ALTERATION OF TERRAIN APPLICATION & SITE DEVELOPMENT PLAN NARRATIVE FOR

BARRINGTON STORAGE-OFFICE CALEF HIGHWAY BARRINGTON, NEW HAMPSHIRE MAY 2020 REVISED JULY 2020

> PREPARED FOR MILL FALLS REALTY, LLC

P.O. BOX 627 CENTER OSSIPEE, NEW HAMPSHIRE 03814-0627

PREPARED BY

TRITECH ENGINEERING CORPORATION 755 CENTRAL AVENUE DOVER, NEW HAMPSHIRE 03820

ALTERATION OF TERRAIN APPLICATION & SITE DEVELOPMENT PLAN NARRATIVE FOR

BARRINGTON STORAGE-OFFICE CALEF HIGHWAY

BARRINGTON, NEW HAMPSHIRE

MAY 2020 REVISED JULY 2020

TABLE OF CONTENTS

- Signed Application
- Application Fee
- USGS Map
- Narrative with Peak Discharge Summary Table
- Web GIS Maps
 - Surface Water Impairments
 - AOT Screening Layers
- NHB Letter
- Web Soil Survey Map
- Aerial Photograph
- Photographs
- Groundwater Recharge Volume Calculations
- BMP Worksheets
- Drainage Analysis
- Riprap Calculations
- Site Specific Soil Survey Report
- Inspection and Maintenance Manual

ALTERATION OF TERRAIN PERMIT APPLICATION

Services Water Division/ Alteration of Terrain Bureau/ Land Resources Management Check the Status of your Application: <u>www.des.nh.gov/onestop</u>

RSA/ Rule: RSA 485-A:17, Env-Wq 1500

			File Nun	nber:	
Administrative	Administrative	Administrativ	Check N	10.	
Only	Only	Only	Amount		
			Initials:		
1. APPLICANT INFORMATION	N (INTENDED PERMIT HOLDER)			
Applicant Name: MILL FALLS	REALTY, LLC	Contact Name: ALBERT ESTES			
Email: JAKE240@COMCAST.	NET	Daytime Telephone:	Daytime Telephone: (603) 834-0224		
Mailing Address: P.O. BOX 62	7	•			
Town/City: CENTER OSSIPE	E		State: NH	Zip Code: 03814-0627	
2. APPLICANT'S AGENT INFO	DRMATION If none, chec	k here:			
Business Name: TRITECH ENGINEERING CORPORATION		Contact Name: ROBERT J STOWELL			
Email: RJS@TRITECHENG.COM		Daytime Telephone: (603) 742-8107			
Address: 755 CENTRAL AVE	NUE				
Town/City: DOVER		State: NH Zip Code: 03820			
3. PROPERTY OWNER INFORMATION (IF DIFFERENT FROM APPLICANT)					
Applicant Name:	Contact Name:				
Email:	Daytime Telephone:				
Mailing Address:					
Town/City:		State: Zip Code:		Zip Code:	
4. PROPERTY OWNER'S AGENT INFORMATION If none, check here:					
Business Name: TRITECH ENGINEERING CORPORATION		Contact Name: ROBERT J STOWELL			
Email: RJS@TRITECHENG.COM		Daytime Telephone: (603) 742-8107			
Address: 755 CENTRAL AVENUE					
Town/City: DOVER		State: NH	Zip Code: 03820		
5. CONSULTANT INFORMAT	ION If none, check here:				
Engineering Firm: TRITECH ENGINEERING CORPORATION		Contact Name: ROBERT J STOWELL			
Email: RJS@TRITECHENG.COM		Daytime Telephone: (603) 742-8107			
Address: 755 CENTRAL AVENUE					
Town/City: DOVER		State: NH	Zip Code: 03820		

ridge.mauck@des.nh.gov (603) 271-2147

NHDES Alteration of Terrain Bureau, PO Box 95, Concord, NH 03303-0095

NHDES-W-01-003

6. PROJECT TYPE					
Excavation Only	Residential	Commercial	Golf Course	School	Municipal
	Land Conversion	Other:			
7. PROJECT LOCATION	INFORMATION				
Project Name: BARRING	TON STORAGE-OFFIC	E			
Street/Road Address: CA	ALEF HIGHWAY				
Town/City: BARRINGTO	N	Со	unty: STRAFFORD)	
Tax Map: 220	Block:		Lot Number: 54-7	7-1 & 54-7-2 Uni	t:
Location Coordinates: 43	.24313 70.98528	Latitude/Lo	ongitude 🗌 I	JTM 🗌 Sta	ate Plane
Post-development, will the purpose.	proposed project withdra	w from or directly of	discharge to any of t	he following? If ye	es, identify the
1. Stream or Wetland			🛛 Yes	Withdrawal	Discharge
Purpose: BIORETEN	TION OUTLET		🗌 No		
2. Man-made pond creat	ed by impounding a strea	m or wetland	Yes [Withdrawal	Discharge
Purpose:	the water table				Discharge
3. Unined pond dug into	the water table				
Puipose.	proposed project dischar	ao to:			
A surface water impaired	for phosphorus and/or ni	trogen? ⊠ No [] Yes - include info	ormation to demo	nstrate that project
A Class A surface water (rease in phosphorus ar	nd/or nitrogen Water? ⊠ No _ □	7 Yes - include info	rmation to demo	nstrate that project
will not cause net inc	rease in phosphorus a	nd/or nitrogen			
 A lake or pond not covere increase in phosphore 	ed previously? ⊠ No │ rus in the lake or pond	Yes - include i	nformation to demo	onstrate that proj	ect will not cause net
Is the project a High Load If yes, specify the type	area? Yes	⊠ No activity:			
Is the project within a Wate	r Supply Intake Protectio	n Area (WSIPA)?	🗌 Yes 🛛 🛛	No	
Is the project within a Grou	Indwater Protection Area	(GPA)?	☐ Yes ⊠ I	No	
Will the well setbacks i	dentified in Env-Wq 1508	0.02 be met?		NO Vreas" is available.	online For more
details on the restrictions	in these areas, read Cha	pter 3.1 in Volume	2 of the NH Stormw	ater Manual.	onime. Tor more
Is any part of the property within the 100-year floodplain? 🗌 Yes 🛛 No					
If yes: Cut volume: cubic feet within the 100-year floodplain					
Fill volume: Cubic feet within the 100-year floodplain					
Project IS within ¼ mile of a designated river Name of River: ISINGLASS					
Project is NOT within ¼ mile of a designated river					
Project IS within a Coastal/Great Bay Region community - include into required by Env-Wq 1503.08(I) if applicable Project is NOT within a Coastal/Great Bay Region community					
8. BRIEF PROJECT DESCRIPTION (PLEASE DO NOT REPLY "SEE ATTACHED")					
To construct 43 commercial Storage-Office units with associated infrastructure and utilities					
9. IF APPLICABLE, DESCRIBE ANY WORK STARTED PRIOR TO RECEIVING PERMIT					
None					

