58	Neighted A	verage	
	43,352	ę	91.45% Pei	rvious Area	
	4,051	8	3.55% Impe	ervious Are	a
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.0	50	0.0050	0.08		Sheet Flow, grass
					Grass: Short n= 0.150 P2= 3.07"
1.3	100	0.0350	1.31		Shallow Concentrated Flow, grass
					Short Grass Pasture Kv= 7.0 fps
0.4	72	0.2280	3.34		Shallow Concentrated Flow, steep grass
					Short Grass Pasture Kv= 7.0 fps
0.1	20	0.3333	4.04		Shallow Concentrated Flow, grass
					Short Grass Pasture Kv= 7.0 fps
11.8	242	Total			



# Subcatchment PS12: South-center portion of middle lot

## Summary for Subcatchment PS13: Area north of prop. drive

Dupoff	_	0.92 of a	12.09  hrs	Volumo-	0 0 0 0 of	Donth-	1 00'
RUIIOII	_	0.05 CIS (W)	12.00 1115,	volume-	0.000 al,	Depin-	1.90

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN I	Description						
	2,871	39 >	39 >75% Grass cover, Good, HSG A						
	14,723	74 >	>75% Gras	s cover, Go	ood, HSG C				
	1,307	98 I	Paved park	ing, HSG A					
	2,321	98 I	Paved park	ing, HSG C					
	21,222	73 \	Veighted A	verage					
	17,594	8	32.90% Per	vious Area					
	3,628		17.10% Imp	pervious Are	ea				
_									
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
8.1	50	0.0600	0.10		Sheet Flow, woods				
					Woods: Light underbrush n= 0.400 P2= 3.07"				
0.6	82	0.1100	2.32		Shallow Concentrated Flow, grass				
					Short Grass Pasture Kv= 7.0 fps				
0.2	113	0.0500	10.74	57.05	Trap/Vee/Rect Channel Flow, Swale flow				
					Bot.W=0.00' D=1.25' Z= 3.4 '/' Top.W=8.50'				
					n= 0.022				

8.9 245 Total

## Subcatchment PS13: Area north of prop. drive



## Summary for Subcatchment PS14: Area at Driveway/Parking Intersection East of Building

Runoff = 0.70 cfs @ 12.01 hrs, Volume= 0.053 af, Depth= 3.60"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN L	Description						
	2,277	74 >	>75% Grass cover, Good, HSG C						
	5,451	98 F	aved park	ing, HSG C	, ,				
	7,728	91 V	Veighted A	verage					
	2,277	2	9.46% Per	vious Area					
	5,451	7	0.54% Imp	pervious Ar	ea				
_									
Тс	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
3.0	22	0.0200	0.12		Sheet Flow, Grass				
					Grass: Short n= 0.150 P2= 3.07"				
0.3	70	0.0400	4.06		Shallow Concentrated Flow, Pavement				
					Paved Kv= 20.3 fps				
0.1	15	0.0400	3.00		Shallow Concentrated Flow, Grass				
					Grassed Waterway Kv= 15.0 fps				
3.4	107	Total							

## Subcatchment PS14: Area at Driveway/Parking Intersection East of Building



## Summary for Subcatchment PS15: NE corner of building

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.86 cfs @ 11.99 hrs, Volume= 0.069 af, Depth= 4.37"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN	Description						
	503	98	Water Surfa	Water Surface, 0% imp, HSG C					
	7,785	98	Roofs, HSC	G C					
	8,288	98	Weighted A	verage					
	503		6.07% Pervious Area						
	7,785		93.93% Imp	pervious Are	ea				
Тс	Length	Slope	e Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
0.4	62	0.1000	2.33		Sheet Flow, Roof				
					Smooth surfaces n= 0.011 P2= 3.07"				

## Subcatchment PS15: NE corner of building



## Summary for Subcatchment PS16: NW corner of building

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.68 cfs @ 11.99 hrs, Volume= 0.055 af, Depth= 4.37"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN	Description		
	195	98	Water Surfa	ace, 0% im	p, HSG C
	1,330	98	Roofs, HSC	G C	
	4,898	98	Roofs, HSG	θA	
	204	98	Water Surfa	ace, 0% im	p, HSG A
	6,627	98	Weighted A	verage	
	399		6.02% Perv	vious Area	
	6,228		93.98% Imp	pervious Ar	ea
Tc	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	) (ft/sec)	(cfs)	
0.4	62	0.1000	2.33		Sheet Flow, Roof
					Smooth surfaces n= 0.011 P2= 3.07"

## Subcatchment PS16: NW corner of building



# Summary for Subcatchment PS17: Parking Lot West of Building

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.29 cfs @ 12.00 hrs, Volume= 0.097 af, Depth= 3.82"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN [	Description					
	12,190	98 F	Paved parking, HSG A					
	1,103	39 >	>75% Ġras	s cover, Go	bod, HSG A			
	13,293	93 \	Neighted A	verage				
	1,103	8	3.30% Perv	ious Area				
	12,190	ę	91.70% Imp	pervious Are	ea			
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
0.4	50	0.0100	2.03		Shallow Concentrated Flow, Pavement			
					Paved Kv= 20.3 fps			
0.3	35	0.0100	2.03		Shallow Concentrated Flow, Pavement			
					Paved Kv= 20.3 fps			
0.4	25	0.0200	0.99		Shallow Concentrated Flow, Grass			
					Short Grass Pasture Kv= 7.0 fps			

1.1 110 Total

# Subcatchment PS17: Parking Lot West of Building



## Summary for Subcatchment PS19: SW corner of building

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.70 cfs @ 11.99 hrs, Volume= 0.056 af, Depth= 4.37"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN	Description					
	6,250	98	Roofs, HSG	βA				
	484	98	Water Surfa	ace, 0% imp	o, HSG A			
	6,734	98	Weighted Average					
	484		7.19% Pervious Area					
	6,250		92.81% Imp	pervious Are	ea			
Тс	Length	Slope	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft	) (ft/sec)	(cfs)				
0.4	50	0.1000	2.23		Sheet Flow, Roof			
					Smooth surfaces n= 0.011 P2= 3.07"			

# Subcatchment PS19: SW corner of building



# Summary for Subcatchment PS20: Parking Lot Southwest of Building

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.40 cfs @ 12.00 hrs, Volume= 0.028 af, Depth= 3.20"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN	Description					
	3,745	98	Paved park	ing, HSG A	\			
	877	39 :	>75% Ġras	s cover, Go	bod, HSG A			
	4,622	87	Weighted A	verage				
	877		18.97% Pei	vious Area				
	3,745	i	31.03% Imp	pervious Ar	ea			
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
0.8	50	0.0170	1.10		Sheet Flow, Pavement			
					Smooth surfaces n= 0.011 P2= 3.07"			
0.2	38	0.0170	2.65		Shallow Concentrated Flow, Pavement			
					Paved Kv= 20.3 fps			
1.0	88	Total						

# Subcatchment PS20: Parking Lot Southwest of Building



## Summary for Subcatchment PS22: SE corner of building

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.70 cfs @ 11.99 hrs, Volume= 0.056 af, Depth= 4.37"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN	Description		
	103	98	Roofs, HSC	θA	
	6,147	98	Roofs, HSC	ЭC	
	480	98	Water Surfa	ace, 0% imp	o, HSG C
	6,730	98	Weighted A	verage	
	480		7.13% Perv	vious Area	
	6,250		92.87% Imp	pervious Are	ea
Тс	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft	) (ft/sec)	(cfs)	
0.4	50	0.1000	) 2.23		Sheet Flow, Roof
					Smooth surfaces n= 0.011 P2= 3.07"

## Subcatchment PS22: SE corner of building



## Summary for Subcatchment PS23: Area between building and west lot's wetland

Runoff = 0.15 cfs @ 12.03 hrs, Volume= 0.018 af, Depth= 0.69"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

А	rea (sf)	CN E	Description		
	4,828	39 >	75% Gras	s cover, Go	ood, HSG A
	2,502	61 >	75% Gras	s cover, Go	bod, HSG B
	603	30 V	Voods, Go	od, HSG A	
	2,009	55 V	Voods, Go	od, HSG B	
	3,393	70 V	Voods, Go	od, HSG C	
	13,335	53 V	Veighted A	verage	
	13,335	1	00.00% Pe	ervious Are	а
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.7	10	0.1500	0.24		Sheet Flow, Grass
					Grass: Short n= 0.150 P2= 3.07"
0.2	40	0.3330	4.04		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
0.3	25	0.0800	1.41		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
2.5	82	0.0122	0.55		Shallow Concentrated Flow, Wetland flow
					Woodland Kv= 5.0 fps
3.7	157	Total			



# Subcatchment PS23: Area between building and west lot's wetland

## Summary for Subcatchment PS24: Southwest portion of westernly lot (ES16)

Runoff 0.072 af, Depth= 0.49" 0.23 cfs @ 12.37 hrs, Volume= =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN [	Description		
	13,397	39 >75% Grass cover, Go			ood, HSG A
	29,498	30 \	Noods, Go	od, HSG A	
	32,875	70 \	Noods, Go	od, HSG C	
	75,770	49 \	Neighted A	verage	
	75,770	-	100.00% Pe	ervious Are	а
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.7	50	0.0300	0.08		Sheet Flow, Woods
					Woods: Light underbrush n= 0.400 P2= 3.07"
4.2	370	0.0875	1.48		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
3.5	149	0.0201	0.71		Shallow Concentrated Flow, Woods/wetlands flow
					Woodland Kv= 5.0 fps
18 4	569	Total			

# Subcatchment PS24: Southwest portion of westernly lot (ES16)



## Summary for Subcatchment PS25: Area that contains exist gravel drive entrance

Runoff = 0.03 cfs @ 12.54 hrs, Volume= 0.017 af, Depth= 0.29"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	Area (sf)	CN	Description		
	15,044	39	>75% Gras	s cover, Go	bod, HSG A
	8,960	30	Woods, Go	od, HSG A	
	4,533	70	Woods, Go	od, HSG C	
	1,441	96	Gravel surfa	ace, HSG A	A
	302	98	Paved park	ing, HSG A	
	30,280	44	Weighted A	verage	
	29,978		99.00% Pe	rvious Area	
	302		1.00% Impe	ervious Are	a
			-		
Тс	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft	) (ft/sec)	(cfs)	
1.9	50	0.3200	0.44		Sheet Flow, Grass
					Grass: Short n= 0.150 P2= 3.07"
5.6	336	0.0400	0 1.00		Shallow Concentrated Flow, Grass swale/Wetland flow
					Woodland Kv= 5.0 fps
7.5	386	Total			

## Subcatchment PS25: Area that contains exist gravel drive entrance



# Summary for Subcatchment PS26: Area containg Link L500

Runoff = 0.30 cfs @ 12.04 hrs, Volume= 0.030 af, Depth= 0.96"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN [	Description					
	9,291	39 >	39 >75% Grass cover, Good, HSG A					
	179	74 >	74 >75% Grass cover, Good, HSG C					
	2,046	70 \	0 Woods, Good, HSG C					
	4,077	98 F	Paved parking, HSG A					
	701	30 \	Noods, Go	od, HSG A				
	16,294	58 \	Neighted A	verage				
	12,217	7	74.98% Pei	rvious Area				
	4,077	25.02% Impervious Ar			ea			
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
4.5	22	0.2000	0.08		Sheet Flow, Woods			
					Woods: Dense underbrush n= 0.800 P2= 3.07"			
0.1	30	0.5000	4.95		Shallow Concentrated Flow, grass			
					Short Grass Pasture Kv= 7.0 fps			
0.4	200	0.0500	9.19	27.56	Trap/Vee/Rect Channel Flow, Grass Swale			
					Bot.W=0.00' D=1.00' Z= 3.0 '/' Top.W=6.00'			
					n= 0.022 Earth, clean & straight			
5.0	252	Total						



# Subcatchment PS26: Area containg Link L500

## Summary for Subcatchment PS28: area at south edge of prop. drive entrance

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.62 cfs @ 12.00 hrs, Volume= 0.043 af, Depth= 2.30"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN I	Description						
	2,867	39 :	>75% Grass cover, Good, HSG A						
	1,387	74 🔅	>75% Grass cover, Good, HSG C						
	1,756	98 I	Paved parking, HSG A						
	3,689	98 I	Paved parking, HSG C						
	9,699	77	77 Weighted Average						
	4,254	4	43.86% Per	rvious Area					
	5,445	į	56.14% Imp	pervious Ar	ea				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
0.5	50	0.0500	1.69		Sheet Flow, Pavement				
					Smooth surfaces n= 0.011 P2= 3.07"				
0.4	118	0.0700	5.37		Shallow Concentrated Flow, Pavement				
					Paved Kv= 20.3 fps				
~ ~ ~	100	<b>—</b> · ·							

0.9 168 Total

## Subcatchment PS28: area at south edge of prop. drive entrance



# Summary for Subcatchment PS29: Area between Prop. drive entrance, building, and Redemption Rd

Runoff = $0.13$ cfs @ 12.04 hrs, volume= $0.016$ at, Depth= 0	Runoff = 0	).13 cfs @ _^	12.04 hrs,	Volume=	0.016 af,	Depth=	0.79
---------------------------------------------------------------	------------	---------------	------------	---------	-----------	--------	------

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

_	A	rea (st)	CN L	Jescription						
		3,827	39 >	39 >75% Grass cover, Good, HSG A						
		2,526	30 \	Woods, Good, HSG A						
		1,627	70 \	Woods, Good, HSG C						
_		2,293	98 F	Paved parking, HSG A						
		10,273	55 \	Neighted A	verage					
		7,980	77.68% Pervious Area							
		2,293	2	22.32% Imp	pervious Ar	ea				
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.1	50	0.1900	0.16		Sheet Flow, Woods				
						Woods: Light underbrush n= 0.400 P2= 3.07"				
	0.1	12	0.1667	2.04		Shallow Concentrated Flow, Woods				
						Woodland Kv= 5.0 fps				
	0.1	20	0.2500	3.50		Shallow Concentrated Flow, Grass				
_						Short Grass Pasture Kv= 7.0 fps				
	5.3	82	Total							

Subcatchment PS29: Area between Prop. drive entrance, building, and Redemption Rd



## Summary for Subcatchment PS3: Northern corner portion of westernly lot

Runoff = 0.02 cfs @ 12.57 hrs, Volume= 0.011 af, Depth= 0.29"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN E	Description				
	16,928	39 >75% Grass cover, Go			ood, HSG A		
	271	30 Woods, Good, HSG A					
	3,241	70 Woods, Good, HSG C					
	20,440	44 V	Veighted A	verage			
	20,440		100.00% Pervious Area				
_							
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
7.6	50	0.0100	0.11		Sheet Flow, grass		
					Grass: Short n= 0.150 P2= 3.07"		
2.4	102	0.0100	0.70		Shallow Concentrated Flow, grass		
					Short Grass Pasture Kv= 7.0 fps		
1.7	70	0.0100	0.70		Shallow Concentrated Flow, Wetland/Grass Flow		
					Short Grass Pasture Kv= 7.0 fps		
11 7	222	Total					

## Subcatchment PS3: Northern corner portion of westernly lot



## Summary for Subcatchment PS30: Parking Lot Southeast of Building

Runoff = 1.99 cfs @ 12.00 hrs, Volume= 0.140 af, Depth= 2.73"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN I	Description		
	5,352	39 :	>75% Gras	s cover, Go	ood, HSG A
	4,610	74 :	>75% Gras	s cover, Go	ood, HSG C
	11,054	98 I	Paved park	ing, HSG A	
	5,681	98	Paved park	<u>ing, HSG C</u>	
	26,697	82	Neighted A	verage	
	9,962		37.32% Pei	rvious Area	
	16,735	(	62.68% Imp	pervious Ar	ea
-		<u></u>		<b>a</b>	
IC (min)	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(leet)	(11/11)	(It/sec)	(CIS)	
0.7	50	0.0200	1.17		Sheet Flow, Pavement
					Smooth surfaces n= 0.011 P2= 3.07"
0.1	13	0.0200	2.87		Shallow Concentrated Flow, Pavement
					Paved Kv= 20.3 fps
0.1	5	0.0300	1.21		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
0.6	180	0.0130	4.68	14.05	Trap/Vee/Rect Channel Flow, Swale
					Bot.W=0.00' D=1.00' Z= 3.0 '/' Top.W=6.00'
					n= 0.022 Earth, clean & straight
1.5	248	Total			



# Subcatchment PS30: Parking Lot Southeast of Building

## Summary for Subcatchment PS4: Lower north corner of westernly lot

Runoff = 1.73 cfs @ 12.12 hrs, Volume= 0.185 af, Depth= 2.38"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN [	Description					
	1,166	39 >75% Grass cover, Good, HSG A						
	6,755	74 >	>75% Gras	s cover, Go	ood, HSG C			
	21,381	70 \	Noods, Go	od, HSG C				
	5,324	98 F	Paved park	ing, HSG A	N N N N N N N N N N N N N N N N N N N			
	4,744	98 F	Paved park	ing, HSG C				
	1,200	98 Roofs, HSG A						
	40,570	78 Weighted Average						
	29,302	72.23% Pervious Area						
	11,268	2	27.77% Imp	pervious Are	ea			
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
9.5	50	0.0400	0.09		Sheet Flow, woods			
					Woods: Light underbrush n= 0.400 P2= 3.07"			
0.8	39	0.0256	0.80		Shallow Concentrated Flow, woods			
					Woodland Kv= 5.0 fps			
0.4	74	0.2200	3.28		Shallow Concentrated Flow, grass			
					Short Grass Pasture Kv= 7.0 fps			
1.3	162	0.0025	2.05	6.16	Trap/Vee/Rect Channel Flow, Swale			
					Bot.W=0.00' D=1.00' Z= 3.0 '/' Top.W=6.00'			
					n= 0.022 Earth, clean & straight			
12.0	325	Total						


# Subcatchment PS4: Lower north corner of westernly lot

#### Summary for Subcatchment PS6: Northeast area of middle lot

Runoff = 1.43 cfs @ 12.29 hrs, Volume= 0.217 af, Depth= 1.75"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN E	Description		
	62,199	70 V	Voods, Go	od, HSG C	
	2,618	74 >	75% Gras	s cover, Go	bod, HSG C
	64,817	70 V	Veighted A	verage	
	64,817	1	00.00% Pe	ervious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(CfS)	
16.6	50	0.0100	0.05		Sheet Flow, woods
					Woods: Light underbrush n= 0.400 P2= 3.07"
0.5	42	0.0833	1.44		Shallow Concentrated Flow, woods
					Woodland Kv= 5.0 fps
6.8	202	0.0099	0.50		Shallow Concentrated Flow, Wetland flow
					Woodland Kv= 5.0 fps
23.9	294	Total			

### Subcatchment PS6: Northeast area of middle lot



#### Summary for Subcatchment PS7: Eastern Corner of Middle Lot

Runoff = 0.06 cfs @ 12.09 hrs, Volume= 0.012 af, Depth= 0.59"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN I	Description			
	8,600	39 :	>75% Gras	s cover, Go	bod, HSG A	_
	2,121	98	Paved park	ing, HSG A		
	10,721	51	Weighted A	verage		
	8,600	1	30.22% Pei	vious Area		
	2,121		19.78% Imp	pervious Are	ea	
Тс	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		_
5.7	50	0.0200	0.15		Sheet Flow, Grass	
					Grass: Short n= 0.150 P2= 3.07"	
2.0	85	0.0100	0.70		Shallow Concentrated Flow, Grass	
					Short Grass Pasture Kv= 7.0 fps	
77	135	Total				

### Subcatchment PS7: Eastern Corner of Middle Lot



### Summary for Subcatchment PS8: West portion of easterly lot (ES9)

Runoff = 1.01 cfs @ 12.14 hrs, Volume= 0.128 af, Depth= 1.20"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

А	rea (sf)	CN	Description					
	9,841	39	>75% Gras	s cover, Go	ood, HSG A			
	2,369	30	Woods, Go	od, HSG A				
	13,310	55	Woods, Go	od, HSG B				
	24,652	70	Woods, Go	od, HSG C				
	5,551	98	aved parking, HSG A					
	55,723	62	Weighted A	verage				
	50,172	9	90.04% Pei	rvious Area				
	5,551	9	9.96% Impe	ervious Area	a			
_				_				
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
8.7	50	0.0500	0.10		Sheet Flow, woods			
					Woods: Light underbrush n= 0.400 P2= 3.07"			
1.5	105	0.0524	1.14		Shallow Concentrated Flow, woods			
					Woodland Kv= 5.0 fps			
1.9	99	0.0303	0.87		Shallow Concentrated Flow, Wetland flow			
					Woodland Kv= 5.0 fps			
0.6	90	0.1440	2.66		Shallow Concentrated Flow, Grass			
					Short Grass Pasture Kv= 7.0 fps			
12.7	344	Total						



# Subcatchment PS8: West portion of easterly lot (ES9)

### Summary for Subcatchment PS9: East portion of easterly lot (ES10)

Runoff 0.08 cfs @ 12.61 hrs, Volume= 0.041 af, Depth= 0.29" =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"

A	rea (sf)	CN [	Description		
	31,198	39 >	>75% Gras	s cover, Go	ood, HSG A
	23,985	30 \	Noods, Go	od, HSG A	
	19,689	70 \	Noods, Go	od, HSG C	
	74,872	44 \	Neighted A	verage	
	74,872		100.00% Pe	ervious Are	а
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.6	50	0.0200	0.07		Sheet Flow, Woods
					Woods: Light underbrush n= 0.400 P2= 3.07"
1.2	50	0.0200	0.71		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
1.0	135	0.1850	2.15		Shallow Concentrated Flow, steep woods
					Woodland Kv= 5.0 fps
14.8	235	Total			

# Subcatchment PS9: East portion of easterly lot (ES10)



Hydrograph

#### Summary for Reach ER70: Wetlands Starting North Flowing Southeast



## Summary for Reach ER72: Northwest Wetlands Flowing Southeast to Redemption Rd

[62] Hint: Exceeded Reach ER70 OUTLET depth by 0.02' @ 12.50 hrs

 Inflow Area =
 2.810 ac,
 0.00% Impervious, Inflow Depth =
 0.42" for 10-yr event

 Inflow =
 0.26 cfs @
 12.37 hrs, Volume=
 0.099 af

 Outflow =
 0.25 cfs @
 12.58 hrs, Volume=
 0.099 af, Atten= 3%, Lag= 12.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Max. Velocity= 0.45 fps, Min. Travel Time= 8.3 min Avg. Velocity = 0.39 fps, Avg. Travel Time= 9.4 min

Peak Storage= 126 cf @ 12.58 hrs Average Depth at Peak Storage= 0.02' Bank-Full Depth= 2.00' Flow Area= 82.0 sf, Capacity= 556.72 cfs

25.00' x 2.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 8.0 '/' Top Width= 57.00' Length= 221.0' Slope= 0.0158 '/' Inlet Invert= 222.50', Outlet Invert= 219.00'