NHDES-W-01-003

10. ADDITIONAL REQUIRED INFORMATION				
 A. Date a copy of the application was sent to the municipality as required by Env-Wq 1503.05(e)¹:<u>5/27/2020.</u> (Attach proof of delivery) 				
B. Date a copy of the application was sent to	the local river adv	isory comm	nittee if requi	red by Env-Wq 1503.05(e) ² : <u>5/27/2020.</u>
(Attach proof of delivery)			_	
C. Type of plan required: Land Conversion	n 🛛 Detailed De	velopment	Excavati	on, Grading & Reclamation Steep Slope
D. Additional plans required: Stormwater	D. Additional plans required: X Stormwater Drainage & Hydrologic Soil Groups I Source Control Chloride Management			
E. Total area of disturbance: 271,250 square	feet			
 F. Additional impervious cover as a result of the project: <u>132,410</u> square feet (use the "-" symbol to indicate a net reduction in impervious coverage). Total final impervious cover: 132,410 square feet 				
G. Total undisturbed cover: <u>328,880</u> square f	eet			
H. Number of lots proposed: 2				
I. Total length of roadway: <u>1,945</u> linear feet	. Total length of roadway: <u>1,945</u> linear feet			
J. Name(s) of receiving water(s): Isinglass	J. Name(s) of receiving water(s): <u>Isinglass</u>			
K. Identify all other NHDES permits required for the project, and for each indicate whether an application has been filed and is pending, or if the required approval has been issued provide the permit number, registration date, or approval letter number, as applicable.				
				Status
lype of Approval	Application Filed?		Pending	If Issued:
1. Water Supply Approval	🗌 Yes 🗌 No	⊠N/A		Permit number:
2. Wetlands Permit	🗌 Yes 🗌 No	⊠N/A		Permit number:
3. Shoreland Permit	🗌 Yes 🗌 No	⊠N/A		Permit number:
4. UIC Registration	🗌 Yes 🗌 No	⊠N/A		Registration date:
5. Large/Small Community Well Approval	🗌 Yes 🖾 No	□N/A		Approval letter date:
6. Large Groundwater Withdrawal Permit	🗌 Yes 🗌 No	⊠N/A		Permit number:
7. Other:	🗌 Yes 🗌 No			Permit number:
L. List all species identified by the Natural Heritage Bureau as threatened or endangered or of concern: N/A				
M. Using NHDES's Web GIS OneStop program (<u>www2.des.state.nh.us/gis/onestop/)</u> , with the Surface Water Impairment layer turned on, list the impairments identified for each receiving water. If no pollutants are listed, enter "N/A." <u>DISOLVED OXYGEN,</u> <u>E. COLI</u>				
N. Did the applicant/applicant's agent have a pre-application meeting with AOT staff? Xes No				
O. Will blasting of bedrock be required? Yes No If yes, estimated quantity of blast rock: cubic yards If yes, standard blasting BMP notes must be placed on the plans, available at: <u>http://des.nh.gov/organization/commissioner/pip/publications/wd/documents/wd-10-12.pdf</u>				
NOTE: If greater than 5,000 cubic yards of and submitted to NHDES. Contact AOT st	blast rock will be aff for additional c	generated, letail.	a groundwa	ater monitoring program must be developed

NHDES Alteration of Terrain Bureau, PO Box 95, Concord, NH 03303-0095

¹ Env-Wq 1503.05(c)(6), requires proof that a completed application form, checklist, plans and specifications, and all other supporting materials have been sent or delivered to the governing body of each municipality in which the project is proposed.

² Env-Wq 1503.05(c)(6), requires proof that a completed application form, checklist, plans and specifications, and all other supporting materials have been sent or delivered to the Local River Advisory Committee, if the project is within ¼ mile of a designated river.

11. CHECK ALL APPLICATION ATTACHMENTS THAT APPLY (SUBMIT WITH APPLICATION IN ORDER LISTED)

LOOSE:

- Signed application form: des.nh.gov/organization/divisions/water/aot/index.htm (with attached proof(s) of delivery)
- Check for the application fee: des.nh.gov/organization/divisions/water/aot/fees.htm
- \boxtimes Color copy of a USGS map with the property boundaries outlined (1" = 2,000' scale)
- N/A If Applicant is not the property owner, proof that the applicant will have a legal right to undertake the project on the property if a permit is issued to the applicant.

BIND IN A REPORT IN THE FOLLOWING ORDER:

- Copy of the signed application form & application checklist (des.nh.gov/organization/divisions/water/aot/index.htm) Copy of the check
- \boxtimes Copy of the USGS map with the property boundaries outlined (1" = 2,000' scale)
- Narrative of the project with a summary table of the peak discharge rate for the off-site discharge points
- Web GIS printout with the "Surface Water Impairments" layer turned on -
- http://www4.des.state.nh.us/onestopdatamapper/onestopmapper.aspx
- Web GIS printouts with the AOT screening layers turned on -
- http://www4.des.state.nh.us/onestopdatamapper/onestopmapper.aspx
- NHB letter using DataCheck Tool www.nhdfl.org/about-forests-and-lands/bureaus/natural-heritage-bureau/
- The Web Soil Survey Map with project's watershed outlined websoilsurvey.nrcs.usda.gov
- \boxtimes Aerial photograph (1" = 2,000' scale with the site boundaries outlined)
- Photographs representative of the site
- Groundwater Recharge Volume calculations (one worksheet for each permit application):
- des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls
- BMP worksheets (one worksheet for each treatment system):
- des.nh.gov/organization/divisions/water/aot/documents/bmp_worksh.xls
- Drainage analysis, stamped by a professional engineer (see Application Checklist for details)
- Riprap apron or other energy dissipation or stability calculations
- Site Specific Soil Survey report, stamped and with a certification note prepared by the soil scientist that the survey was done in accordance with the Site Specific Soil Mapping standards, Site-Specific Soil Mapping Standards for NH & VT, SSSNNE Special Publication No. 3.
- N/A Infiltration Feasibility Report (example online) [Env-Wq 1503.08(f)(3)]
- N/A Registration and Notification Form for Storm Water Infiltration to Groundwater (UIC Registration-for underground systems only, including drywells and trenches):

(http://des.nh.gov/organization/divisions/water/dwgb/dwspp/gw_discharge)

☐ Inspection and maintenance manual with, if applicable, long term maintenance agreements [Env-Wq 1503.08(g)]

PLANS:

- One set of design plans on 34 36" by 22 24" white paper (see Application Checklist for details)
- Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details)
- Pre & post-development drainage area plans on 34 36" by 22 24" white paper (see Application Checklist for details)

100-YEAR FLOODPLAIN REPORT:

N/A \square All information required in Env-Wq 1503.09, submitted as a separate report.

ADDITIONAL INFORMATION RE: NUTRIENTS, CLIMATE

N/A See Checklist for Details

REVIEW APPLICATION FOR COMPLETENESS & CONFIRM INFORMATION LISTED ON THE APPLICATION IS INCLUDED WITH SUBMITTAL.

2. REQUIRED SIGNATURES
By initialing here, I acknowledge that I am required by Env-Wg 1503.20(e) to submit a copy of all approved documents to the
department in PDF format on a CD within one week after permit approval

By signing below, I certify that:

- The information contained in or otherwise submitted with this application is true, complete, and not misleading to the best of my knowledge and belief;
- I understand that the submission of false, incomplete, or misleading information constitutes grounds for the department to deny the application, revoke any permit that is granted based on the information, and/or refer the matter to the board of professional engineers established by RSA 310-A:3 if I am a professional engineer; and
- I understand that I am subject to the penalties specified in New Hampshire law for falsification in official matters, currently RSA 641.

	NT'S AGENT:
Signature:	Date:
Name (print or type):ABERT ESTES	Title:
	TY OWNER'S AGENT:
Signature: Can 25	Date:
Name (print or type):ALBERT ESTES	Title:

ATTACHMENT A: ALTERATION OF TERRAIN PERMIT APPLICATION CHECKLIST

Check the box to indicate the item has been provided or provide an explanation why the item does not apply.

DESIGN PLANS

- Plans printed on 34 36" by 22 24" white paper
- PE stamp
- Wetland delineation
- Temporary erosion control measures
- Treatment for all stormwater runoff from impervious surfaces such as roadways (including gravel roadways), parking areas, and non-residential roof runoff. Guidance on treatment BMPs can be found in Volume 2, Chapter 4 of the NH Stormwater Management Manual.
- Pre-existing 2-foot contours
- Proposed 2-foot contours
- Drainage easements protecting the drainage/treatment structures
- Compliance with the Wetlands Bureau, RSA 482- A <u>http://des.nh.gov/organization/divisions/water/wetlands/index.htm</u>. Note that artificial detention in wetlands is not allowed.
- Compliance with the Comprehensive Shoreland Protection Act, RSA 483-B. http://des.nh.gov/organization/divisions/water/wetlands/cspa
- Benches. Benching is needed if you have more than 20 feet change in elevation on a 2:1 slope, 30 feet change in elevation on a 3:1 slope, 40 feet change in elevation on a 4:1 slope.
- Check to see if any proposed ponds need state Dam permits. <u>http://des.nh.gov/organization/divisions/water/dam/documents/damdef.pdf</u>

DETAILS

- Typical roadway x-section
- Detention basin with inverts noted on the outlet structure
- N/A Stone berm level spreader
 - \boxtimes Outlet protection riprap aprons
 - A general installation detail for an erosion control blanket
 - Silt fences or mulch berm
 - Storm drain inlet protection. Note that since hay bales must be embedded 4 inches into the ground, they are not to be used on hard surfaces such as pavement.
 - Hay bale barriers
 - \boxtimes Stone check dams
 - Gravel construction exit
- N/A Temporary sediment trap
 - The treatment BMP's proposed
- N/A Any innovative BMP's proposed

CONSTRUCTION SEQUENCE/EROSION CONTROL

- Note that the project is to be managed in a manner that meets the requirements and intent of RSA 430:53 and Chapter Agr 3800 relative to invasive species.
- \boxtimes Note that perimeter controls shall be installed prior to earth moving operations.
- Note that temporary water diversion (swales, basins, etc) must be used as necessary until areas are stabilized.
- Note that ponds and swales shall be installed early on in the construction sequence (before rough grading the site).
- Note that all ditches and swales shall be stabilized prior to directing runoff to them.
- \boxtimes Note that all roadways and parking lots shall be stabilized within 72 hours of achieving finished grade.
- X Note that all cut and fill slopes shall be seeded/loamed within 72 hours of achieving finished grade
- Note that all erosion controls shall be inspected weekly AND after every half-inch of rainfall.
- X Note the limits on the open area allowed, see Env-Wq 1505.02 for detailed information.

Example note: The smallest practical area shall be disturbed during construction, but in no case shall exceed 5 acres at any one time before disturbed areas are stabilized.

Note the definition of the word "stable"

Example note: An area shall be considered stable if one of the following has occurred:

- Base course gravels have been installed in areas to be paved.
- A minimum of 85 percent vegetated growth has been established.
- A minimum of 3 inches of non-erosive material such stone or riprap has been installed.
- Or, erosion control blankets have been properly installed.
- Note the limit of time an area may be exposed Example note: All areas shall be stabilized within 45 days of initial disturbance.
- Provide temporary and permanent seeding specifications. (Reed canary grass is listed in the Green Book; however, this is a problematic species according to the Wetlands Bureau and therefore should not be specified)

Provide winter construction notes that meet or exceed our standards.

Standard Winter Notes:

- All proposed vegetated areas that do not exhibit a minimum of 85 percent vegetative growth by October 15, or which are disturbed after October 15, shall be stabilized by seeding and installing erosion control blankets on slopes greater than 3:1, and seeding and placing 3 to 4 tons of mulch per acre, secured with anchored netting, elsewhere. The installation of erosion control blankets or mulch and netting shall not occur over accumulated snow or on frozen ground and shall be completed in advance of thaw or spring melt events.
- All ditches or swales which do not exhibit a minimum of 85 percent vegetative growth by October 15, or which are disturbed after October 15, shall be stabilized temporarily with stone or erosion control blankets appropriate for the design flow conditions.
- After October 15, incomplete road or parking surfaces, where work has stopped for the winter season, shall be protected with a minimum of 3 inches of crushed gravel per NHDOT item 304.3.
- N/A Note at the end of the construction sequence that "Lot disturbance, other than that shown on the approved plans, shall not commence until after the roadway has the base course to design elevation and the associated drainage is complete and stable." This note is applicable to single/duplex family subdivisions, when lot development is not part of the permit.

DRAINAGE ANALYSES

Please double-side 8 ½" x 11" sheets where possible but, **do not** reduce the text such that more than one page fits on one side.