‡

Reach ER72: Northwest Wetlands Flowing Southeast to Redemption Rd

Hydrograph



# Summary for Reach ER73: Wetlands Flowing on Map 234 Lot 1.2

[62] Hint: Exceeded Reach ER72 OUTLET depth by 0.01' @ 12.07 hrs

 Inflow Area =
 5.723 ac, 28.26% Impervious, Inflow Depth =
 0.24" for 10-yr event

 Inflow =
 0.30 cfs @
 12.52 hrs, Volume=
 0.117 af

 Outflow =
 0.28 cfs @
 12.65 hrs, Volume=
 0.117 af, Atten= 6%, Lag= 7.7 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Max. Velocity= 0.66 fps, Min. Travel Time= 8.0 min Avg. Velocity = 0.63 fps, Avg. Travel Time= 8.5 min

Peak Storage= 136 cf @ 12.65 hrs Average Depth at Peak Storage= 0.02' Bank-Full Depth= 2.00' Flow Area= 76.0 sf, Capacity= 795.12 cfs

20.00' x 2.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 9.0 '/' Top Width= 56.00' Length= 320.0' Slope= 0.0406 '/' Inlet Invert= 219.00', Outlet Invert= 206.00'

‡

Reach ER73: Wetlands Flowing on Map 234 Lot 1.2

Hydrograph



### Summary for Reach ER81: SE Portion of Middle Lot Wetlands

Inflow Area = 1.488 ac. 0.00% Impervious, Inflow Depth > 0.99" for 10-yr event Inflow 0.21 cfs @ 14.29 hrs, Volume= 0.123 af = 0.17 cfs @ 15.64 hrs, Volume= Outflow = 0.123 af, Atten= 17%, Lag= 80.7 min Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Max. Velocity= 0.09 fps, Min. Travel Time= 65.5 min Avg. Velocity = 0.05 fps, Avg. Travel Time= 136.2 min Peak Storage= 679 cf @ 15.64 hrs Average Depth at Peak Storage= 0.14' Bank-Full Depth= 1.00' Flow Area= 36.7 sf, Capacity= 13.04 cfs 55.00' x 1.00' deep Parabolic Channel, n= 0.750 Length= 370.0' Slope= 0.0554 '/' Inlet Invert= 233.00', Outlet Invert= 212.50' ‡ Reach ER81: SE Portion of Middle Lot Wetlands Hydrograph Inflow 0.23 0.21 cfs Outflow 0.22 Inflow Area=1.488 ac 0.21 0.2 Avg. Flow Depth=0.14' 0.19 0.17 cfs 0.18 Max Vel=0.09 fps 0.17 0.16 n=0.750 0.15 0.14 **(5)** 0.13 0.12 L=370.0' Flow 0.11 S=0.0554 '/' 0.1 0.09 Capacity=13.04 cfs 0.08-0.07-0.06 0.05 0.04 0.03 0.02 0.01 0ò ż 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Time (hours)

## Summary for Reach ER82: Swale Located on North Side of Redemption Rd Flowing Northeast

Inflow Area = 0.487 ac, 17.10% Impervious, Inflow Depth = 1.98" for 10-vr event Inflow 0.83 cfs @ 12.08 hrs, Volume= 0.080 af = 0.79 cfs @ 12.10 hrs, Volume= Outflow = 0.080 af, Atten= 5%, Lag= 1.6 min Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Max. Velocity= 1.04 fps, Min. Travel Time= 2.4 min Avg. Velocity = 0.46 fps, Avg. Travel Time= 5.4 min Peak Storage= 114 cf @ 12.10 hrs Average Depth at Peak Storage= 0.07' Bank-Full Depth= 2.00' Flow Area= 36.0 sf, Capacity= 265.19 cfs 10.00' x 2.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 4.0 '/' Top Width= 26.00' Length= 150.0' Slope= 0.0200 '/' Inlet Invert= 217.00', Outlet Invert= 214.00' ‡

Reach ER82: Swale Located on North Side of Redemption Rd Flowing Northeast



## Summary for Reach ER84: Swale Located on North Side of Redemption Rd Flowing Northeast

Inflow Area = 2.582 ac. 8.71% Impervious, Inflow Depth = 0.15" for 10-yr event Inflow 0.09 cfs @ 15.08 hrs, Volume= 0.032 af = 0.09 cfs @ 15.14 hrs, Volume= Outflow = 0.032 af, Atten= 0%, Lag= 3.6 min Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Max. Velocity= 0.41 fps, Min. Travel Time= 5.7 min Avg. Velocity = 0.35 fps, Avg. Travel Time= 6.7 min Peak Storage= 31 cf @ 15.14 hrs Average Depth at Peak Storage= 0.04' Bank-Full Depth= 3.00' Flow Area= 45.0 sf, Capacity= 239.10 cfs 6.00' x 3.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 3.0 '/' Top Width= 24.00' Length= 140.0' Slope= 0.0071 '/' Inlet Invert= 212.00', Outlet Invert= 211.00' ‡



# Summary for Reach ER85: End of Swale located North of Redemption Rd Circle

[62] Hint: Exceeded Reach ER84 OUTLET depth by 0.16' @ 12.15 hrs

 Inflow Area =
 5.349 ac,
 6.59% Impervious, Inflow Depth >
 0.64" for 10-yr event

 Inflow =
 1.01 cfs @
 12.14 hrs, Volume=
 0.283 af

 Outflow =
 1.01 cfs @
 12.15 hrs, Volume=
 0.283 af, Atten= 0%, Lag= 0.6 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Max. Velocity= 1.37 fps, Min. Travel Time= 0.9 min Avg. Velocity = 0.65 fps, Avg. Travel Time= 1.9 min

Peak Storage= 55 cf @ 12.15 hrs Average Depth at Peak Storage= 0.16' Bank-Full Depth= 4.00' Flow Area= 64.0 sf, Capacity= 528.23 cfs

4.00' x 4.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 3.0 '/' Top Width= 28.00' Length= 75.0' Slope= 0.0133 '/' Inlet Invert= 211.00', Outlet Invert= 210.00'





Hydrograph



Turbocam Postdevelopment FNH Route 9 Barrington NH 24-hr S1 10-yr10-yr Rainfall=4.61"Prepared by MicrosoftPrinted 2/26/2020HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLCPage 50

#### Summary for Reach PR62: Swale South of Proposed Driveway



Turbocam Postdevelopment FNH Route 9 Barrington NH 24-hr S1 10-yr10-yr Rainfall=4.61"Prepared by MicrosoftPrinted 2/26/2020HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLCPage 51

#### Summary for Reach PR63: Swale North of gravel drive entrance



### Summary for Pond BR1: Bioswale-ISR 1 (CB5)

Inflow Area :	=	1.274 ac, 4	5.56% Impe	ervious,	Inflow De	epth =	2.90	)" for	10-	yr event	
Inflow =	=	2.43 cfs @	12.10 hrs,	Volume=	=	0.308	af		-		
Outflow =	=	2.37 cfs @	12.11 hrs,	Volume=	=	0.308	af, A	Atten=	2%,	Lag= 1.	) min
Primary =	=	0.05 cfs @	12.11 hrs,	Volume=	=	0.127	af				
Secondary =	=	2.32 cfs @	12.11 hrs,	Volume=	=	0.181	af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 229.65' @ 12.11 hrs Surf.Area= 2,648 sf Storage= 2,756 cf Flood Elev= 230.00' Surf.Area= 2,912 sf Storage= 3,556 cf

Plug-Flow detention time= 237.0 min calculated for 0.308 af (100% of inflow) Center-of-Mass det. time= 237.1 min (1,062.8 - 825.8)

Volume	Invert	Avail.Stor	rage Stora	age Description
#1	226.00'	25	6 cf 8.00	'W x 64.00'L x 2.00'H 24" Bioretention Soil Mix
			1,024	4 cf Overall x 25.0% Voids
#2	228.00'	3,30	0 cf <b>Surf</b>	face Sloped Stage Storage (Prismatic)Listed below (Recalc)
		3,55	6 cf Tota	I Available Storage
Elevatio	on Su	rf.Area	Inc.Store	e Cum.Store
(fee	et)	(sq-ft)	(cubic-feet)	) (cubic-feet)
228.0	00	900	C	0 0
230.0	00	2,400	3,300	D 3,300
Device	Routing	Invert	Outlet Dev	vices
#1	Primary	226.00'	6.0" Rou	nd 6" SDR-35 Pipe
			L= 195.0'	CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outl	let Invert= 226.00' / 224.50' S= 0.0077 '/' Cc= 0.900
			n= 0.010	PVC, smooth interior, Flow Area= 0.20 sf
#2	Device 1	226.00'	1.0" Vert.	Orifice/Grate C= 0.600
#3	Secondary	227.67'	15.0" Roi	und 15" HDPE Pipe
			L= 195.0'	CPP, projecting, no headwall, Ke= 0.900
#4	Device 3	229.50'	Inlet / Outl n= 0.013 <b>48.0" Hor</b> Limited to	let Invert= 227.67' / 226.20' S= 0.0075 '/' Cc= 0.900 Corrugated PE, smooth interior, Flow Area= 1.23 sf iz. Bypass Overflow C= 0.600 weir flow at low heads

Primary OutFlow Max=0.05 cfs @ 12.11 hrs HW=229.65' TW=225.92' (Dynamic Tailwater)

**1=6**" **SDR-35 Pipe** (Passes 0.05 cfs of 0.92 cfs potential flow) **2=Orifice/Grate** (Orifice Controls 0.05 cfs @ 9.14 fps)

Secondary OutFlow Max=2.32 cfs @ 12.11 hrs HW=229.65' TW=225.92' (Dynamic Tailwater) -3=15" HDPE Pipe (Passes 2.32 cfs of 5.42 cfs potential flow) **4=Bypass Overflow** (Weir Controls 2.32 cfs @ 1.25 fps)



# Pond BR1: Bioswale-ISR 1 (CB5)

#### Summary for Pond BR2: Bioswale - ISR 2 (CB3)

Inflow Ar Inflow Outflow Primary Seconda	rea = 1 = 4. = 4. = 0. ary = 4.	.333 ac,  77.7 .93 cfs @  12 .46 cfs @  12 .05 cfs @  12 .41 cfs @  12	8% Impervious, Inflow Depth = 3.38" for 10-yr         00 hrs, Volume=       0.376 af         01 hrs, Volume=       0.376 af, Atten= 10%,         01 hrs, Volume=       0.144 af         01 hrs, Volume=       0.232 af	event Lag= 0.8 min
Routing I Peak Ele Flood Ele	by Dyn-Stor-  ev= 230.80' @ ev= 231.00'	Ind method, T 12.01 hrs Surf.Area= 4	me Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 surf.Area= 4,453 sf Storage= 3,754 cf 820 sf Storage= 4,513 cf	
Plug-Flov Center-o	w detention t f-Mass det. t	ime= 265.2 m ime= 264.9 m	n calculated for 0.376 af (100% of inflow) n(1,070.7-805.8)	
Volume	Invert	Avail.Stor	age Storage Description	
#1	227.00'	46	ocf 8.00'W x 115.00'L x 2.00'H 24" Bioretentio	n Soil Mix
			1,840 cf Overall x 25.0% Voids	
#2	229.00'	4,05	3 cf Surface Sloped Stage Storage (Prismatic)	Listed below (Recalc)
		4,51	3 cf Total Available Storage	
Elevatio	n Su	rf.Area	Inc.Store Cum.Store	
(fee	t)	(sq-ft)	cubic-feet) (cubic-feet)	
229.0	0	5	0 0	
230.0	0	2,100	1,053 1,053	
231.0	0	3,900	3,000 4,053	
Device	Routing	Invert	Outlet Devices	
#1	Primary	227.00'	6.0" Round 6" SDR-35	
	j		L= 115.0' CPP, projecting, no headwall, Ke= 0.9	00
			Inlet / Outlet Invert= 227.00' / 226.50' S= 0.0043	'/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.20	sf
#2	Device 1	227.00'	1.0" Vert. 1" Orifice in Plate C= 0.600	
#3	Secondary	228.75'	18.0" Round 18" HDPE Pipe	
			L= 115.0' CPP, projecting, no headwall, Ke= 0.9	00
			Inlet / Outlet Invert= 228.75' / 228.00' S= 0.0065	'/' Cc= 0.900
	<b>D</b> · · ·		n= 0.013 Corrugated PE, smooth interior, Flow A	.rea= 1.77 sf
#4	Device 3	230.57'	<b>48.0</b> " Horiz. Bypass Overflow C= 0.600 Limited to weir flow at low heads	

Primary OutFlow Max=0.05 cfs @ 12.01 hrs HW=230.80' TW=225.38' (Dynamic Tailwater) 1=6" SDR-35 (Passes 0.05 cfs of 1.14 cfs potential flow) 2=1" Orifice in Plate (Orifice Controls 0.05 cfs @ 9.33 fps)

Secondary OutFlow Max=4.41 cfs @ 12.01 hrs HW=230.80' TW=225.38' (Dynamic Tailwater) 3=18" HDPE Pipe (Passes 4.41 cfs of 7.65 cfs potential flow) 4=Bypass Overflow (Weir Controls 4.41 cfs @ 1.55 fps)



# Pond BR2: Bioswale - ISR 2 (CB3)

# Summary for Pond DE1: Drip Edge along Northeastern Building

Inflow Area =	0.190 ac, 93.93% Impervious, Inflow De	pth = 4.37" for 10-yr event
Inflow =	0.86 cfs @ 11.99 hrs, Volume=	0.069 af
Outflow =	0.84 cfs @ 12.00 hrs, Volume=	0.068 af, Atten= 2%, Lag= 0.6 min
Primary =	0.84 cfs @ 12.00 hrs, Volume=	0.068 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 233.05' @ 12.00 hrs Surf.Area= 503 sf Storage= 130 cf

Plug-Flow detention time= 24.2 min calculated for 0.068 af (99% of inflow) Center-of-Mass det. time= 15.1 min (761.4 - 746.4)

Volume	Inv	ert Avail.Sto	orage Storage I	Description	
#1	232.	40' 3	22 cf <b>18" Thic</b> 805 cf Ov	<b>k Drip Edge (Prism</b> /erall x 40.0% Void	natic)Listed below (Recalc) s
Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
232.4 234.0	40 00	503 503	0 805	0 805	
Device	Routing	Invert	Outlet Devices		
#1	Primary	232.60'	6.0" Round (2 L= 35.0' CPP Inlet / Outlet In n= 0.010 PVC	2) 6" Underdrains ) , end-section confor vert= 232.60' / 232. , smooth interior, F	<b>( 2.00</b> rming to fill, Ke= 0.500 30' S= 0.0086 '/' Cc= 0.900 Tow Area= 0.20 sf

**Primary OutFlow** Max=0.84 cfs @ 12.00 hrs HW=233.05' TW=229.62' (Dynamic Tailwater) **1=(2)** 6" **Underdrains** (Inlet Controls 0.84 cfs @ 2.28 fps)



# Pond DE1: Drip Edge along Northeastern Building

#### Summary for Pond DE2: Drip Edge along Northwestern Building

Inflow Area =	0.152 ac,	93.98% Impervious,	Inflow Depth = 4.	37" for 10-yr event
Inflow =	0.68 cfs @	) 11.99 hrs, Volume	e= 0.055 af	
Outflow =	0.58 cfs @	) 12.00 hrs, Volume	e= 0.055 af,	Atten= 16%, Lag= 0.7 min
Primary =	0.58 cfs @	) 12.00 hrs, Volume	e= 0.055 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 233.35' @ 12.00 hrs Surf.Area= 399 sf Storage= 163 cf

Plug-Flow detention time= 25.7 min calculated for 0.055 af (99% of inflow) Center-of-Mass det. time= 17.9 min (764.3 - 746.4)

Volume	١nv	ert Avail.St	orage Sto	age Description	
#1	232.	33' 2	267 cf <b>Dri</b> j 666	<b>Edge (Prismatic)</b> cf Overall x 40.0%	Listed below (Recalc) Voids
Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc.Stor (cubic-fee	e Cum.Store t) (cubic-feet)	
232.3 234.0	33 00	399 399	66	0 0 6 666	
Device	Routing	Invert	Outlet De	vices	
#1	Primary	232.50'	<b>6.0" Rou</b> L= 40.0' Inlet / Ou n= 0.010	Ind (1) 6" Underdra CPP, end-section of tlet Invert= 232.50' / PVC, smooth interi	ains conforming to fill, Ke= 0.500 / 232.40' S= 0.0025 '/' Cc= 0.900 for, Flow Area= 0.20 sf

**Primary OutFlow** Max=0.57 cfs @ 12.00 hrs HW=233.35' TW=229.62' (Dynamic Tailwater) **1=(1)** 6" **Underdrains** (Barrel Controls 0.57 cfs @ 2.92 fps)



# Pond DE2: Drip Edge along Northwestern Building

## Summary for Pond DE3: Drip Edge along Southwestern Building

Inflow Area	a = C	).155 ac, 9	)2.81% In	pervious,	Inflow Dep	oth = 4.37	" for 1	0-yr event
Inflow	= 0	.70 cfs @	11.99 hrs	, Volume	e= (	).056 af		
Outflow	= 0	.64 cfs @	12.00 hrs	, Volume	e= (	0.056 af, A	Atten= 8%	6, Lag= 0.5 min
Primary	= 0	.64 cfs @	12.00 hrs	, Volume	e= (	0.056 af		, C
Routing by Peak Elev=	Dyn-Stor- = 236.12' (	Ind method	d, Time Sj s Surf.Ar	oan= 0.00 ea= 484 s	-48.00 hrs, sf Storage:	dt= 0.01 hi = 177 cf	rs / 2	
Plug-Flow ( Center-of-N	detention f Mass det. f	time= 34.2 time= 24.7	min calcu min ( 771	lated for ( .1 - 746.4	0.056 af (99 )	% of inflow	v)	
Volume	Invert	Avail.S	Storage	Storage D	Description			
#1	235.20'		290 cf	Custom S 726 cf Ov	Stage Data erall x 40.0	(Prismation) % Voids	<b>c)</b> Listed t	pelow (Recalc)
Elevation	Su	Irf.Area	Inc.S	Store	Cum.Sto	re		
(feet)		(sq-ft)	(cubic-	feet)	(cubic-fee	et)		
235.20		484	•	0	\$	0		
236.70		484		726	72	26		

#1 Primary 235.37' 8.0" Round 8" Underdrain L= 40.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 235.37' / 235.37' S= 0.0000 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.35 sf

Primary OutFlow Max=0.63 cfs @ 12.00 hrs HW=236.11' TW=233.08' (Dynamic Tailwater) ☐ 1=8" Underdrain (Barrel Controls 0.63 cfs @ 2.04 fps)



# Pond DE3: Drip Edge along Southwestern Building

# Summary for Pond DE4: Drip Edge along Southeastern Building

Inflow Area	a =	0.154 ac, 9	2.87% Imp	ervious, Inflow D	epth = 4	.37" for	10-yr ev	vent
Inflow	=	0.70 cfs @	11.99 hrs,	Volume=	0.056 af	f	•	
Outflow	=	0.59 cfs @	12.00 hrs,	Volume=	0.056 af	f, Atten=	15%, La	ig= 0.6 min
Primary	=	0.59 cfs @	12.00 hrs,	Volume=	0.056 af	f		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 235.22' @ 12.00 hrs Surf.Area= 480 sf Storage= 195 cf

Plug-Flow detention time= 36.5 min calculated for 0.056 af (99% of inflow) Center-of-Mass det. time= 27.0 min (773.4 - 746.4)

#1       234.20'       288 cf       Drip Edge (Prismatic)Listed below (Recalc) 720 cf Overall x 40.0% Voids         Elevation       Surf.Area       Inc.Store       Cum.Store (cubic-feet)         234.20       480       0       0         235.70       480       720       720         Device       Routing       Invert       Outlet Devices         #1       Primary       234.37'       8.0" Round 8" Under Drain L= 100.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 234.37' / 234.37' S= 0.0000 '/' Cc= 0.900 n = 0.010 PVC, smooth interior, Flow Area= 0.35 sf	Volume	Inv	ert Avail.St	orage Storage	Description	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	#1	234.	20' 2	288 cf Drip Ec 720 cf (	<b>ge (Prismatic)</b> Listed below Verall x 40.0% Voids	(Recalc)
234.20       480       0       0         235.70       480       720       720         Device       Routing       Invert       Outlet Devices         #1       Primary       234.37'       8.0" Round 8" Under Drain L= 100.0'       CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 234.37' / 234.37'         S= 0.0000 '/'       Cc= 0.900 n= 0.010       PVC, smooth interior, Flow Area= 0.35 sf	Elevatio (fee	n t)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
DeviceRoutingInvertOutlet Devices#1Primary234.37'8.0" Round 8" Under Drain L= 100.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 234.37' / 234.37' S= 0.0000 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.35 sf	234.2 235.7	20 70	480 480	0 720	0 720	
#1 Primary 234.37' <b>8.0" Round 8" Under Drain</b> L= 100.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 234.37' / 234.37' S= 0.0000 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.35 sf	Device	Routing	Invert	Outlet Device	S	
	#1	Primary	234.37	8.0" Round L= 100.0' C Inlet / Outlet n= 0.010 PV	<b>3" Under Drain</b> ² P, projecting, no headwall, nvert= 234.37' / 234.37' S= C, smooth interior, Flow Are	Ke= 0.900 = 0.0000 '/' Cc= 0.900 ea= 0.35 sf

Primary OutFlow Max=0.59 cfs @ 12.00 hrs HW=235.21' TW=230.79' (Dynamic Tailwater) 1=8" Under Drain (Barrel Controls 0.59 cfs @ 1.73 fps)



# Pond DE4: Drip Edge along Southeastern Building

### Summary for Pond EP81: Middle Portion of Wetland

Inflow Area	ı =	1.488 ac,	0.00% Impervious,	Inflow Depth =	1.75" fo	r 10-yr event
Inflow	=	1.43 cfs @	12.29 hrs, Volume	= 0.217	af	
Outflow	=	0.21 cfs @	14.29 hrs, Volume	= 0.123	af, Atten=	86%, Lag= 120.1 min
Primary	=	0.21 cfs @	14.29 hrs, Volume	= 0.123	af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 233.61' @ 14.29 hrs Surf.Area= 5,603 sf Storage= 4,706 cf

Plug-Flow detention time= 349.8 min calculated for 0.123 af (57% of inflow) Center-of-Mass det. time= 194.1 min (1,102.6 - 908.5)

Volume	Inv	ert Avai	il.Storage	Storage Description	on				
#1	232.	00'	7,132 cf	Wetland Low Poi	i <b>nt (Irregular)</b> Liste	ed below (Recalc)			
Elevatio	on et)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>			
232.0 233.0 234.0	)0 )0 )0	520 3,700 7,000	90.0 245.0 381.0	0 1,869 5,263	0 1,869 7,132	520 4,655 11,438			
Device	Routing	In	vert Outle	et Devices					
#1	Primary	233	5.50' <b>2.0'</b> Head Coet	<ul> <li>D' 2.0' long x 21.0' breadth Weir Between ES8-ES9 Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63</li> </ul>					