- PE stamp
- Rainfall amount obtained from the Northeast Regional Climate Center- <u>http://precip.eas.cornell.edu/</u>. Include extreme precipitation table as obtained from the above referenced website.
- \boxtimes Drainage analyses, in the following order:

- Pre-development analysis: Drainage diagram.
- Pre-development analysis: Area Listing and Soil Listing.
- Pre-development analysis: Node listing 1-year (if applicable), 2-year, 10-year and 50-year.
- Pre-development analysis: Full summary of the 10-year storm.
- Post-development analysis: Drainage diagram.
- Post-development analysis: Area Listing and Soil Listing.
- Post-development analysis: Node listing for the 2-year, 10-year and 50-year.
- Post-development analysis: Full summary of the 10-year storm.

Review the Area Listing and Soil Listing reports

- Hydrologic soil groups (HSG) match the HSGs on the soil maps provided.
- There is the same or less HSG A soil area after development (check for each HSG).
- There is the same or less "woods" cover in the post-development.
- Undeveloped land was assumed to be in "good" condition.
- The amount of impervious cover in the analyses is correct.

Note: A good check is to subtract the total impervious area used in the pre analysis from the total impervious area used in the post-analysis. For residential projects without demolition occurring, a good check is to take this change in impervious area, subtract out the roadway and divide the remaining by the number of houses/units proposed. Do these numbers make sense?

- \boxtimes Check the storage input used to model the ponds.
- Check to see if the artificial berms pass the 50-year storm, i.e., make sure the constructed berms on ponds are not overtopped.
- Check the outlet structure proposed and make sure it matches that modeled.
- Check to see if the total areas in the pre and post analyses are same.
- Confirm the correct NRCS storm type was modeled (Coos, Carroll & Grafton counties are Type II, all others Type III).

PRE- AND POST-DEVELOPMENT DRAINAGE AREA PLANS

- \boxtimes Plans printed on 34 36" by 22 24" on white paper.
- \boxtimes Submit these plans separate from the soil plans.
- \boxtimes A north arrow.
- \boxtimes A scale.
- \boxtimes Labeled subcatchments, reaches and ponds.
- Tc lines.
- \boxtimes A clear delineation of the subcatchment boundaries.
- Roadway station numbers.
- Culverts and other conveyance structures.

PRE AND POST-DEVELOPMENT COLOR-CODED SOIL PLANS

- \boxtimes 11" x 17"sheets suitable, as long as it is readable.
- \boxtimes Submit these plans separate from the drainage area plans.
- \boxtimes A north arrow.
- \boxtimes A scale.
- \boxtimes Name of the soil scientist who performed the survey and date the soil survey took place.

NHDES-W-01-003

- 2-foot contours (5-foot contours if application is for a gravel pit) as well as other surveyed features.
- \boxtimes Delineation of the soil boundaries and wetland boundaries.
- \boxtimes Delineation of the subcatchment boundaries.
- \boxtimes Soil series symbols (e.g., 26).
- A key or legend which identifies each soil series symbol and its associated soil series name (e.g., 26 = Windsor).

The hydrologic soil group color coding (A = Green, B = yellow, C= orange, D=red, Water=blue, & Impervious = gray).

Please note that excavation projects (e.g., gravel pits) have similar requirements to that above, however the following are common exceptions/additions:

N/A Drainage report is not needed if site does not have off-site flow.

- N/A 5 foot contours allowed rather than 2 foot.
- N/A No PE stamp needed on the plans.
- N/A Add a note to the plans that the applicant must submit to the Department of Environmental Services a written update of the project and revised plans documenting the project status every five years from the date of the Alteration of Terrain permit.
- N/A Add reclamation notes.

See NRCS publication titled: *Vegetating New Hampshire Sand and Gravel Pits* for a good resource, it is posted online at: http://des.nh.gov/organization/divisions/water/aot/categories/publications.

ADDITIONAL INFORMATION RE: NUTRIENTS, CLIMATE

- N/A If project will discharge stormwater to a surface water impaired for phosphorus and/or nitrogen, include information to demonstrate that project will not cause net increase in phosphorus and/or nitrogen.
- N/A If project will discharge stormwater to a Class A surface water or Outstanding Resource Water, include information to demonstrate that project will not cause net increase in phosphorus and/or nitrogen.
- N/A If project will discharge stormwater to a lake or pond not covered previously, include information to demonstrate that project will not cause net increase in phosphorus in the lake or pond.

N/A If project is within a Coastal/Great Bay Region community, include info required by Env-Wq 1503.08(I) if applicable.

ALTERATION OF TERRAIN APPLICATION & SITE DEVELOPMENT PLAN NARRATIVE FOR **BARRINGTON STORAGE-OFFICE** CALEF HIGHWAY BARRINGTON, NEW HAMPSHIRE

MAY 2020 REVISED JULY 2020

NARRATIVE

ALTERATION OF TERRAIN APPLICATION & SITE DEVELOPMENT PLAN NARRATIVE FOR **BARRINGTON STORAGE-OFFICE** CALEF HIGHWAY BARRINGTON, NEW HAMPSHIRE

MAY 2020 REVISED JULY 2020

PROJECT DESCRIPTION

The attached Site Plans are for the Barrington Storage-Office project and show the development of an approximately 8.69-acre parcel. This site is located at Calef Highway in Barrington, New Hampshire. The site is identified on Barrington Tax Maps as Map 220, Lots 54-7-1 & 54-7-2.

The project consists of the construction of 43 Storage-Offices, including the construction of a new roadway, drainage systems, underground septic, on-site private water system and underground electrical service.

Included in the stormwater management system is the construction of a bioretention area exiting the site. The bioretention area is shown on the construction plans and provide permanent stormwater quality and quantity treatment, prior to the stormwater exiting the site.

Proposed site development details are shown on the Construction Plans for Barrington Storage-Offices, as prepared by Tritech Engineering Corporation. Construction plans are based upon an actual on-ground survey performed by Tritech Engineering Corporation and an on-site wetland delineation performed by Highland Soils Services.

METHODOLOGY

This stormwater runoff analysis and drainage design was accomplished using SCS TR-20 Methodology a third party computer software program was used in the facilitation of this analysis. This software is HydroCAD Stormwater Modeling System Version 10.10-3a, by Applied Microcomputer Systems. Analysis and design were performed for the Two-Year, Ten-Year, and Fifty Year Storm Events.