**Primary OutFlow** Max=0.21 cfs @ 14.29 hrs HW=233.61' TW=233.11' (Dynamic Tailwater) **1=Weir Between ES8-ES9** (Weir Controls 0.21 cfs @ 0.91 fps)



# Pond EP81: Middle Portion of Wetland

## Summary for Pond PCB2: CB2 - Catch Basin at the end of Bioswale "A"

 Inflow Area =
 0.636 ac, 47.61% Impervious, Inflow Depth =
 1.72" for 10-yr event

 Inflow =
 0.15 cfs @
 12.91 hrs, Volume=
 0.091 af

 Outflow =
 0.15 cfs @
 12.91 hrs, Volume=
 0.091 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.15 cfs @
 12.91 hrs, Volume=
 0.091 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 211.92' @ 12.91 hrs Flood Elev= 213.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	211.70'	12.0" Round 12" HDPE Pipe
			L= 115.0' CPP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet Invert= 211.70' / 211.10' S= 0.0052 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.15 cfs @ 12.91 hrs HW=211.92' TW=210.06' (Dynamic Tailwater) 1=12" HDPE Pipe (Barrel Controls 0.15 cfs @ 1.75 fps)





Turbocam Postdevelopment FNH Route 9 Barrington NH 24-hr S1 10-yr10-yr Rainfall=4.61"Prepared by MicrosoftPrinted 2/26/2020HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLCPage 67

## Summary for Pond PCB4: Catch Basin #3

 Inflow Area =
 0.305 ac, 91.70% Impervious, Inflow Depth = 3.82" for 10-yr event

 Inflow =
 1.29 cfs @ 12.00 hrs, Volume=
 0.097 af

 Outflow =
 1.29 cfs @ 12.00 hrs, Volume=
 0.097 af, Atten= 0%, Lag= 0.0 min

 Primary =
 1.29 cfs @ 12.00 hrs, Volume=
 0.097 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 233.27' @ 12.00 hrs Flood Elev= 235.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	232.37'	<b>15.0" Round 15" HDPE Pipe</b> L= 135.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 232.37' / 232.03' S= 0.0025 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.29 cfs @ 12.00 hrs HW=233.27' TW=233.08' (Dynamic Tailwater) 1=15" HDPE Pipe (Outlet Controls 1.29 cfs @ 1.91 fps)



#### Pond PCB4: Catch Basin #3

Turbocam Postdevelopment FNH Route 9 Barrington NH 24-hr S1 10-yr10-yr Rainfall=4.61"Prepared by MicrosoftPrinted 2/26/2020HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLCPage 68

### Summary for Pond PDMH1: Drain Manhole #5

Inflow Area = 0.566 ac, 90.00% Impervious, Inflow Depth = 3.84" for 10-yr event Inflow 2.33 cfs @ 12.00 hrs, Volume= = 0.181 af 2.33 cfs @ 12.00 hrs, Volume= Outflow = 0.181 af, Atten= 0%, Lag= 0.0 min 2.33 cfs @ 12.00 hrs, Volume= Primary 0.181 af = Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 232.82' @ 12.00 hrs Flood Elev= 236.60' **–** " ~ ·· · ¬

Device	Routing	Invert	Outlet Devices
#1	Primary	231.91'	<b>15.0" Round 15" HDPE Pipe</b> L= 205.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 231.91' / 231.40' S= 0.0025 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=2.33 cfs @ 12.00 hrs HW=232.82' TW=230.79' (Dynamic Tailwater) 1=15" HDPE Pipe (Barrel Controls 2.33 cfs @ 3.39 fps)

Hydrograph Inflow
 Primary 2 33 cfs 2.33 cfs Inflow Area=0.566 ac Peak Elev=232.82' 2 15.0" **Round Culvert** Flow (cfs) n=0.010 L=205.0' 1 S=0.0025 '/' 0 ż 4 6 8 10 12 14 16 18 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Ó 20 Time (hours)

#### Pond PDMH1: Drain Manhole #5

## Summary for Pond PP108: Bioswale "A"

Inflow Area =	0.636 ac, 47.61% Impervious, Inflow	Depth = 2.10" for 10-yr event
Inflow =	1.40 cfs @ 12.00 hrs, Volume=	0.112 af
Outflow =	0.15 cfs @ 12.91 hrs, Volume=	0.091 af, Atten= 90%, Lag= 55.0 min
Primary =	0.15 cfs @ 12.91 hrs, Volume=	0.091 af
Secondary =	0.00 cfs 🥘 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 215.83' @ 12.91 hrs Surf.Area= 2,468 sf Storage= 2,172 cf Flood Elev= 217.80' Surf.Area= 3,120 sf Storage= 3,982 cf

Plug-Flow detention time= 279.9 min calculated for 0.091 af (82% of inflow) Center-of-Mass det. time= 190.0 min (1,036.6 - 846.6)

Volume	Invert	Avail.Sto	orage Storage	Description	
#1	211.55'	8	97 cf <b>Biorete</b> 2.990 c	ntion Media (Prismatic)Listed Overall x 30.0% Voids	d below
#2	214.80'	3,0	85 cf Open S	wale (Prismatic)Listed below	(Recalc)
		3,9	82 cf Total A	ailable Storage	
Elevatio	on Su et)	ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
211.5 214.8	55 30	920 920	0 2,990	0 2,990	
Elevatio (fee	on Su et)	ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
214.8 215.8 216.8	30 30 30	920 1,525 2,200	0 1,223 1,863	0 1,223 3,085	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	211.80'	6.0" Round L= 80.0' CP Inlet / Outlet	<b>6" Underdrain</b> ^D , projecting, no headwall, Ke nvert= 211.80' / 211.80' S= 0 rugated PE, smooth interior	e= 0.900 0.0000 '/' Cc= 0.900 Elow Area= 0.20 sf
#2	Device 1	214.80'	10.000 in/hr Excluded Su	Exfiltration through Bioreter	ition Media over Surface area above
#3	Secondary	216.30'	24.0" W x 4.	" H Vert. Knockouts in Catc	h Basin X 2.00 C= 0.600

**Primary OutFlow** Max=0.15 cfs @ 12.91 hrs HW=215.83' TW=211.92' (Dynamic Tailwater)

-1=6" Underdrain (Passes 0.15 cfs of 1.03 cfs potential flow)

2=Exfiltration through Bioretention Media (Exfiltration Controls 0.15 cfs)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=211.55' TW=211.70' (Dynamic Tailwater) —3=Knockouts in Catch Basin (Controls 0.00 cfs)

Turbocam Postdevelopment FNH Route 9 Barrington NH 24-hr S1 10-yr10-yr Rainfall=4.61"Prepared by MicrosoftPrinted 2/26/2020HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLCPage 70



# Pond PP108: Bioswale "A"

#### Summary for Pond PP109: Stormwater Detention

Inflow Area	=	2.336 ac,	7.55% Impervious,	Inflow Depth =	1.05" fc	or 10-yr	event
Inflow :	=	1.47 cfs @	12.12 hrs, Volume	= 0.205 a	af		
Outflow :	=	0.18 cfs @	15.08 hrs, Volume	= 0.205 a	af, Atten=	<b>= 88%</b> ,	Lag= 177.8 mi
Discarded :	=	0.10 cfs @	15.08 hrs, Volume	= 0.182 a	af		
Primary :	=	0.08 cfs @	15.08 hrs, Volume	= 0.023 a	af		
Secondary :	=	0.00 cfs @	0.00 hrs, Volume	= 0.000 a	af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 213.56' @ 15.08 hrs Surf.Area= 2,829 sf Storage= 3,613 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 421.6 min (1,353.9 - 932.3)

Volume	Invert	Avail.Sto	rage Storage	Description		
#1	212.00'	5,20	00 cf Custom	Stage Data (Con	ic)Listed below	
Elevatio	on Su	rf.Area	Inc.Store	Cum.Store	Wet.Area	
212.0	)0 25	1,300 3,500	0 5,200	0 5,200	1,300 3,533	
Device	Routing	Invert	Outlet Devices	5		
#1	Primary	213.50'	<b>2.0' long x 3.</b> Head (feet) 0 2.50 3.00 3.5 Coef. (English 2.72 2.81 2.5	<b>0' breadth Broad</b> .20 0.40 0.60 0.8 50 4.00 4.50 1) 2.44 2.58 2.68 52 2.97 3.07 3.32	<b>Crested Rectangul</b> 30 1.00 1.20 1.40 2.67 2.65 2.64 2.0	<b>ar Weir</b> 1.60 1.80 2.00 64 2.68 2.68
#2	Secondary	214.00'	60.0' long x 4 Head (feet) 0 2.50 3.00 3.5 Coef. (English 2.68 2.72 2.7	<b>4.0' breadth Broad</b> .20 0.40 0.60 0.8 50 4.00 4.50 5.00 1) 2.38 2.54 2.69 73 2.76 2.79 2.88	d-Crested Rectangu 30 1.00 1.20 1.40 ) 5.50 2.68 2.67 2.67 2.0 3 3.07 3.32	u <b>lar Weir</b> 1.60 1.80 2.00 65 2.66 2.66
#3	Discarded	212.00'	1.500 in/hr Ex	filtration over Su	rface area	

**Discarded OutFlow** Max=0.10 cfs @ 15.08 hrs HW=213.56' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.10 cfs)

Primary OutFlow Max=0.08 cfs @ 15.08 hrs HW=213.56' TW=212.69' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir** (Weir Controls 0.08 cfs @ 0.62 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=212.00' TW=212.00' (Dynamic Tailwater) —2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)



# Pond PP109: Stormwater Detention
#### Summary for Pond PP110: Proposed 8" Earthen Berm

Inflow Area	=	2.582 ac,	8.71% Impervious,	Inflow Depth =	0.16" for	10-yr event
Inflow	=	0.09 cfs @	15.07 hrs, Volume	= 0.035	af	
Outflow	=	0.09 cfs @	15.08 hrs, Volume	= 0.032	af, Atten=	0%, Lag= 0.8 min
Primary	=	0.09 cfs @	15.08 hrs, Volume	= 0.032	af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 212.69' @ 15.08 hrs Surf.Area= 331 sf Storage= 153 cf

Plug-Flow detention time= 62.0 min calculated for 0.032 af (90% of inflow) Center-of-Mass det. time= 28.5 min (1,030.3 - 1,001.7)

Volume	Inv	ert Avai	I.Storage	Storage D	escription	
#1	212.	00'	440 cf	Custom S	Stage Data (Pri	i <b>smatic)</b> Listed below (Recalc)
Elevatio (fee	on :t)	Surf.Area (sq-ft)	Inc (cubi	.Store c-feet)	Cum.Store (cubic-feet)	
212.0 212.6 213.2	00 67	120 315 700		0 146 294	0 146 440	
Device	Routing	Inv	vert Outle	et Devices	440	
#1	Primary	212	.67' <b>7.5'</b>	long Sharp	o-Crested Vee/	Trap Weir Cv= 2.62 (C= 3.28)

**Primary OutFlow** Max=0.09 cfs @ 15.08 hrs HW=212.69' TW=212.04' (Dynamic Tailwater) **1=Sharp-Crested Vee/Trap Weir** (Weir Controls 0.09 cfs @ 0.51 fps)



## Pond PP110: Proposed 8" Earthen Berm

Turbocam Postdevelopment FNH Route 9 Barrington NH 24-hr S1 10-yr10-yr Rainfall=4.61"Prepared by MicrosoftPrinted 2/26/2020HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLCPage 75

#### Summary for Pond PPT3: Catch Basin #4

 Inflow Area =
 0.566 ac, 90.00% Impervious, Inflow Depth =
 3.84" for 10-yr event

 Inflow =
 2.33 cfs @
 12.00 hrs, Volume=
 0.181 af

 Outflow =
 2.33 cfs @
 12.00 hrs, Volume=
 0.181 af, Atten= 0%, Lag= 0.0 min

 Primary =
 2.33 cfs @
 12.00 hrs, Volume=
 0.181 af

 Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 233.08' @ 12.00 hrs Flood Elev= 235.40'

Device	Routing	Invert	Outlet Devices
#1	Primary	232.03'	<b>15.0"</b> Round 15" HDPE Pipe L= 50.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 232.03' / 231.91' S= 0.0024 '/' Cc= 0.900 n= 0.010 PVC, smooth interior. Flow Area= 1.23 sf

Primary OutFlow Max=2.33 cfs @ 12.00 hrs HW=233.08' TW=232.82' (Dynamic Tailwater) 1=15" HDPE Pipe (Outlet Controls 2.33 cfs @ 2.85 fps)





#### Summary for Pond SI1: Subsurface Infiltration

Inflow Area =	2.607 ac, 62.04% Impervious, Inflow D	Depth = 3.15" for 10-yr event
Inflow =	6.48 cfs @ 12.01 hrs, Volume=	0.684 af
Outflow =	0.66 cfs @ 13.41 hrs, Volume=	0.606 af, Atten= 90%, Lag= 83.6 min
Discarded =	0.66 cfs @ 13.41 hrs, Volume=	0.606 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 227.12' @ 13.41 hrs Surf.Area= 8,500 sf Storage= 10,038 cf Flood Elev= 230.08' Surf.Area= 8,500 sf Storage= 20,126 cf

Plug-Flow detention time= 282.7 min calculated for 0.606 af (89% of inflow) Center-of-Mass det. time= 140.9 min (1,208.0 - 1,067.1)

Volume	Invert	Avail.Stor	age Stora	age Description		
#1	224.17'	20,05	6 cf <b>Subs</b>	surface Infiltration	Reservoir (Conic	Listed below (Recalc)
#2	228.90'	7	'1 cf <b>12.0</b> ' 96 cf	' <b>D x 90.0'L Pipe S</b> Overall - 1.0" Wall	Storage Inside #1 Thickness = 71 cf	
		20,12	6 cf Total	Available Storage		
Elevatio	on Su et)	rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
224.7	17	8,500	0	0	8,500	
230.0	08	8,500	50,235	50,235	10,432	
Device	Routing	Invert	Outlet Dev	rices		
#1	Discarded	224.17'	3.000 in/h	r Exfiltration over	Wetted area Pha	ase-In= 0.10'
#2 #3	Primary Device 1	228.25' 225.17'	<b>12.0" Rot</b> L= 70.0' ( Inlet / Outlet n= 0.010 I <b>2.5" Vert.</b> X 6 rows w	und DMH/P5-Overf CMP, end-section c et Invert= 228.25' / PVC, smooth interio 8' Dia. Dry Well Pe vith 12.0" cc spacin	flow conforming to fill, 221.00' S= 0.103 or, Flow Area= 0.7 erforations X 36.0 g C= 0.600	Ke= 0.500 36 '/' Cc= 0.900 79 sf <b>0 columns</b>

**Discarded OutFlow** Max=0.66 cfs @ 13.41 hrs HW=227.12' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.66 cfs)

**1**-3=8' Dia. Dry Well Perforations (Passes 0.66 cfs of 13.47 cfs potential flow)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=224.17' TW=219.00' (Dynamic Tailwater) ←2=DMH/P5-Overflow (Controls 0.00 cfs)



## Pond SI1: Subsurface Infiltration

## Summary for Link L100: Northern Wetlands & North of Site

Inflow A	Area =	0.469 ac,	0.00% Impervious,	Inflow Depth = 0.2	29" for 10-yr event
Inflow	=	0.02 cfs @	12.57 hrs, Volume=	= 0.011 af	
Primary	/ =	0.02 cfs @	12.57 hrs, Volume=	= 0.011 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs



## Link L100: Northern Wetlands & North of Site

## Summary for Link L200: Inlet at Start of Redemption Rd; West Side

Inflow Are	ea =	8.158 ac,	19.91% Impervious,	Inflow Depth = $0.3$	30" for 10-yr event
Inflow	=	0.52 cfs @	12.58 hrs, Volume	= 0.205 af	
Primary	=	0.52 cfs @	2 12.58 hrs, Volume	= 0.205 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs



## Link L200: Inlet at Start of Redemption Rd; West Side

## Summary for Link L300: Southwest Corner of Far-East Lot; Bottom of Hill

Inflow A	rea =	1.719 ac,	0.00% Impervious, In	nflow Depth = 0.2	9" for 10-yr event
Inflow	=	0.08 cfs @	12.61 hrs, Volume=	0.041 af	-
Primary	=	0.08 cfs @	12.61 hrs, Volume=	0.041 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs



## Link L300: Southwest Corner of Far-East Lot; Bottom of Hill

## Summary for Link L400: Southwest Corner of Far-East Lot; Bottom of Hill

Inflow Are	ea =	5.704 ac,	7.02% Impervious,	Inflow Depth > 0.6	65" for 10-yr event
Inflow	=	1.16 cfs @	12.15 hrs, Volume=	0.307 af	
Primary	=	1.16 cfs @	12.15 hrs, Volume=	• 0.307 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs

## Link L400: Southwest Corner of Far-East Lot; Bottom of Hill



## Summary for Link L500: Inlet at Start of Gravel Drive; East Side

Inflow A	Area =	1.010 ac,	39.25% Impervious,	Inflow Depth = $1.4$	44" for 10-yr event
Inflow	=	0.38 cfs @	) 12.04 hrs, Volume	= 0.121 af	
Primary	/ =	0.38 cfs @	) 12.04 hrs, Volume	= 0.121 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.01 hrs



# Link L500: Inlet at Start of Gravel Drive; East Side

Turbocam Postdevelopment F NH Route 9 Barrington NH 24-hr S1 1-yr1-inch Rainfall=1.00"Prepared by MicrosoftPrinted 2/26/2020HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLCPage 83

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 2 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method Subcatchment PS1: Northwest portion of Runoff Area=101,958 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=373' Tc=15.4 min CN=48 Runoff=0.00 cfs 0.000 af Subcatchment PS10: South-center portion Runoff Area=15,431 sf 13.51% Impervious Runoff Depth=0.00" Flow Length=151' Tc=11.4 min CN=55 Runoff=0.00 cfs 0.000 af Runoff Area=33,128 sf 0.00% Impervious Runoff Depth=0.00" Subcatchment PS11: Eastern portion of Flow Length=312' Tc=20.7 min CN=51 Runoff=0.00 cfs 0.000 af Subcatchment PS12: South-center portion Runoff Area=47,403 sf 8.55% Impervious Runoff Depth=0.00" Flow Length=242' Tc=11.8 min CN=58 Runoff=0.00 cfs 0.000 af Runoff Area=21,222 sf 17.10% Impervious Runoff Depth=0.02" Subcatchment PS13: Area north of prop. Flow Length=245' Tc=8.9 min CN=73 Runoff=0.00 cfs 0.001 af Runoff Area=7,728 sf 70.54% Impervious Runoff Depth=0.36" Subcatchment PS14: Area at Flow Length=107' Tc=3.4 min CN=91 Runoff=0.08 cfs 0.005 af Subcatchment PS15: NE corner of building Runoff Area=8,288 sf 93.93% Impervious Runoff Depth=0.79" Flow Length=62' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.19 cfs 0.013 af Subcatchment PS16: NW corner of building Runoff Area=6,627 sf 93.98% Impervious Runoff Depth=0.79" Flow Length=62' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.16 cfs 0.010 af Subcatchment PS17: Parking Lot West of Runoff Area=13,293 sf 91.70% Impervious Runoff Depth=0.45" Flow Length=110' Tc=1.1 min CN=93 Runoff=0.19 cfs 0.011 af Subcatchment PS19: SW corner of building Runoff Area=6,734 sf 92.81% Impervious Runoff Depth=0.79" Flow Length=50' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.16 cfs 0.010 af Runoff Area=4,622 sf 81.03% Impervious Runoff Depth=0.22" Subcatchment PS20: Parking Lot Flow Length=88' Slope=0.0170 '/' Tc=1.0 min CN=87 Runoff=0.03 cfs 0.002 af Subcatchment PS22: SE corner of building Runoff Area=6,730 sf 92.87% Impervious Runoff Depth=0.79" Flow Length=50' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.16 cfs 0.010 af Subcatchment PS23: Area between building Runoff Area=13,335 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=157' Tc=3.7 min CN=53 Runoff=0.00 cfs 0.000 af Subcatchment PS24: Southwest portion of Runoff Area=75,770 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=569' Tc=18.4 min CN=49 Runoff=0.00 cfs 0.000 af Subcatchment PS25: Area that contains Runoff Area=30,280 sf 1.00% Impervious Runoff Depth=0.00" Flow Length=386' Tc=7.5 min CN=44 Runoff=0.00 cfs 0.000 af Runoff Area=16,294 sf 25.02% Impervious Runoff Depth=0.00" Subcatchment PS26: Area containg Link Flow Length=252' Tc=5.0 min CN=58 Runoff=0.00 cfs 0.000 af

Turbocam Postdevelopment F NH Route 9 Barrington NH 24-hr S1 1-yr 1-inch Rainfall=1         Prepared by Microsoft       Printed 2/26/2         HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC       Page	1 <i>.00"</i> 2020 ge <u>84</u>
Subcatchment PS28: area at south edge of Runoff Area=9,699 sf 56.14% Impervious Runoff Depth=	:0.05"
Flow Length=168' Tc=0.9 min CN=77 Runoff=0.00 cfs 0.0	)01 af
Subcatchment PS29: Area between Prop. Runoff Area=10,273 sf 22.32% Impervious Runoff Depth=	:0.00"
Flow Length=82' Tc=5.3 min CN=55 Runoff=0.00 cfs 0.0	)00 af
Subcatchment PS3: Northern corner portion Runoff Area=20,440 sf 0.00% Impervious Runoff Depth=	:0.00"
Flow Length=222' Slope=0.0100 '/' Tc=11.7 min CN=44 Runoff=0.00 cfs 0.0	)00 af
Subcatchment PS30: Parking LotRunoff Area=26,697 sf62.68% ImperviousRunoff Depth=Flow Length=248'Tc=1.5 minCN=82Runoff=0.05 cfs0.0	0.11" 06 af
Subcatchment PS4: Lower north corner of Runoff Area=40,570 sf 27.77% Impervious Runoff Depth=	0.06"
Flow Length=325' Tc=12.0 min CN=78 Runoff=0.01 cfs 0.0	)05 af
Subcatchment PS6: Northeast area of Runoff Area=64,817 sf 0.00% Impervious Runoff Depth=	:0.00"
Flow Length=294' Tc=23.9 min CN=70 Runoff=0.00 cfs 0.00	)01 af
Subcatchment PS7: Eastern Corner of Runoff Area=10,721 sf 19.78% Impervious Runoff Depth=	:0.00"
Flow Length=135' Tc=7.7 min CN=51 Runoff=0.00 cfs 0.0	)00 af
Subcatchment PS8: West portion ofRunoff Area=55,723 sf9.96% ImperviousRunoff Depth=Flow Length=344'Tc=12.7 minCN=62Runoff=0.00 cfs0.00	:0.00" )00 af
Subcatchment PS9: East portion of easterly Runoff Area=74,872 sf 0.00% Impervious Runoff Depth=	:0.00"
Flow Length=235' Tc=14.8 min CN=44 Runoff=0.00 cfs 0.0	)00 af
Reach ER70: Wetlands Starting North Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.0	)00 af
n=0.035 L=350.0' S=0.0100 '/' Capacity=328.04 cfs Outflow=0.00 cfs 0.0	)00 af
Reach ER72: Northwest Wetlands         Avg. Flow Depth=0.00'         Max Vel=0.00 fps         Inflow=0.00 cfs         0.00           n=0.035         L=221.0'         S=0.0158 '/'         Capacity=556.72 cfs         Outflow=0.00 cfs         0.00	)00 af )00 af
Reach ER73: Wetlands Flowing on Map Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.0	)00 af
n=0.035 L=320.0' S=0.0406 '/' Capacity=795.12 cfs Outflow=0.00 cfs 0.0	)00 af
Reach ER81: SE Portion of Middle Lot Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.0	)00 af
n=0.750 L=370.0' S=0.0554 '/' Capacity=13.04 cfs Outflow=0.00 cfs 0.0	)00 af
Reach ER82: Swale Located on North Avg. Flow Depth=0.00' Max Vel=0.44 fps Inflow=0.00 cfs 0.0	)01 af
n=0.035 L=150.0' S=0.0200 '/' Capacity=265.19 cfs Outflow=0.00 cfs 0.0	)01 af
Reach ER84: Swale Located on North Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.0	)00 af
n=0.035 L=140.0' S=0.0071 '/' Capacity=239.10 cfs Outflow=0.00 cfs 0.0	)00 af
Reach ER85: End of Swale located         Avg. Flow Depth=0.00'         Max Vel=0.00 fps         Inflow=0.00 cfs         0.00           n=0.035         L=75.0'         S=0.0133 '/'         Capacity=528.23 cfs         Outflow=0.00 cfs         0.00	)00 af )00 af
Reach PR62: Swale South of Proposed Avg. Flow Depth=0.10' Max Vel=1.99 fps Inflow=0.08 cfs 0.0	)05 af
n=0.022 L=130.0' S=0.0500 '/' Capacity=37.30 cfs Outflow=0.08 cfs 0.0	)05 af
Reach PR63: Swale North of gravel         Avg. Flow Depth=0.00'         Max Vel=0.00 fps         Inflow=0.00 cfs         0.0           n=0.022         L=80.0'         S=0.0500 '/'         Capacity=50.13 cfs         Outflow=0.00 cfs         0.0	)00 af )00 af

Turbocam Postdevelopment FNH Route 9 Barrington NH 24-hr S1 1-yr	1-inch Rainfall=1.00"
Prepared by Microsoft	Printed 2/26/2020
HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC	Page 85

Pond BR1: Bioswale-ISR 1 (CB5)Peak Elev=228.06' Storage=3Primary=0.04 cfs0.026 afSecondary=0.00 cfs0.000	12 cf Inflow=0.31 cfs 0.026 af af Outflow=0.04 cfs 0.026 af
Pond BR2: Bioswale - ISR 2 (CB3) Peak Elev=229.36' Storage=59 Primary=0.04 cfs 0.038 af Secondary=0.00 cfs 0.000	99 cf Inflow=0.50 cfs 0.038 af af Outflow=0.04 cfs 0.038 af
Pond DE1: Drip Edge along NortheasternPeak Elev=232.78'Storage=26.0" Round Culvert x 2.00n=0.010L=35.0'S=0.0086	76 cf Inflow=0.19 cfs 0.013 af 5 '/' Outflow=0.18 cfs 0.012 af
Pond DE2: Drip Edge along NorthwesternPeak Elev=232.77'Storage=26.0" Round Culvertn=0.010L=40.0'S=0.0025	71 cf Inflow=0.16 cfs 0.010 af 5 '/' Outflow=0.13 cfs 0.009 af
Pond DE3: Drip Edge along SouthwesternPeak Elev=235.67'Storage=98.0"Round Culvertn=0.010L=40.0'S=0.0000	92 cf Inflow=0.16 cfs 0.010 af ) '/' Outflow=0.12 cfs 0.009 af
Pond DE4: Drip Edge along SoutheasternPeak Elev=234.71'Storage=98.0" Round Culvertn=0.010L=100.0'S=0.0000	97 cf Inflow=0.16 cfs 0.010 af ) '/' Outflow=0.11 cfs 0.009 af
Pond EP81: Middle Portion of Wetland       Peak Elev=232.04'       Storage=2	25 cf Inflow=0.00 cfs 0.001 af Outflow=0.00 cfs 0.000 af
Pond PCB2: CB2 - Catch Basin at the end of Bioswale "A" Peak Elev=21 12.0" Round Culvert n=0.013 L=115.0' S=0.0052	1.70' Inflow=0.00 cfs 0.000 af 2 '/' Outflow=0.00 cfs 0.000 af
Pond PCB4: Catch Basin #3         Peak Elev=233           15.0" Round Culvert n=0.010 L=135.0' S=0.0025	2.64' Inflow=0.19 cfs 0.011 af 5 '/' Outflow=0.19 cfs 0.011 af
Pond PDMH1: Drain Manhole #5         Peak Elev=233           15.0" Round Culvert n=0.010 L=205.0' S=0.0025	2.23' Inflow=0.34 cfs 0.023 af 5 '/' Outflow=0.34 cfs 0.023 af
Pond PP108: Bioswale "A" Peak Elev=212.53' Storage=22 Primary=0.00 cfs 0.000 af Secondary=0.00 cfs 0.000	70 cf Inflow=0.08 cfs 0.006 af af Outflow=0.00 cfs 0.000 af
Pond PP109: Stormwater DetentionPeak Elev=212.00' StorageDiscarded=0.00 cfs0.001 afPrimary=0.00 cfs0.000 afSecondary=0.00 cfs0.000 afSecondary=0.00 cfs0.000	=0 cf Inflow=0.00 cfs 0.001 af af Outflow=0.00 cfs 0.001 af
Pond PP110: Proposed 8" Earthen Berm       Peak Elev=212.00' Storage	=0 cf Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond PPT3: Catch Basin #4         Peak Elev=233           15.0" Round Culvert n=0.010 L=50.0' S=0.0024	2.39' Inflow=0.34 cfs 0.023 af 4 '/' Outflow=0.34 cfs 0.023 af
Pond SI1: Subsurface InfiltrationPeak Elev=224.98' Storage=2,76Discarded=0.00 cfs0.000 afPrimary=0.00 cfs0.000	69 cf Inflow=0.08 cfs 0.064 af af Outflow=0.00 cfs 0.000 af
Link L100: Northern Wetlands & North of Site	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af
Link L200: Inlet at Start of Redemption Rd; West Side	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

<b>Turbocam Postdevelopment F</b> <i>NH Route 9 Barrington NH 24-hr</i> S Prepared by Microsoft	1 1-yr 1-inch Rainfall=1.00" Printed 2/26/2020
HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC	Page 86
Link L300: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=0.00 cfs 0.000 af
	Primary=0.00 cfs 0.000 af
Link L400: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=0.00 cfs 0.000 af
	Primary=0.00 cfs 0.000 af
Link L500: Inlet at Start of Gravel Drive; East Side	Inflow=0.00 cfs 0.000 af
	Primary=0.00 cfs 0.000 af
Total Runoff Area = 16.590 ac Runoff Volume = 0.074 af 85.41% Pervious = 14.169 ac	Average Runoff Depth = 0.05" 14.59% Impervious = 2.421 ac

Turbocam Postdevelopment Fin NH Route 9 Barrington NH 24-hr S1 2-yr2-yr Rainfall=3.07"Prepared by MicrosoftPrinted 2/26/2020HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLCPage 87

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 2 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method Subcatchment PS1: Northwest portion of Runoff Area=101,958 sf 0.00% Impervious Runoff Depth=0.07" Flow Length=373' Tc=15.4 min CN=48 Runoff=0.02 cfs 0.014 af Subcatchment PS10: South-center portion Runoff Area=15,431 sf 13.51% Impervious Runoff Depth=0.21" Flow Length=151' Tc=11.4 min CN=55 Runoff=0.01 cfs 0.006 af Runoff Area=33,128 sf 0.00% Impervious Runoff Depth=0.12" Subcatchment PS11: Eastern portion of Flow Length=312' Tc=20.7 min CN=51 Runoff=0.01 cfs 0.008 af Subcatchment PS12: South-center portion Runoff Area=47,403 sf 8.55% Impervious Runoff Depth=0.30" Flow Length=242' Tc=11.8 min CN=58 Runoff=0.09 cfs 0.027 af Runoff Area=21,222 sf 17.10% Impervious Runoff Depth=0.90" Subcatchment PS13: Area north of prop. Flow Length=245' Tc=8.9 min CN=73 Runoff=0.40 cfs 0.037 af Runoff Area=7,728 sf 70.54% Impervious Runoff Depth=2.14" Subcatchment PS14: Area at Flow Length=107' Tc=3.4 min CN=91 Runoff=0.49 cfs 0.032 af Subcatchment PS15: NE corner of building Runoff Area=8,288 sf 93.93% Impervious Runoff Depth=2.84" Flow Length=62' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.66 cfs 0.045 af Subcatchment PS16: NW corner of building Runoff Area=6,627 sf 93.98% Impervious Runoff Depth=2.84" Flow Length=62' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.53 cfs 0.036 af Subcatchment PS17: Parking Lot West of Runoff Area=13,293 sf 91.70% Impervious Runoff Depth=2.32" Flow Length=110' Tc=1.1 min CN=93 Runoff=0.95 cfs 0.059 af Subcatchment PS19: SW corner of building Runoff Area=6,734 sf 92.81% Impervious Runoff Depth=2.84" Flow Length=50' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.54 cfs 0.037 af Runoff Area=4,622 sf 81.03% Impervious Runoff Depth=1.80" Subcatchment PS20: Parking Lot Flow Length=88' Slope=0.0170 '/' Tc=1.0 min CN=87 Runoff=0.27 cfs 0.016 af Subcatchment PS22: SE corner of building Runoff Area=6,730 sf 92.87% Impervious Runoff Depth=2.84" Flow Length=50' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.54 cfs 0.037 af Subcatchment PS23: Area between building Runoff Area=13,335 sf 0.00% Impervious Runoff Depth=0.17" Flow Length=157' Tc=3.7 min CN=53 Runoff=0.01 cfs 0.004 af Subcatchment PS24: Southwest portion of Runoff Area=75,770 sf 0.00% Impervious Runoff Depth=0.09" Flow Length=569' Tc=18.4 min CN=49 Runoff=0.01 cfs 0.012 af Subcatchment PS25: Area that contains Runoff Area=30,280 sf 1.00% Impervious Runoff Depth=0.02" Flow Length=386' Tc=7.5 min CN=44 Runoff=0.00 cfs 0.001 af Runoff Area=16,294 sf 25.02% Impervious Runoff Depth=0.30" Subcatchment PS26: Area containg Link Flow Length=252' Tc=5.0 min CN=58 Runoff=0.04 cfs 0.009 af

Turbocam Postdevelopment Fin NH Route 9 Barrington NH 24-hr S1 2-yr 2-yrPrepared by MicrosoftPrepared by MicrosoftHydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC	r <i>Rainfall=3.07"</i> inted 2/26/2020 <u>Page 88</u>
Subcatchment PS28: area at south edge of Runoff Area=9,699 sf 56.14% Impervious Runoff=	unoff Depth=1.12"
Flow Length=168' Tc=0.9 min CN=77 Runoff=	=0.35 cfs 0.021 af
Subcatchment PS29: Area between Prop. Runoff Area=10,273 sf 22.32% Impervious Runoff Flow Length=82' Tc=5.3 min CN=55 Runoff=	unoff Depth=0.21" =0.01 cfs 0.004 af
Subcatchment PS3: Northern corner portion Runoff Area=20,440 sf 0.00% Impervious Re	unoff Depth=0.02"
Flow Length=222' Slope=0.0100 '/' Tc=11.7 min CN=44 Runoff=	=0.00 cfs 0.001 af
Subcatchment PS30: Parking LotRunoff Area=26,697 sf 62.68% ImperviousRunoffFlow Length=248'Tc=1.5 minCN=82Runoff=	unoff Depth=1.43" =1.22 cfs 0.073 af
Subcatchment PS4: Lower north corner of Runoff Area=40,570 sf 27.77% Impervious Runoff=	unoff Depth=1.18"
Flow Length=325' Tc=12.0 min CN=78 Runoff=	=0.93 cfs 0.092 af
Subcatchment PS6: Northeast area of Runoff Area=64,817 sf 0.00% Impervious Runoff Area=64,817 sf 0.00% Impervious Runoff=	unoff Depth=0.75" =0.60 cfs 0.093 af
Subcatchment PS7: Eastern Corner of Runoff Area=10,721 sf 19.78% Impervious Runoff Flow Length=135' Tc=7.7 min CN=51 Runoff=	unoff Depth=0.12" =0.00 cfs 0.003 af
Subcatchment PS8: West portion ofRunoff Area=55,723 sf 9.96% ImperviousRunoffFlow Length=344'Tc=12.7 minCN=62Runoff=	unoff Depth=0.43" =0.26 cfs 0.045 af
Subcatchment PS9: East portion of easterly Runoff Area=74,872 sf 0.00% Impervious Re	unoff Depth=0.02"
Flow Length=235' Tc=14.8 min CN=44 Runoff=	=0.01 cfs 0.003 af
Reach ER70: Wetlands Starting North Avg. Flow Depth=0.00' Max Vel=0.31 fps Inflow=	=0.00 cfs 0.001 af
n=0.035 L=350.0' S=0.0100 '/' Capacity=328.04 cfs Outflow=	=0.00 cfs 0.001 af
Reach ER72: Northwest WetlandsAvg. Flow Depth=0.00'Max Vel=0.39 fpsInflow=n=0.035L=221.0'S=0.0158 '/'Capacity=556.72 cfsOutflow=	=0.02 cfs 0.014 af =0.02 cfs 0.014 af
Reach ER73: Wetlands Flowing on Map Avg. Flow Depth=0.00' Max Vel=0.63 fps Inflow=	=0.02 cfs 0.019 af
n=0.035 L=320.0' S=0.0406 '/' Capacity=795.12 cfs Outflow=	=0.02 cfs 0.019 af
Reach ER81: SE Portion of Middle Lot Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=	=0.00 cfs 0.000 af
n=0.750 L=370.0' S=0.0554 '/' Capacity=13.04 cfs Outflow=	=0.00 cfs 0.000 af
Reach ER82: Swale Located on North Avg. Flow Depth=0.05' Max Vel=0.78 fps Inflow=	=0.40 cfs 0.037 af
n=0.035 L=150.0' S=0.0200 '/' Capacity=265.19 cfs Outflow=	=0.37 cfs 0.037 af
Reach ER84: Swale Located on North Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=	=0.00 cfs 0.000 af
n=0.035 L=140.0' S=0.0071 '/' Capacity=239.10 cfs Outflow=	=0.00 cfs 0.000 af
Reach ER85: End of Swale locatedAvg. Flow Depth=0.07'Max Vel=0.84 fpsInflow=n=0.035L=75.0'S=0.0133 '/'Capacity=528.23 cfsOutflow=	=0.26 cfs 0.045 af =0.26 cfs 0.045 af
Reach PR62: Swale South of Proposed Avg. Flow Depth=0.20' Max Vel=3.16 fps Inflow=	=0.49 cfs 0.032 af
n=0.022 L=130.0' S=0.0500 '/' Capacity=37.30 cfs Outflow=	=0.49 cfs 0.032 af
Reach PR63: Swale North of gravel n=0.022Avg. Flow Depth=0.03'Max Vel=1.40 fpsInflow=L=80.0'S=0.0500 '/'Capacity=50.13 cfsOutflow=	=0.05 cfs 0.036 af =0.05 cfs 0.036 af

Turbocam Postdevelopment Fin NH Route 9 Barrington NH 24-hr S1 2-y	r 2-yr Rainfall=3.07"
Prepared by Microsoft	Printed 2/26/2020
HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC	Page 89

Pond BR1: Bioswale-ISR 1 (CB5)Peak Elev=229.56' Storage=2,56'Primary=0.05 cfs0.120 afSecondary=0.55 cfs0.050	66 cf Inflow=1.53 cfs 0.171 af af Outflow=0.60 cfs 0.171 af
Pond BR2: Bioswale - ISR 2 (CB3)Peak Elev=230.66' Storage=3,28Primary=0.05 cfs0.135 afSecondary=1.12 cfs0.085	93 cf Inflow=3.40 cfs 0.220 af af Outflow=1.17 cfs 0.220 af
Pond DE1: Drip Edge along NortheasternPeak Elev=232.97' Storage=176.0" Round Culvert x 2.00 n=0.010 L=35.0' S=0.0086	15 cf Inflow=0.66 cfs 0.045 af 5 '/' Outflow=0.65 cfs 0.044 af
Pond DE2: Drip Edge along NorthwesternPeak Elev=233.14'Storage=136.0" Round Culvertn=0.010L=40.0'S=0.0025	30 cf Inflow=0.53 cfs 0.036 af 5 '/' Outflow=0.45 cfs 0.035 af
Pond DE3: Drip Edge along SouthwesternPeak Elev=235.99' Storage=188.0" Round Culvertn=0.010L=40.0' S=0.0000	54 cf Inflow=0.54 cfs 0.037 af ) '/' Outflow=0.49 cfs 0.036 af
Pond DE4: Drip Edge along SoutheasternPeak Elev=235.06' Storage=168.0" Round Culvertn=0.010 L=100.0' S=0.0000	66 cf Inflow=0.54 cfs 0.037 af ) '/' Outflow=0.47 cfs 0.036 af
Pond EP81: Middle Portion of Wetland       Peak Elev=233.50'       Storage=4,07	70 cf Inflow=0.60 cfs 0.093 af Outflow=0.00 cfs 0.000 af
Pond PCB2: CB2 - Catch Basin at the end of Bioswale "A" Peak Elev=21 12.0" Round Culvert n=0.013 L=115.0' S=0.0052	1.83' Inflow=0.05 cfs 0.036 af 2 '/' Outflow=0.05 cfs 0.036 af
Pond PCB4: Catch Basin #3         Peak Elev=233           15.0" Round Culvert n=0.010 L=135.0' S=0.0025	3.09' Inflow=0.95 cfs 0.059 af 5 '/' Outflow=0.95 cfs 0.059 af
Pond PDMH1: Drain Manhole #5         Peak Elev=232           15.0" Round Culvert n=0.010 L=205.0' S=0.0025	2.67' Inflow=1.71 cfs 0.111 af 5 '/' Outflow=1.71 cfs 0.111 af
Pond PP108: Bioswale "A"         Peak Elev=215.15' Storage=1,25           Primary=0.05 cfs         0.036 af         Secondary=0.00 cfs         0.000	55 cf Inflow=0.82 cfs 0.057 af af Outflow=0.05 cfs 0.036 af
Pond PP109: Stormwater DetentionPeak Elev=212.38' Storage=87Discarded=0.06 cfs0.071 afPrimary=0.00 cfs0.000 afSecondary=0.00 cfs0.000	75 cf Inflow=0.43 cfs 0.071 af af Outflow=0.06 cfs 0.071 af
Pond PP110: Proposed 8" Earthen Berm       Peak Elev=212.55' Storage=17	10 cf Inflow=0.00 cfs 0.003 af Outflow=0.00 cfs 0.000 af
Pond PPT3: Catch Basin #4         Peak Elev=232           15.0" Round Culvert n=0.010 L=50.0' S=0.0024	2.90' Inflow=1.71 cfs 0.111 af
Pond SI1: Subsurface InfiltrationPeak Elev=225.27'Storage=3.72Discarded=0.59 cfs0.312 afPrimary=0.00 cfs0.000	29 cf Inflow=1.29 cfs 0.391 af af Outflow=0.59 cfs 0.312 af
Link L100: Northern Wetlands & North of Site	Inflow=0.00 cfs 0.001 af Primary=0.00 cfs 0.001 af
Link L200: Inlet at Start of Redemption Rd; West Side	Inflow=0.04 cfs 0.032 af Primary=0.04 cfs 0.032 af

Turbocam Postdevelopment Fin NH Route 9 Barrington NH 24-h	r S1 2-yr 2-yr Rainfall=3.07"
Prepared by Microsoft	Printed 2/26/2020
HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC	Page 90
	-
Link L300: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=0.01 cfs 0.003 af
	Primary=0.01 cfs 0.003 af
Link L400: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=0.26 cfs 0.052 af
	Primary=0.26 cfs 0.052 af
Link L500: Inlet at Start of Gravel Drive; East Side	Inflow=0.06 cfs 0.045 af
	Primary=0.06 cfs 0.045 af
Total Runoff Area = 16.590 ac Runoff Volume = 0.714 af 85.41% Pervious = 14.169 ac	Average Runoff Depth = 0.52" 14.59% Impervious = 2.421 ac

Turbocam Postdevelopment FNH Route 9 Barrington NH 24-hr S1 10-yr10-yr Rainfall=4.61"Prepared by MicrosoftPrinted 2/26/2020HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLCPage 91

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 2 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method Subcatchment PS1: Northwest portion of Runoff Area=101,958 sf 0.00% Impervious Runoff Depth=0.45" Flow Length=373' Tc=15.4 min CN=48 Runoff=0.26 cfs 0.088 af Subcatchment PS10: South-center portion Runoff Area=15,431 sf 13.51% Impervious Runoff Depth=0.79" Flow Length=151' Tc=11.4 min CN=55 Runoff=0.15 cfs 0.023 af Runoff Area=33,128 sf 0.00% Impervious Runoff Depth=0.59" Subcatchment PS11: Eastern portion of Flow Length=312' Tc=20.7 min CN=51 Runoff=0.14 cfs 0.037 af Subcatchment PS12: South-center portion Runoff Area=47,403 sf 8.55% Impervious Runoff Depth=0.96" Flow Length=242' Tc=11.8 min CN=58 Runoff=0.64 cfs 0.087 af Runoff Area=21,222 sf 17.10% Impervious Runoff Depth=1.98" Subcatchment PS13: Area north of prop. Flow Length=245' Tc=8.9 min CN=73 Runoff=0.83 cfs 0.080 af Runoff Area=7,728 sf 70.54% Impervious Runoff Depth=3.60" Subcatchment PS14: Area at Flow Length=107' Tc=3.4 min CN=91 Runoff=0.70 cfs 0.053 af Subcatchment PS15: NE corner of building Runoff Area=8,288 sf 93.93% Impervious Runoff Depth=4.37" Flow Length=62' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.86 cfs 0.069 af Subcatchment PS16: NW corner of building Runoff Area=6,627 sf 93.98% Impervious Runoff Depth=4.37" Flow Length=62' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.68 cfs 0.055 af Subcatchment PS17: Parking Lot West of Runoff Area=13,293 sf 91.70% Impervious Runoff Depth=3.82" Flow Length=110' Tc=1.1 min CN=93 Runoff=1.29 cfs 0.097 af Subcatchment PS19: SW corner of building Runoff Area=6,734 sf 92.81% Impervious Runoff Depth=4.37" Flow Length=50' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.70 cfs 0.056 af Runoff Area=4,622 sf 81.03% Impervious Runoff Depth=3.20" Subcatchment PS20: Parking Lot Flow Length=88' Slope=0.0170 '/' Tc=1.0 min CN=87 Runoff=0.40 cfs 0.028 af Subcatchment PS22: SE corner of building Runoff Area=6,730 sf 92.87% Impervious Runoff Depth=4.37" Flow Length=50' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.70 cfs 0.056 af Subcatchment PS23: Area between building Runoff Area=13,335 sf 0.00% Impervious Runoff Depth=0.69" Flow Length=157' Tc=3.7 min CN=53 Runoff=0.15 cfs 0.018 af Subcatchment PS24: Southwest portion of Runoff Area=75,770 sf 0.00% Impervious Runoff Depth=0.49" Flow Length=569' Tc=18.4 min CN=49 Runoff=0.23 cfs 0.072 af Subcatchment PS25: Area that contains Runoff Area=30,280 sf 1.00% Impervious Runoff Depth=0.29" Flow Length=386' Tc=7.5 min CN=44 Runoff=0.03 cfs 0.017 af Runoff Area=16,294 sf 25.02% Impervious Runoff Depth=0.96" Subcatchment PS26: Area containg Link Flow Length=252' Tc=5.0 min CN=58 Runoff=0.30 cfs 0.030 af