ALTERATION OF TERRAIN APPLICATION & SITE DEVELOPMENT PLAN NARRATIVE FOR **BARRINGTON STORAGE-OFFICE** CALEF HIGHWAY BARRINGTON, NEW HAMPSHIRE MAY 2020 REVISED JULY 2020

STORMWATER PEAK RATES & VOLUMES

Analysis Pt. PRE POST PRE POST PRE	POST
1 4.55 4.21 11.64 10.44 24.44	24.30
2 0.65 0.42 1.67 0.99 3.50	1.97
3 0.86 0.80 2.28 2.13 4.90	4.58

Volume Comparison (Acre Feet)

Year	<u>2</u>			
Analysis Pt.	PRE	POST		
1	0.668	1.093		
2	0.109	0.045		
3	0.182	0.170		

ALTERATION OF TERRAIN APPLICATION & SITE DEVELOPMENT PLAN NARRATIVE FOR BARRINGTON STORAGE-OFFICE

CALEF HIGHWAY

BARRINGTON, NEW HAMPSHIRE

MAY 2020 REVISED JULY 2020

STORMWATER RUNOFF QUALITY

Stormwater runoff from roadway is collected in a closed drainage system, pretreated via Sediment Forebays, and treated, detained, and infiltrated via Bioretention areas.

CONCLUSIONS

Treatment of drainage occurs in Sediment Forebays and Bioretention Practices. This Stormwater Management System effectively treats and detains the runoff from the Site Development, while maintaining the down gradient water quality through treatment.

The development of this project will result in no adverse impacts to downstream properties.

SOIL TYPES

On site Test Pits indicate that the site consists of a variety of soils: Windsor/Hinkley Complex, Naumburg, Croghan, Udipsamments, and Udorthents (Bedrock Substratum). Drainage properties range from poorly to excessively drained.

WETLANDS

Highland Soil Services, Michael Mariano, certified wetland and soil scientist, conducted an on site wetlands deliniation investigation of the subject parcel. The wetlands are depicted on the project plan. Highland Soil Services also completed a site-specific soil survey, the results of which are depicted on sheet SSS-1

ADJACENT AREA

The site is zoned Regional Commercial and Residential. The site is bounded to the west by Route 125; to the north by land owned by Royalty Volvo Holdings, as

ALTERATION OF TERRAIN APPLICATION & SITE DEVELOPMENT PLAN NARRATIVE FOR

BARRINGTON STORAGE-OFFICE CALEF HIGHWAY

BARRINGTON, NEW HAMPSHIRE

MAY 2020 REVISED JULY 2020

well as land owned by Mill Falls Realty, LLC; to the South by land owned by Mill Pond Investors, as well as by developed residential lots.

EROSION AND SEDIMENT CONTROL NOTES

The project shall be managed to meet the requirements and intent of rsa 430:53 and AGR 3800 relative to invasive species.

Fugitive dust shall be controlled in accordance with env-a 1000.

CRITICAL AREAS

Anywhere on the site that existing vegetation is to be removed will require immediate erosion control treatment. Special care should be taken where runoff enters wetlands. All storm water practices areas shall be stabilized prior to directing storm water to them; specifically all bioretition basins and all infiltration practices.

EROSION AND SEDIMENT CONTROL PRACTICES

Erosion and sediment control practices will include the use of rip-rap, and silt fence check dams. All erosion and sediment control practices will be constructed and maintained according to the minimum standards and specifications contained in the "New Hampshire Stormwater Manual, Volume 2".

A. Erosion and Sediment Control Measures

- 1. The erosion control procedures shall conform to Section 645 of the "Standard Specifications for Road and Bridge Construction" of the NH DOT, and the "New Hampshire Stormwater Manual."
- 2. During Construction and thereafter, erosion control measures are to be implemented as noted. The smallest practical area of land should be exposed at any one time during development. The amount of exposed areas which are temporarily stabilized without permanent stabilization shall be limited to 5 acres.
- 3. During grading operations, install stone check dams at 50 foot intervals in drainage swales and at drain inlets where shown. Barriers are to be maintained and cleaned until disturbed areas are stabilized.
- 4. Any disturbed areas which are to be left temporarily, and which will be regraded later during construction shall be machine hay mulched and seeded with rye grass to prevent erosion.

ALTERATION OF TERRAIN APPLICATION & SITE DEVELOPMENT PLAN NARRATIVE FOR BARRINGTON STORAGE-OFFICE CALEF HIGHWAY

BARRINGTON, NEW HAMPSHIRE

MAY 2020 REVISED JULY 2020

- 5. Silt fences and other erosion control measures shall be inspected weekly and after every 0.25" rainfall event during the life of the project. All damaged silt fences shall be repaired. Sediment deposits shall periodically be removed.
- 6. Avoid the use of future open spaces (loam and seed areas) wherever possible during the construction. Construction traffic shall use the roadbeds of future roads and parking areas.
- 7. Topsoil required for the establishment of vegetation shall be stock piled in amounts necessary to complete finished grading of all exposed areas.
- 8. Areas to be filled shall be cleared, grubbed, and stripped of topsoil to remove trees, vegetation, roots or other objectionable material. Stumps shall be disposed by grinding or fill in an approved facility.
- 9. All fills shall be placed and compacted to reduce erosion, slippage settlement, subsidence or other related problems.
- 10. All fill shall be placed and compacted in layers not to exceed 8 inches in thickness.
- 11. Frozen material or soft, mucky or highly compressible material shall not be incorporated into fills.
- 12. Fill material shall not be placed on a frozen foundation subgrade.
- 13. Disturbed areas shall be seeded immediately following finished grading.
- 14. Limit of exposed area that is temporarily stabilized without permanent stabilization is 5 acres or less.
- 15. All areas not stabilized by Nov. 1st must be protected by Erosion Control Blankets or equivalent and mulched/seeded with winter rye or oats.
- 16. All disturbed areas must be seed and mulched within 3 days of final grading, permanently stabilized within 15 days of final grading or temporarily stabilized within 45 days of initial disturbance.
- 17. All ditches and swales are to be stabilized prior to directing runoff to these features.
- 18. All cut and fill slopes shall be seeded immediately.
- 19. An area shall be considered stable if one of the following has occurred:
 - a. Base course gravels are installed in areas to be paved.
 - b. A minimum of 85 % vegetated growth has been established

ALTERATION OF TERRAIN APPLICATION & SITE DEVELOPMENT PLAN NARRATIVE FOR BARRINGTON STORAGE-OFFICE

CALEF HIGHWAY

BARRINGTON, NEW HAMPSHIRE

MAY 2020 REVISED JULY 2020

- c. A minimum of 3" of non-erosive material such as stone or riprap has been installed.
- d. Erosion control blankets have been properly installed.

B. Vegetative Practice

All ground areas opened up for construction will be regraded, loamed, seeded and mulched in the shortest practical time. All Temporary and Permanent Seeding must be applied prior to October 1st. Employ temporary erosion and sedimentation control devices as detailed in this plan as necessary until adequate stabilization has been assured.