<b>Turbocam Postdevelopment F</b> NH Route 9 Barrington NH 24-hr S1 10-yr 10-yr Rainfall=4.61"Prepared by MicrosoftPrinted 2/26/2020HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLCPage 92
Subcatchment PS28: area at south edge of Runoff Area=9,699 sf 56.14% Impervious Runoff Depth=2.30" Flow Length=168' Tc=0.9 min CN=77 Runoff=0.62 cfs 0.043 af
Subcatchment PS29: Area between Prop. Runoff Area=10,273 sf 22.32% Impervious Runoff Depth=0.79" Flow Length=82' Tc=5.3 min CN=55 Runoff=0.13 cfs 0.016 af
Subcatchment PS3: Northern corner portion Runoff Area=20,440 sf 0.00% Impervious Runoff Depth=0.29" Flow Length=222' Slope=0.0100 '/' Tc=11.7 min CN=44 Runoff=0.02 cfs 0.011 af
Subcatchment PS30: Parking LotRunoff Area=26,697 sf62.68% ImperviousRunoff Depth=2.73"Flow Length=248'Tc=1.5 minCN=82Runoff=1.99 cfs0.140 af
Subcatchment PS4: Lower north corner of Runoff Area=40,570 sf 27.77% Impervious Runoff Depth=2.38" Flow Length=325' Tc=12.0 min CN=78 Runoff=1.73 cfs 0.185 af
Subcatchment PS6: Northeast area of Runoff Area=64,817 sf 0.00% Impervious Runoff Depth=1.75" Flow Length=294' Tc=23.9 min CN=70 Runoff=1.43 cfs 0.217 af
Subcatchment PS7: Eastern Corner ofRunoff Area=10,721 sf19.78% ImperviousRunoff Depth=0.59"Flow Length=135'Tc=7.7 minCN=51Runoff=0.06 cfs0.012 af
Subcatchment PS8: West portion ofRunoff Area=55,723 sf9.96% ImperviousRunoff Depth=1.20"Flow Length=344'Tc=12.7 minCN=62Runoff=1.01 cfs0.128 af
Subcatchment PS9: East portion of easterly Runoff Area=74,872 sf 0.00% Impervious Runoff Depth=0.29" Flow Length=235' Tc=14.8 min CN=44 Runoff=0.08 cfs 0.041 af
Reach ER70: Wetlands Starting North Avg. Flow Depth=0.00' Max Vel=0.31 fps Inflow=0.02 cfs 0.011 af n=0.035 L=350.0' S=0.0100 '/' Capacity=328.04 cfs Outflow=0.02 cfs 0.011 af
Reach ER72: Northwest Wetlands         Avg. Flow Depth=0.02'         Max Vel=0.45 fps         Inflow=0.26 cfs         0.099 af           n=0.035         L=221.0'         S=0.0158 '/'         Capacity=556.72 cfs         Outflow=0.25 cfs         0.099 af
Reach ER73: Wetlands Flowing on Map Avg. Flow Depth=0.02' Max Vel=0.66 fps Inflow=0.30 cfs 0.117 af n=0.035 L=320.0' S=0.0406 '/' Capacity=795.12 cfs Outflow=0.28 cfs 0.117 af
Reach ER81: SE Portion of Middle Lot Avg. Flow Depth=0.14' Max Vel=0.09 fps Inflow=0.21 cfs 0.123 af n=0.750 L=370.0' S=0.0554 '/' Capacity=13.04 cfs Outflow=0.17 cfs 0.123 af
Reach ER82: Swale Located on North Avg. Flow Depth=0.07' Max Vel=1.04 fps Inflow=0.83 cfs 0.080 af n=0.035 L=150.0' S=0.0200 '/' Capacity=265.19 cfs Outflow=0.79 cfs 0.080 af
Reach ER84: Swale Located on North Avg. Flow Depth=0.04' Max Vel=0.41 fps Inflow=0.09 cfs 0.032 af n=0.035 L=140.0' S=0.0071 '/' Capacity=239.10 cfs Outflow=0.09 cfs 0.032 af
Reach ER85: End of Swale located         Avg. Flow Depth=0.16'         Max Vel=1.37 fps         Inflow=1.01 cfs         0.283 af           n=0.035         L=75.0'         S=0.0133 '/'         Capacity=528.23 cfs         Outflow=1.01 cfs         0.283 af
Reach PR62: Swale South of Proposed Avg. Flow Depth=0.22' Max Vel=3.45 fps Inflow=0.70 cfs 0.053 af n=0.022 L=130.0' S=0.0500 '/' Capacity=37.30 cfs Outflow=0.70 cfs 0.053 af
Reach PR63: Swale North of gravel         Avg. Flow Depth=0.06'         Max Vel=2.02 fps         Inflow=0.15 cfs         0.091 af           n=0.022         L=80.0'         S=0.0500 '/'         Capacity=50.13 cfs         Outflow=0.15 cfs         0.091 af

Turbocam Postdevelopment FNH Route 9 Barrington NH 24-hr S1 10-yr	10-yr Rainfall=4.61"
Prepared by Microsoft	Printed 2/26/2020
HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC	Page 93

Pond BR1: Bioswale-ISR 1 (CB5)         Peak Elev=229.65'         Storage=2,756 cf         Inflow=           Primary=0.05 cfs         0.127 af         Secondary=2.32 cfs         0.181 af         Outflow=	=2.43 cfs =2.37 cfs	0.308 af 0.308 af
Pond BR2: Bioswale - ISR 2 (CB3)         Peak Elev=230.80' Storage=3,754 cf         Inflow=           Primary=0.05 cfs         0.144 af         Secondary=4.41 cfs         0.232 af         Outflow=	=4.93 cfs =4.46 cfs	0.376 af 0.376 af
Pond DE1: Drip Edge along Northeastern         Peak Elev=233.05' Storage=130 cf         Inflow=           6.0" Round Culvert x 2.00 n=0.010 L=35.0' S=0.0086 '/' Outflow=	=0.86 cfs =0.84 cfs	0.069 af 0.068 af
Pond DE2: Drip Edge along Northwestern         Peak Elev=233.35'         Storage=163 cf         Inflow=           6.0"         Round Culvert         n=0.010         L=40.0'         S=0.0025 '/'         Outflow=	=0.68 cfs =0.58 cfs	0.055 af 0.055 af
Pond DE3: Drip Edge along Southwestern         Peak Elev=236.12'         Storage=177 cf         Inflow=           8.0"         Round Culvert         n=0.010         L=40.0'         S=0.0000 '/'         Outflow=	=0.70 cfs =0.64 cfs	0.056 af 0.056 af
Pond DE4: Drip Edge along Southeastern         Peak Elev=235.22'         Storage=195 cf         Inflow=           8.0"         Round Culvert         n=0.010         L=100.0'         S=0.0000 '/'         Outflow=	=0.70 cfs =0.59 cfs	0.056 af 0.056 af
Pond EP81: Middle Portion of Wetland       Peak Elev=233.61'       Storage=4,706 cf       Inflow=         Outflow=       Outflow=	=1.43 cfs =0.21 cfs	0.217 af 0.123 af
Pond PCB2: CB2 - Catch Basin at the end of Bioswale "A" Peak Elev=211.92' Inflow: 12.0" Round Culvert n=0.013 L=115.0' S=0.0052 '/' Outflow:	=0.15 cfs =0.15 cfs	0.091 af 0.091 af
Pond PCB4: Catch Basin #3         Peak Elev=233.27'         Inflow=           15.0" Round Culvert n=0.010 L=135.0' S=0.0025 '/'         Outflow=	=1.29 cfs =1.29 cfs	0.097 af 0.097 af
Pond PDMH1: Drain Manhole #5 Peak Elev=232.82' Inflow: 15.0" Round Culvert n=0.010 L=205.0' S=0.0025 '/' Outflow:	=2.33 cfs =2.33 cfs	0.181 af 0.181 af
Pond PP108: Bioswale "A" Peak Elev=215.83' Storage=2,172 cf Inflow= Primary=0.15 cfs 0.091 af Secondary=0.00 cfs 0.000 af Outflow=	=1.40 cfs =0.15 cfs	0.112 af 0.091 af
Pond PP109: Stormwater DetentionPeak Elev=213.56' Storage=3,613 cfInflowDiscarded=0.10 cfs0.182 afPrimary=0.08 cfs0.023 afSecondary=0.00 cfs0.000 afOutflow=	=1.47 cfs =0.18 cfs	0.205 af 0.205 af
Pond PP110: Proposed 8" Earthen Berm Peak Elev=212.69' Storage=153 cf Inflow: Outflow:	=0.09 cfs =0.09 cfs	0.035 af 0.032 af
Pond PPT3: Catch Basin #4         Peak Elev=233.08'         Inflow=           15.0" Round Culvert n=0.010 L=50.0' S=0.0024 '/'         Outflow=	=2.33 cfs =2.33 cfs	0.181 af 0.181 af
Pond SI1: Subsurface Infiltration         Peak Elev=227.12' Storage=10,038 cf Inflow=           Discarded=0.66 cfs         0.606 af Primary=0.00 cfs         0.000 af Outflow=	=6.48 cfs =0.66 cfs	0.684 af 0.606 af
Link L100: Northern Wetlands & North of Site Inflow: Primary:	=0.02 cfs =0.02 cfs	0.011 af 0.011 af
Link L200: Inlet at Start of Redemption Rd; West Side Inflow: Primary:	=0.52 cfs =0.52 cfs	0.205 af 0.205 af

<b>Turbocam Postdevelopment F</b> NH Route 9 Barrington NH 24-hr S Prepared by Microsoft	1 10-yr 10-yr Rainfall=4.61" Printed 2/26/2020
HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC	Page 94
Link L300: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=0.08 cfs 0.041 af
	Primary=0.08 cfs 0.041 af
Link L400: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=1.16 cfs 0.307 af
	Primary=1.16 cfs 0.307 af
Link L500: Inlet at Start of Gravel Drive; East Side	Inflow=0.38 cfs 0.121 af
,	Primary=0.38 cfs 0.121 af
Total Runoff Area = 16.590 ac Runoff Volume = 1.661 af 85.41% Pervious = 14.169 ac	Average Runoff Depth = 1.20" 14.59% Impervious = 2.421 ac

Turbocam Postdevelopment FNH Route 9 Barrington NH 24-hr S1 25-yr 25-yr Rainfall=5.83"Prepared by MicrosoftPrinted 2/26/2020HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLCPage 95

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 2 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method Subcatchment PS1: Northwest portion of Runoff Area=101,958 sf 0.00% Impervious Runoff Depth=0.93" Flow Length=373' Tc=15.4 min CN=48 Runoff=0.93 cfs 0.181 af Subcatchment PS10: South-center portion Runoff Area=15,431 sf 13.51% Impervious Runoff Depth=1.42" Flow Length=151' Tc=11.4 min CN=55 Runoff=0.32 cfs 0.042 af Runoff Area=33,128 sf 0.00% Impervious Runoff Depth=1.13" Subcatchment PS11: Eastern portion of Flow Length=312' Tc=20.7 min CN=51 Runoff=0.38 cfs 0.072 af Subcatchment PS12: South-center portion Runoff Area=47,403 sf 8.55% Impervious Runoff Depth=1.65" Flow Length=242' Tc=11.8 min CN=58 Runoff=1.20 cfs 0.150 af Runoff Area=21,222 sf 17.10% Impervious Runoff Depth=2.95" Subcatchment PS13: Area north of prop. Flow Length=245' Tc=8.9 min CN=73 Runoff=1.20 cfs 0.120 af Runoff Area=7,728 sf 70.54% Impervious Runoff Depth=4.79" Subcatchment PS14: Area at Flow Length=107' Tc=3.4 min CN=91 Runoff=0.87 cfs 0.071 af Subcatchment PS15: NE corner of building Runoff Area=8,288 sf 93.93% Impervious Runoff Depth=5.59" Flow Length=62' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=1.03 cfs 0.089 af Subcatchment PS16: NW corner of building Runoff Area=6,627 sf 93.98% Impervious Runoff Depth=5.59" Flow Length=62' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.82 cfs 0.071 af Subcatchment PS17: Parking Lot West of Runoff Area=13,293 sf 91.70% Impervious Runoff Depth=5.01" Flow Length=110' Tc=1.1 min CN=93 Runoff=1.58 cfs 0.128 af Subcatchment PS19: SW corner of building Runoff Area=6,734 sf 92.81% Impervious Runoff Depth=5.59" Flow Length=50' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.83 cfs 0.072 af Runoff Area=4,622 sf 81.03% Impervious Runoff Depth=4.35" Subcatchment PS20: Parking Lot Flow Length=88' Slope=0.0170 '/' Tc=1.0 min CN=87 Runoff=0.50 cfs 0.039 af Subcatchment PS22: SE corner of building Runoff Area=6,730 sf 92.87% Impervious Runoff Depth=5.59" Flow Length=50' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.83 cfs 0.072 af Subcatchment PS23: Area between building Runoff Area=13,335 sf 0.00% Impervious Runoff Depth=1.27" Flow Length=157' Tc=3.7 min CN=53 Runoff=0.34 cfs 0.032 af Subcatchment PS24: Southwest portion of Runoff Area=75,770 sf 0.00% Impervious Runoff Depth=0.99" Flow Length=569' Tc=18.4 min CN=49 Runoff=0.73 cfs 0.144 af Subcatchment PS25: Area that contains Runoff Area=30,280 sf 1.00% Impervious Runoff Depth=0.67" Flow Length=386' Tc=7.5 min CN=44 Runoff=0.16 cfs 0.039 af Runoff Area=16,294 sf 25.02% Impervious Runoff Depth=1.65" Subcatchment PS26: Area containg Link Flow Length=252' Tc=5.0 min CN=58 Runoff=0.56 cfs 0.051 af

Urbocam Postdevelopment FNH Route 9 Barrington NH 24-hr S1 25-yr25-yr Rainfall=5.83"Prepared by MicrosoftPrinted 2/26/2020VydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLCPage 96
ubcatchment PS28: area at south edge of Runoff Area=9,699 sf 56.14% Impervious Runoff Depth=3.33" Flow Length=168' Tc=0.9 min CN=77 Runoff=0.84 cfs 0.062 af
ubcatchment PS29: Area between Prop. Runoff Area=10,273 sf 22.32% Impervious Runoff Depth=1.42" Flow Length=82' Tc=5.3 min CN=55 Runoff=0.28 cfs 0.028 af
ubcatchment PS3: Northern corner portion Runoff Area=20,440 sf 0.00% Impervious Runoff Depth=0.67" Flow Length=222' Slope=0.0100 '/' Tc=11.7 min CN=44 Runoff=0.10 cfs 0.026 af
ubcatchment PS30: Parking LotRunoff Area=26,697 sf62.68% ImperviousRunoff Depth=3.83"Flow Length=248'Tc=1.5 minCN=82Runoff=2.62 cfs0.196 af
ubcatchment PS4: Lower north corner of Runoff Area=40,570 sf 27.77% Impervious Runoff Depth=3.43" Flow Length=325' Tc=12.0 min CN=78 Runoff=2.37 cfs 0.266 af
ubcatchment PS6: Northeast area ofRunoff Area=64,817 sf0.00% ImperviousRunoff Depth=2.67"Flow Length=294'Tc=23.9 minCN=70Runoff=2.14 cfs0.331 af
ubcatchment PS7: Eastern Corner ofRunoff Area=10,721 sf19.78% ImperviousRunoff Depth=1.13"Flow Length=135'Tc=7.7 minCN=51Runoff=0.18 cfs0.023 af
ubcatchment PS8: West portion ofRunoff Area=55,723 sf9.96% ImperviousRunoff Depth=1.98"Flow Length=344'Tc=12.7 minCN=62Runoff=1.71 cfs0.211 af
ubcatchment PS9: East portion of easterly Runoff Area=74,872 sf 0.00% Impervious Runoff Depth=0.67" Flow Length=235' Tc=14.8 min CN=44 Runoff=0.34 cfs 0.097 af
each ER70: Wetlands Starting North Avg. Flow Depth=0.01' Max Vel=0.31 fps Inflow=0.10 cfs 0.026 af n=0.035 L=350.0' S=0.0100 '/' Capacity=328.04 cfs Outflow=0.07 cfs 0.026 af
Leach ER72: Northwest Wetlands         Avg. Flow Depth=0.05'         Max Vel=0.72 fps         Inflow=0.96 cfs         0.207 af           n=0.035         L=221.0'         S=0.0158 '/'         Capacity=556.72 cfs         Outflow=0.90 cfs         0.207 af
<b>Leach ER73: Wetlands Flowing on Map</b> Avg. Flow Depth=0.04' Max Vel=1.08 fps Inflow=1.01 cfs 0.282 af n=0.035 L=320.0' S=0.0406 '/' Capacity=795.12 cfs Outflow=0.97 cfs 0.282 af
each ER81: SE Portion of Middle Lot Avg. Flow Depth=0.22' Max Vel=0.13 fps Inflow=0.71 cfs 0.237 af n=0.750 L=370.0' S=0.0554 '/' Capacity=13.04 cfs Outflow=0.48 cfs 0.237 af
<b>Each ER82: Swale Located on North</b> Avg. Flow Depth=0.09' Max Vel=1.20 fps Inflow=1.20 cfs 0.120 af n=0.035 L=150.0' S=0.0200 '/' Capacity=265.19 cfs Outflow=1.15 cfs 0.120 af
each ER84: Swale Located on North Avg. Flow Depth=0.13' Max Vel=0.90 fps Inflow=0.78 cfs 0.168 af n=0.035 L=140.0' S=0.0071 '/' Capacity=239.10 cfs Outflow=0.78 cfs 0.168 af
Leach ER85: End of Swale located         Avg. Flow Depth=0.22'         Max Vel=1.64 fps         Inflow=1.71 cfs         0.616 af           n=0.035         L=75.0'         S=0.0133 '/'         Capacity=528.23 cfs         Outflow=1.71 cfs         0.616 af
each PR62: Swale South of Proposed Avg. Flow Depth=0.24' Max Vel=3.64 fps Inflow=0.87 cfs 0.071 af n=0.022 L=130.0' S=0.0500 '/' Capacity=37.30 cfs Outflow=0.86 cfs 0.071 af
Leach PR63: Swale North of gravel         Avg. Flow Depth=0.08'         Max Vel=2.41 fps         Inflow=0.25 cfs         0.140 af           n=0.022         L=80.0'         S=0.0500 '/'         Capacity=50.13 cfs         Outflow=0.25 cfs         0.140 af

Turbocam Postdevelopment FNH Route 9 Barrington NH 24-hr S1 25-yr	25-yr Rair	nfall=5.83"
Prepared by Microsoft	Printed	2/26/2020
HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC		Page 97

Pond BR1: Bioswale-ISR 1 (CB5)Peak Elev=229.68' Storage=2,826Primary=0.05 cfs0.123 afSecondary=3.13 cfs0.301 af	6 cf Inflow=3.24 cfs af Outflow=3.17 cfs	0.424 af 0.424 af
Pond BR2: Bioswale - ISR 2 (CB3)Peak Elev=230.84' Storage=3,895Primary=0.05 cfs0.144 afSecondary=5.62 cfs0.360 a	5 cf Inflow=6.18 cfs af Outflow=5.67 cfs	0.504 af 0.504 af
Pond DE1: Drip Edge along NortheasternPeak Elev=233.13'Storage=1486.0" Round Culvert x 2.00n=0.010L=35.0'S=0.0086 '	3 cf Inflow=1.03 cfs /' Outflow=1.01 cfs	0.089 af 0.088 af
Pond DE2: Drip Edge along NorthwesternPeak Elev=233.52'Storage=1906.0" Round Culvertn=0.010L=40.0'S=0.0025 '	) cf Inflow=0.82 cfs /' Outflow=0.68 cfs	0.071 af 0.070 af
Pond DE3: Drip Edge along SouthwesternPeak Elev=236.23'Storage=1998.0" Round Culvertn=0.010L=40.0'S=0.0000 '	9 cf Inflow=0.83 cfs /' Outflow=0.74 cfs	0.072 af 0.071 af
Pond DE4: Drip Edge along SoutheasternPeak Elev=235.37'Storage=2248.0" Round Culvertn=0.010L=100.0'S=0.0000 '	t cf Inflow=0.83 cfs /' Outflow=0.71 cfs	0.072 af 0.071 af
Pond EP81: Middle Portion of WetlandPeak Elev=233.76'Storage=5,557	7 cf Inflow=2.14 cfs Outflow=0.71 cfs	0.331 af 0.237 af
Pond PCB2: CB2 - Catch Basin at the end of Bioswale "A" Peak Elev=211. 12.0" Round Culvert n=0.013 L=115.0' S=0.0052 '	99' Inflow=0.25 cfs /' Outflow=0.25 cfs	0.140 af 0.140 af
Pond PCB4: Catch Basin #3         Peak Elev=233.           15.0" Round Culvert n=0.010 L=135.0' S=0.0025 '	41' Inflow=1.58 cfs /' Outflow=1.58 cfs	0.128 af 0.128 af
Pond PDMH1: Drain Manhole #5         Peak Elev=232.           15.0" Round Culvert n=0.010 L=205.0' S=0.0025 '	94' Inflow=2.83 cfs /' Outflow=2.83 cfs	0.237 af 0.237 af
Pond PP108: Bioswale "A"         Peak Elev=216.32' Storage=3,002           Primary=0.22 cfs         0.139 af         Secondary=0.03 cfs         0.001 a	2 cf Inflow=1.92 cfs af Outflow=0.25 cfs	0.161 af 0.140 af
Pond PP109: Stormwater DetentionPeak Elev=213.78' Storage=4,110Discarded=0.11 cfs0.193 afPrimary=0.73 cfs0.148 afSecondary=0.00 cfs0.000 a	) cf Inflow=2.55 cfs if Outflow=0.84 cfs	0.341 af 0.341 af
Pond PP110: Proposed 8" Earthen Berm       Peak Elev=212.77'       Storage=181	l cf Inflow=0.78 cfs Outflow=0.78 cfs	0.171 af 0.168 af
Pond PPT3: Catch Basin #4         Peak Elev=233.1           15.0" Round Culvert n=0.010 L=50.0' S=0.0024 1	22' Inflow=2.83 cfs /' Outflow=2.83 cfs	0.237 af 0.237 af
Pond SI1: Subsurface InfiltrationPeak Elev=228.58'Storage=14,987Discarded=0.69 cfs0.807 afPrimary=0.44 cfs0.042 a	7 cf Inflow=8.41 cfs af Outflow=1.13 cfs	0.928 af 0.850 af
Link L100: Northern Wetlands & North of Site	Inflow=0.10 cfs Primary=0.10 cfs	0.026 af 0.026 af
Link L200: Inlet at Start of Redemption Rd; West Side	Inflow=1.78 cfs Primary=1.78 cfs	0.465 af 0.465 af

Turbocam Postdevelopment FNH Route 9 Barrington NH 24-hr S1 25-yr 25-yr Rainfall=5.83"		
Prepared by Microsoft	Printed 2/26/2020	
HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC	Page 98	
Link L300: Southwest Corner of Far-East Lot: Bottom of Hill	Inflow=0.34 cfs 0.097 af	
	Primary=0.34 cfs 0.097 af	
Link L400: Southwest Corner of Far-East Lot: Bottom of Hill	Inflow=2.02 cfs 0.658 af	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, _,, _	Primary=2.02 cfs 0.658 af	
Link L500: Inlet at Start of Gravel Drive; East Side	Inflow=0.71 cfs 0.191 af	
·	Primary=0.71 cfs 0.191 af	
Total Runoff Area = 16.590 ac Runoff Volume = 2.610 af 85.41% Pervious = 14.169 ac	Average Runoff Depth = 1.89" 14.59% Impervious = 2.421 ac	

Turbocam Postdevelopment FNH Route 9 Barrington NH 24-hr S1 50-yr50-yr Rainfall=6.97"Prepared by MicrosoftPrinted 2/26/2020HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLCPage 99

Time span=0.00-48.00 hrs, dt=0.01 hrs, 4801 points x 2 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method Subcatchment PS1: Northwest portion of Runoff Area=101,958 sf 0.00% Impervious Runoff Depth=1.48" Flow Length=373' Tc=15.4 min CN=48 Runoff=1.73 cfs 0.288 af Subcatchment PS10: South-center portion Runoff Area=15,431 sf 13.51% Impervious Runoff Depth=2.10" Flow Length=151' Tc=11.4 min CN=55 Runoff=0.49 cfs 0.062 af Runoff Area=33,128 sf 0.00% Impervious Runoff Depth=1.74" Subcatchment PS11: Eastern portion of Flow Length=312' Tc=20.7 min CN=51 Runoff=0.63 cfs 0.110 af Subcatchment PS12: South-center portion Runoff Area=47,403 sf 8.55% Impervious Runoff Depth=2.39" Flow Length=242' Tc=11.8 min CN=58 Runoff=1.73 cfs 0.217 af Runoff Area=21,222 sf 17.10% Impervious Runoff Depth=3.91" Subcatchment PS13: Area north of prop. Flow Length=245' Tc=8.9 min CN=73 Runoff=1.51 cfs 0.159 af Runoff Area=7,728 sf 70.54% Impervious Runoff Depth=5.91" Subcatchment PS14: Area at Flow Length=107' Tc=3.4 min CN=91 Runoff=1.00 cfs 0.087 af Subcatchment PS15: NE corner of building Runoff Area=8,288 sf 93.93% Impervious Runoff Depth=6.73" Flow Length=62' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=1.16 cfs 0.107 af Subcatchment PS16: NW corner of building Runoff Area=6,627 sf 93.98% Impervious Runoff Depth=6.73" Flow Length=62' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.93 cfs 0.085 af Subcatchment PS17: Parking Lot West of Runoff Area=13,293 sf 91.70% Impervious Runoff Depth=6.14" Flow Length=110' Tc=1.1 min CN=93 Runoff=1.80 cfs 0.156 af Subcatchment PS19: SW corner of building Runoff Area=6,734 sf 92.81% Impervious Runoff Depth=6.73" Flow Length=50' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.94 cfs 0.087 af Runoff Area=4,622 sf 81.03% Impervious Runoff Depth=5.45" Subcatchment PS20: Parking Lot Flow Length=88' Slope=0.0170 '/' Tc=1.0 min CN=87 Runoff=0.58 cfs 0.048 af Subcatchment PS22: SE corner of building Runoff Area=6,730 sf 92.87% Impervious Runoff Depth=6.73" Flow Length=50' Slope=0.1000 '/' Tc=0.4 min CN=98 Runoff=0.94 cfs 0.087 af Subcatchment PS23: Area between building Runoff Area=13,335 sf 0.00% Impervious Runoff Depth=1.92" Flow Length=157' Tc=3.7 min CN=53 Runoff=0.53 cfs 0.049 af Subcatchment PS24: Southwest portion of Runoff Area=75,770 sf 0.00% Impervious Runoff Depth=1.56" Flow Length=569' Tc=18.4 min CN=49 Runoff=1.31 cfs 0.226 af Subcatchment PS25: Area that contains Runoff Area=30,280 sf 1.00% Impervious Runoff Depth=1.14" Flow Length=386' Tc=7.5 min CN=44 Runoff=0.43 cfs 0.066 af Runoff Area=16,294 sf 25.02% Impervious Runoff Depth=2.39" Subcatchment PS26: Area containg Link Flow Length=252' Tc=5.0 min CN=58 Runoff=0.80 cfs 0.074 af

Turbocam Postdevelopment FNH Route 9 Barrington NH 24-hr S1 50-yr 50-yr Rainfall=6.97"Prepared by MicrosoftPrinted 2/26/2020HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLCPage 100
Subcatchment PS28: area at south edge of Runoff Area=9,699 sf 56.14% Impervious Runoff Depth=4.34" Flow Length=168' Tc=0.9 min CN=77 Runoff=1.02 cfs 0.081 af
Subcatchment PS29: Area between Prop. Runoff Area=10,273 sf 22.32% Impervious Runoff Depth=2.10" Flow Length=82' Tc=5.3 min CN=55 Runoff=0.43 cfs 0.041 af
Subcatchment PS3: Northern corner portion Runoff Area=20,440 sf 0.00% Impervious Runoff Depth=1.14" Flow Length=222' Slope=0.0100 '/' Tc=11.7 min CN=44 Runoff=0.25 cfs 0.045 af
Subcatchment PS30: Parking LotRunoff Area=26,697 sf62.68% ImperviousRunoff Depth=4.89"Flow Length=248'Tc=1.5 minCN=82Runoff=3.10 cfs0.250 af
Subcatchment PS4: Lower north corner of Runoff Area=40,570 sf 27.77% Impervious Runoff Depth=4.45" Flow Length=325' Tc=12.0 min CN=78 Runoff=2.92 cfs 0.345 af
Subcatchment PS6: Northeast area of Runoff Area=64,817 sf 0.00% Impervious Runoff Depth=3.59" Flow Length=294' Tc=23.9 min CN=70 Runoff=2.79 cfs 0.446 af
Subcatchment PS7: Eastern Corner ofRunoff Area=10,721 sf19.78% ImperviousRunoff Depth=1.74"Flow Length=135'Tc=7.7 minCN=51Runoff=0.30 cfs0.036 af
Subcatchment PS8: West portion ofRunoff Area=55,723 sf9.96% ImperviousRunoff Depth=2.78"Flow Length=344'Tc=12.7 minCN=62Runoff=2.36 cfs0.296 af
Subcatchment PS9: East portion of easterly Runoff Area=74,872 sf 0.00% Impervious Runoff Depth=1.14" Flow Length=235' Tc=14.8 min CN=44 Runoff=0.84 cfs 0.163 af
Reach ER70: Wetlands Starting North Avg. Flow Depth=0.03' Max Vel=0.39 fps Inflow=0.25 cfs 0.045 af n=0.035 L=350.0' S=0.0100 '/' Capacity=328.04 cfs Outflow=0.17 cfs 0.045 af
Reach ER72: Northwest WetlandsAvg. Flow Depth=0.07'Max Vel=0.94 fpsInflow=1.84 cfs0.332 afn=0.035L=221.0'S=0.0158 '/'Capacity=556.72 cfsOutflow=1.77 cfs0.332 af
Reach ER73: Wetlands Flowing on Map Avg. Flow Depth=0.10' Max Vel=1.74 fps Inflow=3.48 cfs 0.553 af n=0.035 L=320.0' S=0.0406 '/' Capacity=795.12 cfs Outflow=3.46 cfs 0.553 af
Reach ER81: SE Portion of Middle Lot Avg. Flow Depth=0.30' Max Vel=0.16 fps Inflow=1.40 cfs 0.352 af n=0.750 L=370.0' S=0.0554 '/' Capacity=13.04 cfs Outflow=0.95 cfs 0.352 af
Reach ER82: Swale Located on North Avg. Flow Depth=0.11' Max Vel=1.32 fps Inflow=1.51 cfs 0.159 af n=0.035 L=150.0' S=0.0200 '/' Capacity=265.19 cfs Outflow=1.47 cfs 0.159 af
Reach ER84: Swale Located on North Avg. Flow Depth=0.24' Max Vel=1.27 fps Inflow=2.03 cfs 0.317 af n=0.035 L=140.0' S=0.0071 '/' Capacity=239.10 cfs Outflow=2.02 cfs 0.317 af
Reach ER85: End of Swale located         Avg. Flow Depth=0.32'         Max Vel=2.03 fps         Inflow=3.27 cfs         0.965 af           n=0.035         L=75.0'         S=0.0133 '/'         Capacity=528.23 cfs         Outflow=3.27 cfs         0.965 af
Reach PR62: Swale South of Proposed Avg. Flow Depth=0.26' Max Vel=3.76 fps Inflow=1.00 cfs 0.087 af n=0.022 L=130.0' S=0.0500 '/' Capacity=37.30 cfs Outflow=0.99 cfs 0.087 af
Reach PR63: Swale North of gravelAvg. Flow Depth=0.15'Max Vel=3.40 fpsInflow=0.81 cfs0.189 afn=0.022L=80.0'S=0.0500 '/'Capacity=50.13 cfsOutflow=0.81 cfs0.189 af

Turbocam Postdevelopment FNH Route 9 Barrington NH 24-hr S1 50-y	r 50-yr Rainfall=6.97"
Prepared by Microsoft	Printed 2/26/2020
HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC	Page 101

Pond BR1: Bioswale-ISR 1 (CB5)Peak Elev=229.70'Storage=2,880Primary=0.05 cfs0.124 afSecondary=3.80 cfs0.412 af	0 cf Inflow=3.91 cfs 0.536 af af Outflow=3.84 cfs 0.536 af
Pond BR2: Bioswale - ISR 2 (CB3)Peak Elev=230.87'Storage=4,003Primary=0.05 cfs0.146 afSecondary=6.59 cfs0.480 a	3 cf Inflow=7.18 cfs 0.626 af af Outflow=6.64 cfs 0.626 af
Pond DE1: Drip Edge along NortheasternPeak Elev=233.20'Storage=1626.0" Round Culvert x 2.00n=0.010L=35.0'S=0.0086	2 cf Inflow=1.16 cfs 0.107 af '/' Outflow=1.13 cfs 0.106 af
Pond DE2: Drip Edge along NorthwesternPeak Elev=233.66' Storage=2126.0" Round Culvert n=0.010 L=40.0' S=0.0025	2 cf Inflow=0.93 cfs 0.085 af '/' Outflow=0.75 cfs 0.085 af
Pond DE3: Drip Edge along Southwestern 8.0" Round Culvert n=0.010 L=40.0' S=0.0000	8 cf Inflow=0.94 cfs 0.087 af '/' Outflow=0.85 cfs 0.086 af
Pond DE4: Drip Edge along Southeastern 8.0" Round Culvert n=0.010 L=100.0' S=0.0000	3 cf Inflow=0.94 cfs 0.087 af '/' Outflow=0.81 cfs 0.086 af
Pond EP81: Middle Portion of Wetland       Peak Elev=233.91'       Storage=6,500	0 cf Inflow=2.79 cfs 0.446 af Outflow=1.40 cfs 0.352 af
Pond PCB2: CB2 - Catch Basin at the end of Bioswale "A" Peak Elev=212. 12.0" Round Culvert n=0.013 L=115.0' S=0.0052	.23' Inflow=0.81 cfs 0.189 af '/' Outflow=0.81 cfs 0.189 af
Pond PCB4: Catch Basin #3 Peak Elev=233 15.0" Round Culvert n=0.010 L=135.0' S=0.0025	.53' Inflow=1.80 cfs 0.156 af '/' Outflow=1.80 cfs 0.156 af
Pond PDMH1: Drain Manhole #5 Peak Elev=233. 15.0" Round Culvert n=0.010 L=205.0' S=0.0025	.04' Inflow=3.26 cfs 0.290 af '/' Outflow=3.26 cfs 0.290 af
Pond PP108: Bioswale "A"         Peak Elev=216.43' Storage=3,209           Primary=0.24 cfs         0.166 af         Secondary=0.57 cfs         0.023 ar	5 cf Inflow=2.36 cfs 0.209 af af Outflow=0.81 cfs 0.189 af
Pond PP109: Stormwater DetentionPeak Elev=214.00' Storage=4,63'Discarded=0.11 cfs0.200 afPrimary=1.88 cfs0.285 afSecondary=0.03 cfs0.000 af	1 cf Inflow=3.59 cfs 0.486 af af Outflow=2.03 cfs 0.486 af
Pond PP110: Proposed 8" Earthen Berm       Peak Elev=212.86' Storage=218	8 cf Inflow=2.04 cfs 0.321 af Outflow=2.03 cfs 0.317 af
Pond PPT3: Catch Basin #4         Peak Elev=233           15.0" Round Culvert n=0.010 L=50.0' S=0.0024	.35' Inflow=3.26 cfs 0.290 af '/' Outflow=3.26 cfs 0.290 af
Pond SI1: Subsurface Infiltration       Peak Elev=229.05'       Storage=16,578         Discarded=0.70 cfs       0.911 af       Primary=2.03 cfs       0.172 a	8 cf Inflow=9.89 cfs 1.161 af af Outflow=2.74 cfs 1.083 af
Link L100: Northern Wetlands & North of Site	Inflow=0.25 cfs 0.045 af Primary=0.25 cfs 0.045 af
Link L200: Inlet at Start of Redemption Rd; West Side	Inflow=4.64 cfs 0.846 af Primary=4.64 cfs 0.846 af

<b>Turbocam Postdevelopment F</b> <i>NH Route 9 Barrington NH 24-hr S</i> Prepared by Microsoft	1 50-yr 50-yr Rainfall=6.97" Printed 2/26/2020
HydroCAD® 10.00 s/n 01104 © 2011 HydroCAD Software Solutions LLC	Page 102
Link L300: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=0.84 cfs 0.163 af Primary=0.84 cfs 0.163 af
Link L400: Southwest Corner of Far-East Lot; Bottom of Hill	Inflow=3.52 cfs 1.027 af Primary=3.52 cfs 1.027 af
Link L500: Inlet at Start of Gravel Drive; East Side	Inflow=1.18 cfs 0.263 af Primary=1.18 cfs 0.263 af
Total Runoff Area = 16.590 ac Runoff Volume = 3.611 af 85.41% Pervious = 14.169 ac	Average Runoff Depth = 2.61" 14.59% Impervious = 2.421 ac

PIPE OUTLET PROTECTION APRON & d ₅₀ RIPRAP SIZING Pipe PDL7 (Node	DESIGN	EMANUEL ENGINEERING, INC. CIVIL & STRUCTURAL CONSULTANTS 118 PORTSMOUTH AVE. STRATHAM, NH 03885	-
PROJECT NAME : CFA - TurboCAM PROJECT # : 19-020 BY : JJM DATE : 2/7/2020	CHE	Tel: (603) 772-4400 Fax: (603) 772-4487 CKED BY : BDS DATE : 2/7/2020	
DOWNSTREAM CHANNEL (C	OR SPREA	DER) HYDRAULICS	_
Peak Discharge Required = $2.2$ Channel Bottom Width = $3.0$ Hydraulic Gradient = $0.08790$ Left Side Slope = $10.0$ Right Side Slope = $10.0$ Depth of Flow = $1.000$ Manning's "n" = $0.0400$ Area = $13.00$ Wetted Perimeter = $23.10$ Hydraulic Radius = $0.56$ Top Width = $23.00$ Velocity = $7.51$ Peak Discharge Determined = $97.6$	cfs Feet Feet/Feet :1(h:v) :1(h:v) Feet Square Fee Feet Feet Feet Feet/Secor cfs	(major outet - use 50-year storm) et	
La AND W CA		DNS:	-
Culvert Diameter (Do) = $12.0$ Tail Water Depth (TW)* = $0.20$ Length of Apron (La) = $11$ Width of Apron @ D.S End (W) = $14$ Width of D.S. Apron if Channel (W) = $3.0$	Inches Feet Feet Feet Feet	Assumes Channel Bottom at the Culvert Equals the Invert Outlet Elevation of the Pipe. If this is not the case, the calculations involving the Tailwater will have to be calculated by hand.	_
ROCK RIF	PRAP SIZE		-
d ₅₀ = 0.29 d ₅₀ = (0.02 x Q ^{4/3} )/(Tw x Do) <b>ROCK RIPRAP GRADATION (TA</b>	Feet or Use D50=6 BLE 7-24 (	3.43 Inches ", 18" deep <b>DF NHDES HANDBOOK)</b>	_
% of Weight Smaller Than The Given Size 100 85 50 15	Size 0 5.2 4.5 3.4 1.0	of Stone in Inches to 6.9 to 6.2 to 5.2 to 1.7	
Minimum Rock Riprap Blanket Thickness = <u>10.3</u> Inches Minimum Six inch Sand/Gravel Bedding or Geotextile Fabric Required Under All Rock Riprap			
FORMULAS USED (Reference NHD Manning's Uniform Channel Flow - Length of Apron (La) TW< Do/2 - Length of Apron (La) TW>= Do/2 - Width of Apron @ D.S End TW < Do/2 - Width of Apron @ D.S End TW >= Do/2 - Width of Apron @ D.S Apron if in Channel - Width of Apron @ Culvert - P:\2019 JOBS\19-020 CFA TurboCam - Civil	ES HANDE $Q = (A \times 1.4)$ La = (1.8 x G La = 3.0 x Q W = 3xDo + W = 3xDo + W = Channe Wc = 3 x Do Rt. 9\Docur	3OOK, Pages 7-114, 7-115) 486 x R^(2/3) x S^(1/2))/"n" 2/Do^1.5) + 7 x Do /Do^1.5 + 7 x Do La 0.4 x La el Bottom Width nents\Permits\Alteration of Terrain	

20\Backup\Riprap Pipe Outlet Protection 02-04-20.xls

PIPE OUTLET PROTECTION APR & d ₅₀ RIPRAP SIZING	RON DESIGN	EMANUEL ENGINEERING, INC CIVIL & STRUCTURAL CONSULTANTS 118 PORTSMOUTH AVE. STRATHAM, NH 03885	<u>.</u>
PROJECT NAME : CFA - TurboCAM PROJECT # : 19-020		Tel: (603) 772-4400 Fax: (603) 772-4487	_
BY : JJM DATE : 2/6/2020	CHE	CKED BY : BDS DATE : 2/6/2020	_
DOWNSTREAM CHANN	EL (OR SPREA	DER) HYDRAULICS	_
Peak Discharge Required = Channel Bottom Width = Hydraulic Gradient = 0.0 Left Side Slope = Right Side Slope = Depth of Flow = Manning's "n" = 0 Area = Wetted Perimeter = Hydraulic Radius = Top Width = Velocity = Peak Discharge Determined =	0.2 cfs 3.0 Feet 00710 Feet/Feet 4.0 :1(h:v) 4.0 :1(h:v) 0.083 Feet 0.0400 0.28 Square Feet 3.69 Feet 0.08 Feet 3.67 Feet 0.56 Feet/Secor 0.2 cfs	(10-year storm) et	
		างระ	_
		5110.	=
Tail Water Depth (TW)* = Length of Apron (La) = Width of Apron @ D.S End (W) = Width of D.S. Apron if Channel (W) = *If outletting to flat area use TW depth = 0.2 >	12.0 Inches 0.20 Feet 7 Feet 10 Feet 3.0 Feet	Assumes Channel Bottom at the Culvert Equals the Invert Outlet Elevation of the Pipe. If this is not the case, the calculations involving the Tailwater will have to be calculated by hand.	
ROC	K RIPRAP SIZE		
d ₅₀ = 0.01 Feet or 0.10 Inches d ₅₀ = (0.02 x Q ^{4/3} )/(Tw x Do) Use D50=4", 10' Long, 4' Wide, 12" Deep ROCK RIPRAP GRADATION (TABLE 7-24 OF NHDES HANDBOOK)			
% of Weight Smaller Than The Given Size 100 85 50 15	Size 0.1 0.1 0.1 0.0	of Stone in Inches to 0.2 to 0.2 to 0.1 to 0.0	
Minimum Rock Riprap Blanket Thickness = <u>6.0</u> Inches Minimum Six inch Sand/Gravel Bedding or Geotextile Fabric Required Under All Rock Riprap			
FORMULAS USED (Reference Manning's Uniform Channel F Length of Apron (La) TW< E Length of Apron (La) TW>= E Width of Apron @ D.S End TW < E Width of Apron @ D.S End TW >= E Width of D.S. Apron if in Chan Width of Apron @ Cul P:\2019.JOBS\19-020 CFA TurboCam	NHDES HANDE           Flow - Q = (A x 1.)           Do/2 - La = (1.8 x 0)           Do/2 - La = $3.0 \times Q$ Do/2 - W = $3xDo + 200$	<b>3OOK, Pages 7-114, 7-115)</b> 486 x R^(2/3) x S^(1/2))/"n" 2/Do^1.5) + 7 x Do /Do^1.5 + 7 x Do La 0.4 x La el Bottom Width ments\Permits\Alteration of Terrai	n\AoT Permit 02-07-

20\Backup\Riprap Pipe Outlet Protection 02-04-20.xls



## SOIL SURVEY REPORT Turbocam Inc. Barrington, NH

#### 1. MAPPING STANDARDS

*Site-Specific Soil Mapping Standards for New Hampshire and Vermont.* SSSNNE Special Publication No. 3, Version 5.0, December 2017. This map product is within the technical standards of the National Cooperative Soil Survey. It is a special product, intended for the submission to the NH DES Alteration of Terrain. It was produced by a professional soil scientist and is not a product of the USDA Natural Resource Conservation Service.