A. Temporary Seeding & Hay Mulching

- 1. At no time shall any disturbed area remain unstabilized for longer than 30 days. All areas where construction is not completed within 30 days of the initial disturbance shall receive temporary seeding measures.
- 2. Fertilizer shall be spread on the top layer of loam and worked into the surface. Fertilizer application rate shall be 300 pounds per acre of 10-10-10 fertilizer.
- 3. Seed shall be Winter Rye, 112 LBS. per acre.
- 4. Remove stones and trash that will interfere with seeding the area. Where feasible, till the soil to a depth of about 3 inches to prepare a seedbed and mix fertilizer into the soil. The seedbed should be left in a firm and smooth condition. The last tillage operation should be performed across the slope whenever practical.
- 5. If seeding between May 15th and August 15th, hay mulch shall be applied immediately after seeding at a rate of 1.5 to 2 tons per acre and shall be held in place using appropriate techniques from the Erosion and Sediment Control Handbook.
- 6. The surface shall be watered and kept moist with a fine spray as required without washing away the soil, until the grass is well established. Any areas which are not satisfactorily covered with grass shall be reseeded, and all noxious weeds are removed.

B. Permanent Seeding & Hay Mulching

ALTERATION OF TERRAIN APPLICATION & SITE DEVELOPMENT PLAN NARRATIVE FOR **BARRINGTON STORAGE-OFFICE** CALEF HIGHWAY BARRINGTON, NEW HAMPSHIRE MAY 2020 REVISED JULY 2020

- 1. All disturbed areas shall be loamed (4") and limed. Lime shall be thoroughly incorporated into the loam layer at a rate of 2 tons per acre.
- 2. Fertilizer shall be spread on the top layer of loam and worked into then surface. Fertilizer application rate shall be 500 pounds per acre of 10-20-20 fertilizer.
- 3. Seed shall be 48 lbs. per acre, SCS mixture "c" (20 lbs tall fescue, 20 lbs. creeping red fescue and 8 lbs. birds foot trefoil = 48 lbs total.) The soil shall be lightly raked immediately before seeding. One half the seed shall be sown in one direction and the other half at right angles to the original direction. It shall be lightly raked in to the soil to a depth not over 1/4 inch and rolled with hand roller weighing not over 100 points per linear foot to width.
- 4. Hay mulch shall be applied immediately after seeding at a rate of 1.5 to 2 tons per acre and shall be held in place using appropriate techniques from the Erosion and Sediment Control Handbook. The surface shall be watered and kept moist with a fine spray as required, without washing away the soil, until the grass is well established. Any areas which are not satisfactorily covered with grass shall be reseeded, and all noxious weeds removed.

CONSTRUCTION SEQUENCE

- 1. Do not begin construction until all local, state and federal permits have been applied for and received.
- 2. Install silt fences and hay bale barriers necessary to control erosion and prevent sediment contamination of wetlands prior to any earth moving activities.
- 3. Cut and remove trees, shrubs, saplings, brush, vines and other debris and rubbish as required for drainage construction.
- 4. Care shall be taken to preserve the infiltration capacity of the infiltrating soil. See the New Hampshire Stormwater Manual for additional information.
- 5. Construct stormwater Bioretention Area #1. Do not direct runoff to these practices until the practice and contributing areas are fully stabilized.
- 6. Cut and remove trees, shrubs, saplings, brush, vines and other debris and rubbish as required for remaining site.
- 7. Construct roadway and utilities.
- 8. Loam and seed disturbed areas in accordance with vegetative practice and general construction notes. Cut and fill slopes shall be seeded immediately after their construction.

ALTERATION OF TERRAIN APPLICATION & SITE DEVELOPMENT PLAN NARRATIVE FOR **BARRINGTON STORAGE-OFFICE** CALEF HIGHWAY

BARRINGTON, NEW HAMPSHIRE

MAY 2020 REVISED JULY 2020

- 9. All areas receiving runoff, including but not limited to the stormwater infiltration and bioretention areas, shall be stabilized prior to directing runoff to them.
- 10. All soils that are finish graded must be stabilized within 72 hours of disturbance.
- 11. Maintain disturbed areas as necessary.
- 12. Lot disturbance, other than that shown on the approved plans, shall not commence until after the roadway has the base course to design elevation and the associated drainage is complete and stable.

MAINTENANCE

During the period of construction and/or until long term vegetation is established:

- 1. Seeded areas will be fertilized and reseeded as necessary to insure vegetative establishment.
- 2. The side slopes will be checked after each significant rainfall.
- 3. The side slopes will be checked weekly and repaired when necessary until adequate vegetation is established.
- 4. The silt fence barriers will be checked regularly. Necessary repairs will be made to correct undermining or deterioration of the structures.

WINTER CONSTRUCTION NOTES

- 1. All proposed vegetated areas which do not exhibit a minimum of 85 % vegetation growth by October 15th, or which are disturbed after October 15th, shall be stabilized by seeding and installing erosion control blankets on slopes greater than 3:1, and seeding and placing 3 to 4 tons of mulch per acre, secured with anchored netting, elsewhere. The installation of erosion control blankets or mulch and netting shall not occur over accumulated snow or on frozen ground and shall be completed in advance of thaw or spring melts.
- 2. All ditches or swales which do not exhibit a minimum of 85 % vegetation growth by October 15th, or which are disturbed after October 15th, shall be stabilized temporarily with stone or erosion control blankets appropriate for the design flow conditions.
- 3. After November 15th, incomplete road or parking surfaces, where work has stopped for the winter season, shall be protected with a minimum of 3 inches of crushed gravel per NHDOT item 304.3.

To:Matthew Francoeur
755 Central Ave
Dover, NH 03820From:NH Natural Heritage Bureau

Re: Review by NH Natural Heritage Bureau of request dated 5/7/2020 NHB File ID: NHB20-1290

Applicant: Robert Stowell

Date: 5/7/2020

Location: Tax Map(s)/Lot(s): Map 220 Lots 54-7-1 & 54-7-2 Dover

Project Description: Construction of 43 storage offices, including construction of a new roadway, drainage systems, underground septic, city water, and underground electrical service.

The NH Natural Heritage database has been checked for records of rare species and exemplary natural communities near the area mapped below. The species considered include those listed as Threatened or Endangered by either the state of New Hampshire or the federal government. We currently have no recorded occurrences for sensitive species near this project area.

A negative result (no record in our database) does not mean that a sensitive species is not present. Our data can only tell you of known occurrences, based on information gathered by qualified biologists and reported to our office. However, many areas have never been surveyed, or have only been surveyed for certain species. An on-site survey would provide better information on what species and communities are indeed present.