- 2. DATE SOIL MAP PRODUCED August 28, 2019
- 3. GEOGRAPHIC LOCATION AND SIZE OF SITE The property consists of approximately 8 acres of mature forest and wetlands. This area of the site slopes from the west to the east.
- 4. PURPOSE OF THE SOIL MAP The preparation of this map was requested by Emanuel Engineering, Inc.. The purpose was to meet the requirements of the NH Alteration of Terrain Bureau.

#### 5. SOIL IDENTIFICATION LEGEND

SYMBOL	SOIL TAXONOMIC NAME	Hydrologic Soil Group
12	Hinckley	А
83	Hollis Canton Rock Outcrop	C/D, B
313	Deerfield	С
514/P	Leicester	С
		· · · · · · · · · · · · · · · · · · ·

#### SOIL MAP UNIT DESCRIPTIONS

- 12 The Hinckley series consists of very deep, excessively drained soils formed in Glaciofluvial materials. They are nearly level through very steep soils on outwash terraces, outwash plains, outwash deltas, kames, kame terraces, and eskers. Saturated hydraulic conductivity is high or very high. These soils are found on site on the side slopes. No ESHWT was found within 40" of the soil surface. Soil profile on site is loamy sand over sand and gravel.
- 83 This Hollis Canton Rock Outcrop map unit consists of gently sloping soils on uplands where the relief is affected by the underlying bedrock. The very deep, well drained Canton soil is in low pockets. The shallow, excessively drained Hollis soil is

8 Continental Dr Bldg 2 Unit H, Exeter, NH 03833-7526 Ph (603) 778 0644 / Fax (603) 778 0654 info@gesinc.biz www.gesinc.biz 254 of 295 on the tops of hills and ridges or near rock outcrops. In many areas stones and boulders 10 inches to 10 feet in diameter cover 0 to 10 percent of the surface, A typical map unit is about 47 percent Canton soil, 18 percent Hollis soil, 10 percent Rock outcrop, and 25 percent other soils. These soils and areas of exposed bedrock are intermingled so closely that it was not practical to separate them at the scale used for mapping. Areas of the map unit are irregular in shape.

Onsite, the surface layer of the Hollis soil is black fine sandy loam. The subsoil is dark yellowish brown fine sandy loam. Bedrock is at a depth of 12-14 inches. No seasonal high water table was identified within 40" of the soil surface.

Typically, the surface layer of the Canton soil is black fine sandy loam. The subsurface is fine sandy loam over sandy loam to a depth of 60 inches or more. Typically significant ledge is not encountered with Canton.

- 313 The Deerfield series consists of very deep, moderately well drained soils formed in glaciofluvial deposits. They are nearly level to strongly sloping soils on terraces, deltas, and outwash plains. Slope ranges from 0 to 15 percent. Saturated hydraulic conductivity is high or very high. This series is consistent with the soils found on site meeting the Deerfield profile. No ESHWT was found between 15-40" of the soil surface and layers were dominated by loamy sand over sands.
- **514/P** The Leicester series consists of very deep, poorly drained soils formed in coarse-loamy till. They are nearly level or gently sloping soils in drainage ways and low-lying positions on hills. Slope ranges from 0 to 8 percent. Permeability is moderate or moderately rapid in the surface layer and subsoil and moderate to rapid in the substratum
- 6. RESPONSIBLE SOIL SCIENTIST

Luke D. Hurley, C.S.S.

- 7. OTHER DISTINGUISHING FEATURES OF SITE No distinguishing features were noted.
- 8. MAXIMUM SIZE OF LIMITING INCLUSIONS

No limiting inclusions were mapped

9. SPECIAL FEATURE SYMBOLS

No special feature symbols were used.





# Infiltration Feasibility Report

TURBOCAM International Route 9 / Redemption Road (Site) Barrington, NH 03825

> September 13, 2019 Revised: February 4, 2020

- Prepared for: TURBOCAM International 607 Calef Highway Barrington, NH 03825
- Prepared by: Emanuel Engineering, Inc. Bruce Scamman, PE 118 Portsmouth Avenue, Suite A202 Stratham, NH 03885 EEI Project # 19-020

The project proposes three different systems that require infiltration to function properly: porous pavement, bioretention areas, and a bioswale. Due to the large area that they cover, they have broken up into multiple sub groups. There are five porous pavement sub groups, five bioretention area subgroups, and one bioswale group. These eleven systems are identified on the plans as Porous Pavement "A" through "E", Bioretention Area "A" through "E", and Bioswale "A".

## I. Location of the practice

**Subsurface Infiltration ''A''** – this area is generally located on the eastern portion of the property, southeast of the proposed building, under the proposed pavement.

**Bioswale** "A" – this basin within the Redemption Road right-of-way, west of Redemption road, and just east of the lot.

## II. Existing topography at the location of the practice

**Subsurface Infiltration ''A''** – the existing topography within the bioretention area is relatively flat with a small portion of it being steeply sloped. Existing land cover includes woods.

**Bioswale** "A" – the existing topography within the bioretention area is relatively flat, having a slope of about 2.5%. Existing land cover is grass.

## III. Test pit or boring locations

In accordance with Env-Wq 1504.13(c), NHDES requires that a minimum number of test pits or borings be dug or drilled in the location of the system, depending on the size of the proposed system.

**Subsurface Infiltration ''A''** – this system is approximately 8,500 square feet in area, therefore 3 test pits were dug in the vicinity of the proposed practice. The pits are identified as TPA-3, TPA-4, and TP9 and are shown on the attached plan.

**Bioswale** "A" – this system is approximately 920 square feet in area, therefore 1 test pit was dug in the vicinity of the proposed practice. The pit is identified as TP A-5 and is shown on the attached plan.


#### IV. Seasonal high water table (SHWT) and bedrock elevations

Data for test pits 1 to 9 was collected on April 2, 2019 by Emanuel Engineering, Inc. Data for test pits A-1 to A-13 was collected on May 9, 2012 and June 26, 2012 by Jones & Beach Engineers, Inc.

#### Subsurface Infiltration "A" -

Bottom of Pond Elevation = 224.17'

- TPA-3: Existing Surface Elevation of TP = 226.00'SHWT = not observed BEDROCK = not observed Deepest Elevation of TP = 217.50'
- TPA-4: Data not provided to Emanuel Engineering, Inc.
- TP9: Existing Surface Elevation of TP = 226.00' SHWT = 222.17 BEDROCK = not observed Deepest Elevation of TP = 218.08'

#### Bioswale "A" -

Bottom of Pond Elevation = 211.55'

TP A-5 Existing Surface Elevation of TP = 221.00'SHWT = 217.00'BEDROCK = 215.42'Deepest Elevation of TP = 215.42'

#### V. Profile descriptions

Data for test pits 1 to 9 was collected on April 2, 2019 by Emanuel Engineering, Inc. Data for test pit 9 shown below:

TEST PIT #9 ESHWT NOT OBSERVED, TERMINATED 96", NO REFUSAL, NO OBSERVED WATER, ROOTS 66"; 0-24" 10YR 3/2 LOAM, GRANULAR, FRIABLE 24-36" 10YR 5/6 GRAVEL SANDY LOAM, GRANULAR, FRIABLE. 36-96" 10YR 6/6 GRAVELLY COBLLE SANDY LOAM, SINGLE GRAIN, LOOSE

Data for test pits A-1 to A-13 was collected on May 9, 2012 and June 26, 2012 by Jones & Beach Engineers, Inc. Data for test pits A-3 to A-5 shown below:

<u>TEST PIT A-3</u> SHWT NOT OBSERVED, ROOTS TO 63", H2O NOT OBSERVED, REFUSAL NOT OBSERVED, PERC RATE = 2 MIN/INCH 0-7" TOPSOIL 7-24" 10YR 4/6 DARK YELLOWISH BROWN LOAMY SAND, GRANULAR, FRIABLE Infiltration Feasibility Report for TURBOCAM International December 23, 2019

24-102" 10YR 5/6 YELLOWISH BROWN LOOSE GRAVEL WITH COBBLES, GRANULAR, FRIABLE

TEST PIT A-4

TEST PIT INFO NOT PROVIDED TO EMANUEL ENGINEERING, INC.

TEST PIT A-5

SHWT @ 48", ROOTS TO 48", H2O @ 58", REFUSAL @ 67", PERC RATE = 2 MIN/INCH

0-4" TOPSOIL

4-12" 10YR 3/6 DARK YELLOWISH BROWN FINE SANDY LOAM, GRANULAR, FRIABLE

12-19" 10YR 4/6 DARK YELLOWISH BROWN LOAMY SAND, GRANULAR, FRIABLE

19-38" 10YR 4/4 DARK YELLOWISH BROWN SINGLE GRAIN SAND, GRANULAR, FRIABLE

28-46" 7.5YR 3/4 DARK BROWN COARSE SAND, GRANULAR, FRIABLE 46-67" 2.5T 5/3 LIGHT OLIVE BROWN FINE SAND, GRANULAR, FRIABLE

#### VI. Soil plan in the area of the proposed practice(s)

(See attached drawings)



# VII. Summary of [Default, Field Testing, or Lab Testing] data used to determine the infiltration rate

**Subsurface Infiltration ''A''** – the infiltration rate was determined using the Default Values method described in Env-Wq 1504.14(c).

The basin is located within native material identified in the Soil Series survey as <u>Hinckley</u> soils.

Using Ksat Values for New Hampshire Soils, Society of Soil Scientist of Northern New England, Special Publication No.5, September 2009, the lowest value under the basin floor elevation is: <u>6 inches per hour</u>.

After applying a factor of safety, the design rate used in the drainage analysis is <u>3 inches</u> per hour.

**Bioswale** "A" – the infiltration rate was determined using the Default Values method described in Env-Wq 1504.14(c).

The basin is located within native material identified in the Soil Series survey as <u>Hinckley</u> soils.

Using Ksat Values for New Hampshire Soils, Society of Soil Scientist of Northern New England, Special Publication No.5, September 2009, the lowest value under the basin floor elevation is: <u>6 inches per hour</u>.

After applying a factor of safety, the design rate used in the drainage analysis is <u>3 inches</u> per hour.



### REGISTRATION AND NOTIFICATION FORM FOR STORM WATER INFILTRATION TO GROUNDWATER (5H1) Groundwater Discharge Program



RSA/Rule: RSA 485-A:6, VII; 485:3, X; Env-Wq 402

Applicant Information		
Name:	Daytime Phone: (	
Mailing Address:		
City:	State:	_ Zip:
Contact Person Name:	Email:	
Contact Person: Phone Number	Fax Number:	
Facility Information		
Facility Name:		
Address:		
City:	State:	Zip:
Property Tax Map: Lot #		
Latitude & Longitude of discharge location(s):		
Mailing Address:City:	State:	Zip:
Citv:	State:	Zip:
Contact Person Name:	Email:	
Contact Person: Phone Number	Fax Number:	
Property Owner Information (complete only if differ	ent than applicant)	
Owner Name:	Daytime Phone: (	
Mailing Address:		
City:	State:	_ Zip:
Contact Person Name:	Email:	
Contact Person: Phone Number	Fax Number:	
Facility Operator's Information (complete only if diff	erent than applicant)	
Owner Name:	Daytime Phone: (_	)
Mailing Address:		
City:	State:	Zip:

Complete this form if you are using a drywell or other subsurface infiltration structures to recharge storm water to the ground or groundwater. If a completed UIC registration form was submitted to the Alteration of Terrain Program for this project, then one is not required to be sent directly to the GWB.

# **REGISTRATION AND NOTIFICATION FORM FOR STORM WATER INFILTRATION TO GROUNDWATER (attach additional sheets, as necessary, for responses to questions below)**

Please provide a complete description of the facility including historic uses, any former contamination and/or on-going remedial action at the site:

Please provide information concerning the location of the infiltration activity, include Locus map (i.e. USGS map):

Please describe the pretreatment system, if any, and capacity of the system:

Please describe the materials and products used for the subsurface infiltration structure (i.e., pipe and stone leachfield, plastic chamber units, concrete drywell, etc.):

Please describe the disposal method and location. Include a site plan showing: the infiltration structure, any other on-site infiltration structures, dimensions, depth to groundwater (if known), adjacent septic system(s), and Drinking water source(s):

Please provide information concerning methods and schedule for periodic inspection and/or maintenance:

**Applicant/Owner Certification Statement and Signature** 

By signing this application the signer certifies that the information contained in or otherwise submitted with this application is true, complete and not misleading to the best of the signer's knowledge and belief.

By signing this application the signer understands that submission of false, incomplete or misleading information is grounds for:

- Denying the application;

- Revoking any application that is granted based on the information; and

- If the signer is acting as or on behalf of a listed engineer as defined in Env-C 502.10, debarring the listed engineer from the roster.

By signing the application the signer and applicant agree to comply with all applicable rules and conditions of this permit and to not discharge to the holding tank(s) until written permission from the department has been received.

Signature of Facility Owner or Contact

Date

# **Inspection & Maintenance Plan**

## TURBOCAM International Route 9 / Redemption Road (Site) Barrington, NH 03825

September 13, 2019 Revised: January 6, 2020

- Prepared for: TURBOCAM International 607 Calef Highway Barrington, NH 03825
- Prepared by: Emanuel Engineering, Inc. Bruce Scamman, PE 118 Portsmouth Avenue, Suite A202 Stratham, NH 03885 EEI Project # 19-020
- Contact: TURBOCAM International Eliot Wilkins 607 Calef Highway Barrington, NH 03825 (603)978-5030 Eliot.Wilkins@turbocam.com

#### Introduction

Emanuel Engineering, Inc. has prepared the following Stormwater Management System Inspection & Maintenance Plan for **Route 9 / Redemption Road, Barrington, New Hampshire**. The intent of this plan is to provide the client, **TURBOCAM International**, with a list of procedures that document the inspection and maintenance requirements of the Stormwater Management System for this site.

The following inspection and maintenance program is necessary in order to keep the Stormwater Management System functioning properly. By following the enclosed procedures the owners and property management will be able to maintain the functional design of the Stormwater Management System and maximize its ability to remove sediment and other contaminants from site generated stormwater runoff.

#### Stormwater Management System Components

The Stormwater Management System has been designed to mitigate both the quantity and quality of site-generated stormwater runoff. As a result, its design included the following elements:

#### Non-Structural Best Management Practices (BMP's)

Non-Structural best management practices (BMP's) are designed to minimize and/or remove contaminants before they enter the stormwater collection system. Several of these BMP's have been incorporated into the Stormwater Management System including pavement sweeping, reduced use of road salt, and litter/trash removal. These types of BMP's are a highly effective initial treatment measure for reducing stormwater pollutant loading.

#### **Closed Drainage Collection and Piping System**

The closed drainage system is designed to collect and convey stormwater runoff from the paved areas and infiltrate stormwater back into the water table. Stormwater is collected by catch basins located throughout the site. Key catch basins are designed with deep sumps to provide storage areas for sediment and control sediment outflow.

### Source Control & Maintenance

The following are the areas to be accomplished and maintained because this site is considered a "High Load Area" from the maintenance and repair of vehicles on site. This plan is to provide to **TURBOCAM International** with an outline of best management practices (BMPs) and operations that are prohibited on site. Descriptions and maintenance requirements of BMPs and operations in this section were taken from the *New Hampshire Stormwater Manual, Volume 2* dated December 2008 (http://des.nh.gov/organization/commissioner/pip/publications/wd/documents/wd-08-20b.pdf). A log is attached at the end of this document for the owner or designee to confirm that best management practices are occurring on-site.

#### Street Sweeping

Street sweeping is a pollution prevention practice that removes sediment, debris and trash that accumulates along streets and roads from winter sanding practices and everyday use. Street sweeping is often performed to improve aesthetics and to reduce the export of sand to the drainage network and receiving waters. In addition to sediment, debris and trash, other pollutants that may be minimized through street sweeping include some nutrients, oxygen-demanding substances and trace metals.

*Maintenance* - At a minimum, street sweeping should be performed once annually for traditional pavement, preferably as soon as possible after the snow melts to reduce the amount of sand, grit, and debris and associated pollutants from winter sanding from entering surface waters.

#### Snow & Ice Management

To address the concerns associated with the application of chlorides and other deicing materials, NHDES recommends the development of a Road Salt and Deicing Minimization Plan when a development will create one acre or more of pavement, including parking lots and roadways. The plan should address the policies that the development will keep in place to minimize salt and other deicer use after the project has been completed. A component of the plan should include tracking the use of salt and other deicers for each storm event and compiling salt use data annually. See below for deicing application rate guidelines.

New Hampshire does not yet have salt reduction guidance, but recommends following the guidelines available in reference cited below. *Minnesota Snow and Ice Control* handbook, available at: http://www.mnltap.umn.edu/publications/handbooks/documents/snice_2012_wb.pdf

#### Deicing Application Rate Guidelines 24' of pavement (typical two-lane road)

These rates are not fixed values, but rather the low end of a range to be selected and adjusted by an agency according to its local conditions and experience.

			Lbs/ two-lane mile			
Pavement Temp. (°F) and Trend (1)	Weather Condition	Maintenance Actions	Salt Prewetted/ Pretreated With Salt Brine	Salt Prewetted/ Pretreated With Other Blends	Dry Salt*	Winter Sand (abrasives)
>30° <b>†</b>	Snow	Plow, treat intersections only	80 (40/lane mile)	70	100*	Not recommended
	Frz. rain	Apply chemical	80 – 160	70 – 140	100 - 200*	Not recommended
30° 🕇	Snow	Plow & apply chemical	80 – 160	70 – 140	100 - 200*	Not recommended
	Frz. rain	Apply chemical	150 - 200	130 – 180	180 - 240*	Not recommended
25 - 30° 🕇	Snow	Plow & apply chemical	120 - 160	100 – 140	150 – 200*	Not recommended
	Frz. rain	Apply chemical	150 – 200	130 – 180	180 - 240*	Not recommended
25 - 30° ↓	Snow	Plow & apply chemical	120 — 160	100 – 140	150 - 200*	Not recommended
	Frz. rain	Apply chemical	160 - 240	140 - 210	200 - 300*	400
20 - 25° †	Snow or frz. rain	Plow & apply chemical	160 - 240	140 – 210	200 - 300*	400
20 - 25°↓	Snow	Plow & apply chemical	200 – 280	175 – 250	250 - 350*	Not recommended
	Frz. rain	Apply chemical	240 - 320	210 – 280	300 - 400*	400
15 - 20° <b>†</b>	Snow	Plow & apply chemical	200 - 280	175 – 250	250 - 350*	Not recommended
	Frz. rain	Apply chemical	240 - 320	210 - 280	300 - 400*	400
15 - 20° ↓	Snow or Frz. rain	Plow & apply chemical	240 - 320	210 – 280	300 - 400*	500 for frz. rain
0 to 15° <b>†</b> J	Snow	Plow, treat with blends, sand hazardous areas	Not recommended	300 - 400	Not recommended	500 – 750 spot treat as needed
< 0°	Snow	Plow, treat with blends, sand hazardous areas	Not recommended	400 - 600**	Not recommended	500 – 750 spot treat as needed

*Dry salt is not recommended. It is likely to blow off the road before it melts ice.

**A blend of 6 - 8 gal/ton MgCl₂ or CaCl₂ added to NaCl can melt ice as low as -10°.

#### Bioretention System (Bioswale, Bioswale Forebay, & Bioswale-ISR System)

A bioretention system is a type of filtration BMP designed to collect and filter moderate amounts of stormwater runoff using conditioned planting soil beds, gravel beds and vegetation within shallow depressions. The bioretention system may be designed with an underdrain, to collect treated water and convey it to discharge, or it may be designed to infiltrate the treated water directly to the subsoil. Bioretention cells are capable of reducing sediment, nutrients, oil and grease, and trace metals.

#### Maintenance -

- Systems should be inspected at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24 hour period, with maintenance or rehabilitation conducted as warranted by such inspection.
- Pretreatment measures should be inspected at least twice annually, and cleaned of accumulated sediment as warranted by inspection, but no less than once annually.
- Trash and debris should be removed at each inspection.
- At least once annually, system should be inspected for drawdown time. If bioretention system does not drain within 72-hours following a rainfall event, then a qualified professional should assess the condition of the facility to determine measures required to restore filtration function or infiltration function (as applicable), including but not limited to removal of accumulated sediments or reconstruction of the filter media.
- Vegetation should be inspected at least annually, and maintained in healthy condition, including pruning, removal and replacement of dead or diseased vegetation, and removal of invasive species.

See "Checklist for Inspection of Bioswales", and "Inspection and Maintenance of Guidance for Bioswales" located at the end of this document.

#### **Conveyance Swales**

Conveyance swales are stabilized channels designed to convey runoff at non-erosive velocities. They may be stabilized using vegetation, riprap, or a combination, or with an alternative lining designed to accommodate design flows while protecting the integrity of the sides and bottom of the channel. Conveyance channels may provide incidental water quality benefits, but are not specifically designed to provide treatment.

#### Maintenance -

- Grassed channels should be inspected periodically (at least annually) for sediment accumulation, erosion, and condition of surface lining (vegetation or riprap). Repairs, including stone or vegetation replacement, should be made based on this inspection.
- Remove sediment and debris annually, or more frequently as warranted by inspection.
- Mow vegetated channels based on frequency specified by design. Mowing at least once per year is required to control establishment of woody vegetation. It is recommended to cut grass no shorter than 4 inches.

#### **Outlet Protection**

Outlet protection is typically provided at stormwater discharge conduits from structural best management practices to reduce the velocity of concentrated stormwater flows to prevent scour and minimize the potential for downstream erosion. Outlet protection is also provided where conduits discharge runoff into an in-ground stormwater management practice (e.g., pond or swale) to prevent scour where flow enters the BMP.

*Maintenance* - Inspect the outlet protection annually for damage and deterioration. Repair damages immediately.

#### Manicured Landscaped Areas – Litter Control

Landscaped areas tend to filter debris and contaminates that may block drainage systems and pollute the surface and ground waters.

Maintenance -

- Litter control and lawn maintenance involves removing litter such as trash, leaves, lawn clippings, pet wastes, oil and chemicals from streets, parking lots, and lawns before materials are transported into surface water.
- Litter control should be implemented as part of the daily grounds maintenance program.

#### Manicured Landscaped Areas – Fertilizer Management

Fertilizer management involves controlling the rate, timing, and method of fertilizer application so that the nutrients are taken up by the plants, thereby reducing the chance of polluting the surface and ground waters. Fertilizer management can be effective in reducing the amounts of phosphorus and nitrogen in runoff from landscape areas, particularly lawns. Soil tests should be conducted to determine fertilizer application rates.

Maintenance

- Have the soil tested by your landscaper or local Soil Conservation Service for nutrient requirements and follow the recommendations.
- Do not apply fertilizer to frozen ground.
- Clean up any fertilizer spills
- Do not allow fertilizer to be broadcast into water bodies.
- When fertilizing a lawn, water thoroughly, but do not create a situation where water runs off the surface of the lawn.