This report is valid through 5/6/2021.

MAP OF PROJECT BOUNDARIES FOR NHB FILE ID: NHB20-1290

MAPL	-EGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI)	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soils Soil Map Unit Polygons	 Very Stony Spot Wet Spot 	Please rely on the bar scale on each map sheet for map measurements.
Soil Map Unit Points	 Other Special Line Features 	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
Special Point Features	Water Features Streams and Canals	Maps from the Web Soil Survey are based on the Web Me
Clay Spot	Transportation Rails	projection, which preserves direction and shape but distor distance and area. A projection that preserves area, such Albers equal-area conic projection should be used if more
Closed Depression	Interstate Highways	accurate calculations of distance or area are required.
Gravel Pit Gravelly Spot	US Routes Major Roads	This product is generated from the USDA-NRCS certified of the version date(s) listed below.
🔕 Landfill 🗎 Lava Flow	Background	Soil Survey Area: Strafford County, New Hampshire Survey Area Data: Version 19, Sep 16, 2019
Marsh or swamp 🖗 Mine or Quarry	Aerial Photography	Soil map units are labeled (as space allows) for map scale 1:50,000 or larger.
 Miscellaneous Water Perennial Water 		Date(s) aerial images were photographed: Dec 31, 2005 9, 2017
Rock Outcrop		The orthophoto or other base map on which the soil lines
Sandy Spot		complied and digluzed propably differs from the backgrou imagery displayed on these maps. As a result, some min shifting of map unit boundaries may be evident.
Severely Eroded Spot		
 Sinkhole Slide or Slip 		
Sodic Spot		

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
AdB	Acton very stony fine sandy loam, 0 to 8 percent slopes	29.4	2.5%
Ве	Biddeford silty clay loam	33.1	
BzA	Buxton silt loam, 0 to 3 percent slopes	15.5	
BzB	Buxton silt loam, 3 to 8 percent slopes	26.0	2.2%
CsC	Charlton fine sandy loam, 8 to 15 percent slopes, very stony	20.7	1.8%
DeA	Deerfield loamy fine sand, 0 to 3 percent slopes	44.7	3.8%
DeB	Deerfield loamy fine sand, 3 to 8 percent slopes	4.6	
EaA	Elmwood fine sandy loam, 0 to 3 percent slopes	14.3	1.2%
EaB	Elmwood fine sandy loam, 3 to 8 percent slopes	6.8	0.6%
GIB	Gloucester fine sandy loam, 3 to 8 percent slopes	7.6	0.6%
GIC	Gloucester fine sandy loam, 8 to 15 percent slopes	8.1	0.7%
GsB	Gloucester very stony fine sandy loam, 3 to 8 percent slopes	3.8	0.3%
Gv	Gravel and borrow pits	0.7	0.1%
НаА	Hinckley loamy sand, 0 to 3 percent slopes	97.9	8.3%
НаВ	Hinckley loamy sand, 3 to 8 percent slopes	33.2	2.8%
НаС	Hinckley loamy sand, 8 to 15 percent slopes	10.4	0.9%
HbE	Hinckley loamy sand, 15 to 60 percent slopes	33.7	2.9%
НсВ	Hollis-Charlton fine sandy loams, 3 to 8 percent slopes	3.9	0.3%
HdC	Hollis-Charlton very rocky fine sandy loams, 8 to 15 percent slopes		1.1%
HfB	Hollis-Gloucester fine sandy loams, 3 to 8 percent slopes	4.8	0.4%
HfC	Hollis-Gloucester fine sandy loams, 8 to 15 percent slopes	8.5	0.7%
HgB	Hollis-Gloucester very rocky fine sandy loams, 3 to 8 percent slopes	19.9	1.7%

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
HgC	Hollis-Gloucester very rocky fine sandy loams, 8 to 15 percent slopes	192.6	16.4%
MI	Mixed alluvial land, wet	46.2	3.9%
Мр	Freetown and Swansea mucky peats, 0 to 2 percent slopes	3.0	0.3%
On	Ondawa fine sandy loam	8.4	0.7%
PbB	Paxton fine sandy loam, 3 to 8 percent slopes	16.6	1.4%
PbC	Paxton fine sandy loam, 8 to 15 percent slopes	18.9	1.6%
PbD	Paxton fine sandy loam, 15 to 25 percent slopes	Paxton fine sandy loam, 15 to 0.5 25 percent slopes	
PdC	Paxton fine sandy loam, 8 to 15 percent slopes, very stony	ixton fine sandy loam, 8 to 15 percent slopes, very stony	
PdE	Paxton very stony fine sandy loam, 25 to 60 percent slopes	11.8	1.0%
RgA	Ridgebury fine sandy loam, 0 to 3 percent slopes	4.1	0.3%
RgB	Ridgebury fine sandy loam, 3 to 8 percent slopes	11.1	0.9%
Ru	Rumney fine sandy loam	10.8	0.9%
Sb	Saugatuck loamy sand	77.3	6.6%
ScA	Scantic silt loam, 0 to 3 percent slopes	34.9	3.0%
ScB	Scantic silt loam, 3 to 8 percent slopes	6.7	0.6%
SwA	Swanton fine sandy loam, 0 to 3 percent slopes	27.5	2.3%
SwB	Swanton fine sandy loam, 3 to 8 percent slopes	17.3	1.5%
W	Water	23.1	2.0%
WdA	Windsor loamy sand, 0 to 3 percent slopes	86.6	7.4%
WdB	Windsor loamy sand, 3 to 8 percent slopes	42.9	3.7%
WdC	Windsor loamy sand, 8 to 15 percent slopes	15.2	1.3%
WdE	Windsor loamy sand, 15 to 60 percent slopes	32.9	2.8%
WfB	Windsor loamy fine sand, clay subsoil variant, 0 to 8 percent slopes	17.7	1.5%
WsB	Woodbridge fine sandy loam, 0 to 8 percent slopes, very stony	8.8	0.8%
Totals for Area of Interest		1,174.7	100.0%

Photo 1 - STA 0+00 Looking East

Photo 2 - STA 5+00 Looking West

Photo 3 - STA 5+00 Looking North

Photo 4 - STA 5+00 Looking West

Photo 5 - STA 5+00 Looking South

-	ac	Area of HSG A soil that was replaced by impervious cover	0.40"
0.24	ac	Area of HSG B soil that was replaced by impervious cover	0.25"
2.84	ac	Area of HSG C soil that was replaced by impervious cover	0.10"
0.18	ac	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
0.11	inches	Rd = weighted groundwater recharge depth	
0.344	ac-in	GRV = AI * Rd	
1,249	cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04):