#### Catch Basin Cleaning

Catch basins collect stormwater, primarily from parking lots. The stormwater often contains sediment and contaminants. The catch basin sumps trap sediment, trace metals, nutrients, and hydrocarbons.

#### Maintenance -

- Remove leaves and debris from catch basin grates on an as-needed basis.
- Sumps should be cleaned on an annual basis to protect water quality. Catch basin debris shall be disposed of at a solid waste disposal site.

#### PreTX Pretreatment (Pretreatment Catch Basins)

Routine annual inspection and period maintenance is required for the effective operation of PreTX pretreatment catch basins.

The following maintenance items are required as needed for the PreTX pretreatment catch basins. The PreTX pretreatment catch basins (PT1, PT2, and PT3) are located upstream of the bioswale-ISR systems (BR1 and BR2). The PreTX catch basins are located prior to discharge to the bioswale-ISR systems and provide pretreatment for sediment, trash, and debris. The PreTX catch basins are deep sumps with a combination of baffle, weir, and screened grate to provide rigorous pretreatment intended to minimize maintenance within the bioswale-ISR systems. Overflow structures drain to the subsurface infiltration system located below the parking area. Maintenance elements included removal of trash and debris, sediment, periodic inspection of invasive species, and verification of proper infiltration and time to drain.

#### Subsurface Infiltration System

The subsurface infiltration system (SI1) is to be inspected at the center drywell with access via a solid manhole cover. Inspection access is located within the roadway in the event that inspections indicated failure to drain as designed.

See the "Checklist for Inspection of Catch Basins and Infiltration System", and "Inspection and Maintenance for Catch Basins and Roadway Infiltration" located at the end of this document.

#### Culverts, Drainage Pipes, and Roof Drains

Culverts, drainage pipes, and roof drains convey stormwater away from buildings, walkways, and parking areas.

*Maintenance* – Culverts, drainage pipes, and roof drains should be inspected semiannually, or more often as needed, for accumulation of debris and structural integrity. Leaves and other debris should be removed from the inlet and outlet to insure the functionality of drainage structures. Debris shall be disposed of on the site where it will not concentrate back at the drainage structures or at a solid waste disposal facility.

#### Temporary Sediment Trap

A sediment trap is a small, temporary ponding area to intercept sediment-laden runoff from small disturbed areas. Intercepted runoff is retained long enough to allow for settling of the coarser sediment particles. A sediment trap is usually installed in a drainage swale or channel, at a storm drain or culvert inlet, or other points of discharge from a disturbed area.

Maintenance -

- Sediment traps should be inspected at least weekly during construction and after every storm (or daily during prolonged rainfall periods), to insure that they are functioning properly and are not damaged. Repairs should be made immediately.
- Sediment should be removed and the trap restored to original capacity when sediment has accumulated to 50% of the original volume.
- The materials removed from the trap should be properly disposed of and stabilized.
- Sediment trap outlets should be examined at the time of inspection for any damage, and repaired immediately if any such damage is observed.
- Geotextile fabric or stone used around a pipe-outlet riser should be checked periodically and replaced when the material has become clogged with sediment.

#### Invasive Species

Should any invasive species grow in the stormwater management practices, refer to the "Control of Invasive Plants" document provided after the Maintenance Logs of this document.

#### General Cleanup

Upon completion of the project, the contractor shall remove all temporary stormwater erosion control structures (i.e., temporary stone check dams, silt fence, etc.). Any sediment deposits remaining in place after the silt fence or filter barrier is no longer required shall be dressed to conform with the existing grade, prepared, and seeded. Culverts and catch basins shall be cleaned, removing any sediment that may have accumulated during construction.

### Inspection & Maintenance Log

The following pages contain an Inspection & Maintenance Log and blank copy of the Stormwater Management System's Inspection & Maintenance Log. These forms are provided to **TURBOCAM International** with the inspection and maintenance of the **Route 9 / Redemption Road, Barrington, New Hampshire** Stormwater Management System.

Proper inspection, maintenance, and repair are key elements in maintaining a successful stormwater management program on a developed property. Programs should be implemented at all of the owner's properties to ensure permit compliance and the highest quality of stormwater discharge. Routine inspection can also reduce the potential for deterioration of infrastructure or a catastrophic event, like a breach of detention pond.

For the purpose of this Stormwater Management Program, a significant rainfall event is considered an event of three (3) inches in a 24-hour period or 0.5 inches in a one-hour period. It is anticipated that a short, intense event is likely to have a higher potential of erosion for the site than a longer, high volume event.

Applicant	Date
Town Planner	Date
Town Manager	Date

## Stormwater Management System Inspection & Maintenance Log

#### TURBOCAM International at Route 9 / Redemption Road, Barrington, NH 03825

BMP/System Component	Date Inspected	Inspector	Cleaning/Repair Needed (List Items/Comments)	Date of Cleaning/Repair	Performed By

P:\2019 JOBS\19-020 CFA TurboCam - Civil Rt. 9\Documents\Permits\Alteration of Terrain\AoT Permit 01-07-20\Backup\19. Stormwater Maintenance Plan 01-07-20.doc

# INSPECTION AND MAINTENANCE GUIDANCE FOR CATCH BASINS AND ROADWAY INFILTRATION

Routine annual inspection and period maintenance is required for the effective operation of pretreatment catch basins and infiltration systems. Deep sump catch basins provide pretreatment for the removal of sediment and debris prior to infiltration within the roadway stone reservoir. The following guidance is provided for corrective action and maintenance should a catch basin or infiltration system function inadequately. The Responsible Parties must maintain the catch basins and infiltration system in accordance with the minimum design standards. This page provides guidance on maintenance activities that are typically required for catch basins and infiltration system, along with a suggested frequency for each activity. Individual catch basins and infiltration systems may have more, or less, frequent maintenance needs, depending upon a variety of factors including: the occurrence of large storm events; overly wet or dry (i.e., drought) regional hydrologic conditions; and any changes or redevelopment in the upstream land use.

Activity	Frequency		
Check to insure the catch basin or infiltration system drain completely after storm events			
Check inlets and outlets for debris and high efficiency			
Check to see that the catch basin or infiltration system is draining completely within 48 hours after a rain event			
Check to see that the catch basin or infiltration system does not contain more than 6 inches accumulated materials in which case cleaning is required	Annual Inspection		
Check to see that the catch basin or infiltration system is not full of trash, debris, and floatables			
Inspect inlets and outlets to ensure good condition and no evidence of deterioration			
Repair or replace any damaged structural parts, inlets, outlets, grates			
If inspections indicate failure to drain within 72 hours then additional inspections of infiltration system may be warranted.			
Clean out inspection and cleaning of infiltration system can be conducted by vactor truck for removal of accumulated sediment and debris.	As Needed		
This process is to be repeated until infiltration and proper drainage has been restored.			

# CHECKLIST FOR INSPECTION OF CATCH BASINS AND INFILTRATION SYSTEM

Regular inspection and maintenance should <u>not</u> be necessary for the effective operation of infiltration system. The following guidance is provided for corrective action and maintenance should a infiltration system function inadequately.

Location:

Inspector:

Date:

Time:

Site Conditions:

Date Since Last Rain Event:

Inspection Items			ory (S) or ctory (U)	Comments/Corrective Action
1.	Complete drainage of catch basin or infiltration system within 48 hours after rain event	S	U	
2.	Sediment accumulation on catch basin or infiltration system, 6" or less	S	U	
3.	Clogging of catch basin or infiltration system surface	S	U	
4.	Catch basin and infiltration system clear of debris	S	U	
5.	Catch basin or infiltration system chamber empty of trash, debris, and floatables	S	U	
6.	Clogging of inlet/outlet structures	S	U	
7.	Cracking, spalling, or deterioration of concrete	S	U	
8.	Inspection of cleanouts for infiltration system as needed if failure to drain	S	U	
9.	Animal burrows	S	U	
10	Undesirable vegetation	S	U	
11	Undesirable odors	S	U	
12	Complaints from residents	S	U	
13	Public hazards noted	S	U	

Corrective Action Needed	Due Date
1.	
2.	
3.	

# INSPECTION AND MAINTENANCE GUIDANCE FOR BIOSWALES

Maintenance of bioswales can typically be performed as part of standard landscaping. Regular inspection and maintenance is critical to the effective operation of bioswales to insure they remain clear of leaves and debris and free draining. This page provides guidance on maintenance activities that are typically required for these systems, along with the suggested frequency for each activity. Individual systems may have more, or less, frequent maintenance needs, depending on a variety of factors including the occurrence of large storm events, overly wet or dry (i.e., drought), regional hydrologic conditions, and the upstream land use.

#### **INSPECTION ACTIVITIES**

The most common maintenance activity is the removal of leaves from the system and bypass structure. Visual inspections are routine for system maintenance. This includes looking for standing water, accumulated leaves, holes in the soil media, signs of plant distress, and debris and sediment accumulation in the system. Mulch and/or vegetation coverage is integral to the performance of the system, including infiltration rate and nutrient uptake. Vegetation care is important to system productivity and health.

ACTIVITY	FREQUENCY
A record should be kept of the time for the system to drain completely after a storm event. The system should drain completely within 72 hours.	
Check to insure the filter surface remains well draining after storm events.	
<b>Remedy</b> : If filter bed is clogged, draining poorly, or standing water covers more than 15% of the surface 48 hours after a precipitation event, then remove top few inches of discolored material. Till or rake remaining material as needed.	
Check inlets and outlets for leaves and debris.	
<b>Remedy</b> : Rake in and around the system to clear it of debris. Also, clear the inlet and overflow if obstructed.	
Check for animal burrows and short circuiting in the system.	After every major storm in the first few
<b>Remedy:</b> Soil erosion from short circuiting or animal boroughs should be repaired when they occur. The holes should be filled and lightly compacted	
Check to insure the filter bed does not contain more than 2 inches accumulated material	
<b>Remedy:</b> Remove sediment as necessary. If 2 inches or more of filter bed has been removed, replace media with either mulch or a (50% sand, 20% woodchips, 20% compost, 10% soil) mixture.	
During extended periods without rainfall, inspect plants for signs of distress.	
<b>Remedy:</b> Plants should be watered until established (typical only for first few months) or as needed thereafter.	
Inspect inlets and outlets to ensure good condition and no evidence of deterioration. Check to see if high-flow bypass is functioning.	
Remedy: Repair or replace any damaged structural parts, inlets, outlets,	
sidewalls.	Annually
Check for robust vegetation coverage throughout the system.	
<b>Remedy:</b> If at least 50 % vegetation coverage is not established after 2 years, reinforcement planting should be performed.	
Check for dead or dying plants, and general long term plant health. <b>Remedy:</b> This vegetation should be cut and removed from the system. If woody vegetation is present, care should be taken to remove dead or decaying plant material. Separation of herbaceous vegetation rootstock should occur when over- crowding is observed	As needed

# CHECKLIST FOR INSPECTION OF BIOSWALES

Location:	Inspe	ector:	
Date: Time:	Site	Condition	S
Date Since Last Rain Event:			
Inspection Items	Satisfactor Unsatisfac	ry (S) or tory (U)	Comments/Corrective Action
1. Initial Inspection After Planting and Mulching			
Plants are stable, roots not exposed	S	U	
Surface is at design level, typically 4" below overpass	S	U	
Overflow bypass / inlet (if available) is functional	S	U	
2. Debris Cleanup (1 time a year)	•		
Litter, leaves, and dead vegetation removed from the system	S	U	
Prune perennial vegetation	S	U	
3. Standing Water (1 time a year & after large storm events during t	irst year)		
No evidence of standing water after 72 hours	S	U	
4. Short Circuiting & Erosion (1 time a year)			
No evidence of animal burrows or other holes	S	U	
No evidence of erosion	S	U	
5. Drought Conditions (as needed)			
Water plants as needed	S	U	
Dead or dying plants	S	U	
6. Overflow Bypass / Inlet Inspection (1 time a year & after large s year)	storm events o	during first	
No evidence of blockage or accumulated leaves	S	U	
Good condition, no need for repair	S	U	
7. Vegetation Coverage (1 time a year)			
50% coverage established throughout system by first year	S	U	
Robust coverage by year 2 or later	S	U	
8. Mulch Depth (if applicable) (1 time a year)			
Mulch at original design depth after tilling or replacement	S	U	
9. Vegetation Health (1 time a year)			
Dead or decaying plants removed from the system	S	U	
Corrective Action Needed			Due Date

Corrective Action Needed	Due Date
1.	
2.	
3.	

# **CONTROL OF INVASIVE PLANTS**

During maintenance activities, check for the presence of invasive plants and remove in a safe manner as described on the following pages. They should be controlled as described on the following pages.

#### Background:

Invasive plants are introduced, alien, or non-native plants, which have been moved by people from their native habitat to a new area. Some exotic plants are imported for human use such as landscaping, erosion control, or food crops. They also can arrive as "hitchhikers" among shipments of other plants, seeds, packing materials, or fresh produce. Some exotic plants become invasive and cause harm by:

- becoming weedy and overgrown;
- killing established shade trees;
- obstructing pipes and drainage systems;
- forming dense beds in water;
- lowering water levels in lakes, streams, and wetlands;
- destroying natural communities;
- promoting erosion on stream banks and hillsides; and
- resisting control except by hazardous chemical.

### UNIVERSITY of NEW HAMPSHIRE Methods for Disposing COOPERATIVE EXTENSION Non-Native Invasive Plants

Prepared by the Invasives Species Outreach Group, volunteers interested in helping people control invasive plants. Assistance provided by the Piscataquog Land Conservancy and the NH Invasives Species Committee. Edited by Karen Bennett, Extension Forestry Professor and Specialist.



Tatarian honeysuckle Lonicera tatarica USDA-NRCS PLANTS Database / Britton, N.L., and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Vol. 3: 282.

Non-native invasive plants crowd out natives in natural and managed landscapes. They cost taxpayers billions of dollars each year from lost agricultural and forest crops, decreased biodiversity, impacts to natural resources and the environment, and the cost to control and eradicate them.

Invasive plants grow well even in less than desirable conditions such as sandy soils along roadsides, shaded wooded areas, and in wetlands. In ideal conditions, they grow and spread even faster. There are many ways to remove these nonnative invasives, but once removed, care is needed to dispose the removed plant material so the plants don't grow where disposed.

Knowing how a particular plant reproduces indicates its method of spread and helps determine

the appropriate disposal method. Most are spread by seed and are dispersed by wind, water, animals, or people. Some reproduce by vegetative means from pieces of stems or roots forming new plants. Others spread through both seed and vegetative means.

Because movement and disposal of viable plant parts is restricted (see NH Regulations), viable invasive parts can't be brought to most transfer stations in the state. Check with your transfer station to see if there is an approved, designated area for invasives disposal. This fact sheet gives recommendations for rendering plant parts nonviable.

Control of invasives is beyond the scope of this fact sheet. For information about control visit <u>www.nhinvasives.org</u> or contact your UNH Cooperative Extension office.

#### **New Hampshire Regulations**

Prohibited invasive species shall only be disposed of in a manner that renders them nonliving and nonviable. (Agr. 3802.04)

No person shall collect, transport, import, export, move, buy, sell, distribute, propagate or transplant any living and viable portion of any plant species, which includes all of their cultivars and varieties, listed in Table 3800.1 of the New Hampshire prohibited invasive species list. (Agr 3802.01)

#### How and When to Dispose of Invasives?

To prevent seed from spreading remove invasive plants before seeds are set (produced). Some plants continue to grow, flower and set seed even after pulling or cutting. Seeds can remain viable in the ground for many years. If the plant has flowers or seeds, place the flowers and seeds in a heavy plastic bag "head first" at the weeding site and transport to the disposal site. The following are general descriptions of disposal methods. See the chart for recommendations by species.

**Burning:** Large woody branches and trunks can be used as firewood or burned in piles. For outside burning, a written fire permit from the local forest fire warden is required unless the ground is covered in snow. Brush larger than 5 inches in diameter can't be burned. Invasive plants with easily airborne seeds like black swallow-wort with mature seed pods (indicated by their brown color) shouldn't be burned as the seeds may disperse by the hot air created by the fire.

**Bagging (solarization):** Use this technique with softertissue plants. Use heavy black or clear plastic bags (contractor grade), making sure that no parts of the plants poke through. Allow the bags to sit in the sun for several weeks and on dark pavement for the best effect.

Tarping and Drying: Pile material on a sheet of plastic



Japanese knotweed Polygonum cuspidatum USDA-NRCS PLANTS Database / Britton, N.L., and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Vol. 1: 676.

and cover with a tarp, fastening the tarp to the ground and monitoring it for escapes. Let the material dry for several weeks, or until it is clearly nonviable.

Chipping: Use this method for woody plants that don't reproduce vegetatively.

**Burying:** This is risky, but can be done with watchful diligence. Lay thick plastic in a deep pit before placing the cut up plant material in the hole. Place the material away from the edge of the plastic before covering it with more heavy plastic. Eliminate as much air as possible and toss in soil to weight down the material in the pit. Note that the top of the buried material should be at least three feet underground. Japanese knotweed should be at least 5 feet underground!

**Drowning:** Fill a large barrel with water and place soft-tissue plants in the water. Check after a few weeks and look for rotted plant material (roots, stems, leaves, flowers). Well-rotted plant material may be composted. A word of caution- seeds may still be viable after using this method. Do this before seeds are set. This method isn't used often. Be prepared for an awful stink!

**Composting:** Invasive plants can take root in compost. Don't compost any invasives unless you know there is no viable (living) plant material left. Use one of the above techniques (bagging, tarping, drying, chipping, or drowning) to render the plants nonviable before composting. Closely examine the plant before composting and avoid composting seeds.

Be diligent looking for seedlings for years in areas where removal and disposal took place

## Suggested Disposal Methods for Non-Native Invasive Plants

This table provides information concerning the disposal of removed invasive plant material. If the infestation is treated with herbicide and left in place, these guidelines don't apply. Don't bring invasives to a local transfer station, unless there is a designated area for their disposal, or they have been rendered non-viable. This listing includes wetland and upland plants from the New Hampshire Prohibited Invasive Species List. The disposal of aquatic plants isn't addressed.

Woody Plants	Method of Reproducing	Methods of Disposal
Norway maple (Acer platanoides) European barberry (Berberis vulgaris) Japanese barberry (Berberis thunbergii) autumn olive (Elaeagnus umbellata) burning bush (Euonymus alatus)	Fruit and Seeds	<ul> <li>Prior to fruit/seed ripening</li> <li>Seedlings and small plants <ul> <li>Pull or cut and leave on site with roots exposed. No special care needed.</li> </ul> </li> <li>Larger plants <ul> <li>Use as firewood.</li> <li>Make a brush pile.</li> <li>Chip.</li> <li>Burn.</li> </ul> </li> </ul>
Morrow's honeysuckle (Lonicera morrowii) Tatarian honeysuckle (Lonicera tatarica) showy bush honeysuckle (Lonicera x bella) common buckthorn (Rhamnus cathartica) glossy buckthorn (Frangula alnus)		<ul> <li>After fruit/seed is ripe</li> <li>Don't remove from site.</li> <li>Burn.</li> <li>Make a covered brush pile.</li> <li>Chip once all fruit has dropped from branches.</li> <li>Leave resulting chips on site and monitor.</li> </ul>
oriental bittersweet (Celastrus orbiculatus) multiflora rose (Rosa multiflora)	Fruits, Seeds, Plant Fragments	<ul> <li>Prior to fruit/seed ripening</li> <li>Seedlings and small plants <ul> <li>Pull or cut and leave on site with roots exposed. No special care needed.</li> </ul> </li> <li>Larger plants <ul> <li>Make a brush pile.</li> <li>Burn.</li> </ul> </li> </ul>
		<ul> <li>After fruit/seed is ripe</li> <li>Don't remove from site.</li> <li>Burn.</li> <li>Make a covered brush pile.</li> <li>Chip – only after material has fully dried (1 year) and all fruit has dropped from branches. Leave resulting chips on site and monitor.</li> </ul>

Non-Woody Plants	Method of Reproducing	Methods of Disposal
<pre>garlic mustard (Alliaria petiolata) spotted knapweed (Centaurea maculosa) • Sap of related knapweed can cause skin irritation and tumors. Wear gloves when handling. black swallow-wort (Cynanchum nigrum) • May cause skin rash. Wear gloves and long sleeves when handling. pale swallow-wort (Cynanchum rossicum) giant hogweed (Heracleum mantegazzianum) • Can cause major skin rash. Wear gloves and long sleeves when handling. dame's rocket (Hesperis matronalis) perennial pepperweed (Lepidium latifolium) purple loosestrife (Lythrum salicaria) Japanese stilt grass (Microstegium vimineum) mile-a-minute weed (Polygonum perfoliatum)</pre>	Fruits and Seeds	<ul> <li>Prior to flowering <ul> <li>Depends on scale of infestation</li> <li>Small infestation</li> <li>Pull or cut plant and leave on site with roots exposed.</li> </ul> </li> <li>Large infestation <ul> <li>Pull or cut plant and pile. (You can pile onto or cover with plastic sheeting).</li> <li>Monitor. Remove any re-sprouting material.</li> </ul> </li> <li>During and following flowering <ul> <li>Do nothing until the following year or remove flowering heads and bag and let rot.</li> </ul> </li> <li>Small infestation <ul> <li>Pull or cut plant and leave on site with roots exposed.</li> </ul> </li> <li>Large infestation <ul> <li>Pull or cut plant and pile remaining material. (You can pile onto plastic or cover with plastic sheeting).</li> <li>Monitor. Remove any re-sprouting material. (You can pile onto plastic or cover with plastic sheeting).</li> <li>Monitor. Remove any re-sprouting material.</li> </ul> </li> </ul>
common reed (Phragmites australis) Japanese knotweed (Polygonum cuspidatum) Bohemian knotweed (Polygonum x bohemicum)	Fruits, Seeds, Plant Fragments Primary means of spread in these species is by plant parts. Although all care should be given to preventing the dispersal of seed during control activities, the presence of seed doesn't materially influence disposal activities.	<ul> <li>Small infestation <ul> <li>Bag all plant material and let rot.</li> <li>Never pile and use resulting material as compost.</li> <li>Burn.</li> </ul> </li> <li>Large infestation <ul> <li>Remove material to unsuitable habitat (dry, hot and sunny or dry and shaded location) and scatter or pile.</li> <li>Monitor and remove any sprouting material.</li> <li>Pile, let dry, and burn.</li> </ul> </li> </ul>

January 2010

UNH Cooperative Extension programs and policies are consistent with pertinent Federal and State laws and regulations, and prohibits discrimination in its programs, activities and employment on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sex, sexual orientation, or veteran's, marital or family status. College of Life Sciences and Agriculture, County Governments, NH Dept. of Resources and Economic Development, Division of Forests and Lands, NH Fish and Game ,and U.S. Dept. of Agriculture cooperating.



# **BMP** Location Plan

		PROPOSED SWALE (8) TO BE TEMPORARILY INSTALLED UNTIL TAX 234 LOT 1.4 IS DEVELO					NXI60'L) MAP OPED
		,					A.
ш	ш	m		m	Ш	10	
300	\$	-111					-