Stone Drip Edges at Buildings (Units 1-23 & 36-43) Total Linear Footage (1,300 ft) x (5.0 ft) Wide x (1.0 ft) Deep = 6,500 cf Where 1,249 cf is Required

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name: BARRINGTON STORAGE OFFICE - BIORETENTION BASIN #1

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable

Yes	Have you reviewed the restrictions on unlined systems outlined in Env-W	/q 1508.07(a)?
4.20 ac	A = Area draining to the practice	
3.07 ac	A_{I} = Impervious area draining to the practice	
0.73 decimal	I = percent impervious area draining to the practice, in decimal form	
0.71 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
2.97 ac-in	WQV=1" x Rv x A	
10,792 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
2,698 cf	25% x WQV (check calc for sediment forebay volume)	
8,094 cf	75% x WQV (check calc for surface sand filter volume)	
Deep Sump CB	Method of Pretreatment? (not required for clean or roof runoff)	
N/A cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$
11,386 sf	A_{SA} = surface area of the practice	
5.00 iph	$K_{Sat_{DESIGN}} = design infiltration rate^{1}$	
Yes Yes/No	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been	n provided?
2.3 hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
174.50 feet	E_{FC} = elevation of the bottom of the filter course material ²	
173.50 feet	E_{UD} = invert elevation of the underdrain (UD), if applicable	
175.80 feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation	n of the test pit)
175.30 feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation	on of the test pit)
1.00 feet	$D_{FC to UD}$ = depth to UD from the bottom of the filter course	← ≥ 1'
(0.80) feet	$D_{FC to ROCK}$ = depth to bedrock from the bottom of the filter course	← ≥ 1'
(1.30) feet	$D_{FC \text{ to SHWT}}$ = depth to SHWT from the bottom of the filter course	← ≥ 1'
179.60 ft	Peak elevation of the 50-year storm event (infiltration can be used in a	analysis)
180.00 ft	Elevation of the top of the practice	•
YES	50 peak elevation \leq Elevation of the top of the practice	← yes
If a surface sand filt	er or underground sand filter is proposed:	
YES ac	Drainage Area check.	← < 10 ac
cf	$V = volume of storage^{3}$ (attach a stage-storage table)	← ≥75%WQV
inches	D_{FC} = filter course thickness	← 18", or 24" if within GPA
Sheet	_Note what sheet in the plan set contains the filter course specification	
Yes/No	Access grate provided?	← yes

If a bioretention area is proposed:

YES ac	Drainage Area no larger than 5 ac?	← yes
31,545 cf	V = volume of storage ³ (attach a stage-storage table)	$\leftarrow \geq WQV$
inches	D _{FC} = filter course thickness	← 18", or 24" if within GPA
Sheet C-3	Note what sheet in the plan set contains the filter course specification	
3.0 :1	Pond side slopes	← <u>>3</u> :1
Sheet C-3	Note what sheet in the plan set contains the planting plans and surface	cover
If porous pavement i	s proposed:	
If porous pavement i	s proposed: Type of pavement proposed (concrete? Asphalt? Pavers? Etc)	
If porous pavement i acres	s proposed: Type of pavement proposed (concrete? Asphalt? Pavers? Etc) A _{SA} = surface area of the pervious pavement	
If porous pavement i acres :1	s proposed: Type of pavement proposed (concrete? Asphalt? Pavers? Etc) A _{SA} = surface area of the pervious pavement ratio of the contributing area to the pervious surface area	← ≤ 5:1
If porous pavement i acres :1 inches	s proposed:Type of pavement proposed (concrete? Asphalt? Pavers? Etc) A_{SA} = surface area of the pervious pavementratio of the contributing area to the pervious surface area D_{FC} = filter course thickness	 ← ≤ 5:1 ← 12", or 18" if within GPA

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

2019

Barrington Storage-Office PostConstructioType III 24-hr 50-YR SEACOAST Rainfall=6.98" Prepared by Tritech Engineering Corp. HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

Summary for Pond BIO-1: BIORETENTION-1

Inflow Area	a =	4.129 ac, 72	2.68% Imperv	/ious,	Inflow Depth =	= 5.06	for 50-YR	SEACOAST event
Inflow	=	21.12 cfs @	12.12 hrs,	Volum	e= 1.	740 af		
Outflow	=	4.31 cfs @	12.61 hrs,	Volum	e= 1.0	650 af,	Atten= 80%,	Lag= 29.6 min
Primary	=	4.31 cfs @	12.61 hrs,	Volum	e= 1.	650 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 179.60 @ 12.61 hrs Surf.Area= 11,543 sf Storage= 37,136 cf

Plug-Flow detention time= 282.1 min calculated for 1.650 af (95% of inflow) Center-of-Mass det. time= 252.9 min (1,029.8 - 776.9)

Volume	Inver	t Ava	il.Stora	age Storage Desc	e Storage Description		
#1	173.25		41,86	5 cf Custom Stag	e Data (Prismatic) List	ed below (Recalc)	
Elevatio	on S	Surf.Area	Void	s Inc.Store	Cum.Store		
172 2	25	6 3 3 8	()0				
173.2	20	6 3 3 8	10.0	0 0	25		
174.2	20	6 338	40.0	0 23	2 5 1 0		
174.2	25	6,338	40.0	0 25	2,535		
174.2	19	6,338	40.0	0 608	3 144		
174.5	50	6.338	20.0	0 13	3,156		
175.9	99	6.338	20.0	0 1.889	5.045		
176.0	00	6.338	100.0	0 63	5.108		
178.0	00	9,138	100.0	0 15,476	20,584		
179.5	50	11,386	100.0	0 15,393	35,977		
180.0	00	12,164	100.0	0 5,888	41,865		
Device	Routing	In	vert	Outlet Devices			
#1	Primary	173	3.50'	15.0" Round Culv	ert		
#2	Device 1	179).00'	L= 40.0' CPP, end Inlet / Outlet Invert= n= 0.013 Corrugate 0.5" x 4.5" Horiz. C	-section conforming to = 173.50' / 173.00' S= ed PE, smooth interior, Drifice/Grate X 14.00 c	fill, Ke= 0.500 0.0125 '/' Cc= 0.900 Flow Area= 1.23 sf columns	
				X 4 rows C= 0.600 Limited to weir flow	in 22.0" x 22.0" Grate (at low heads	26% open area)	
#3	Device 1	173	8.55'	6.0" Round Under	Drain		
-		-		L= 240.0' CPP, en Inlet / Outlet Invert= n= 0.010 PVC, smo	d-section conforming t 173.55' / 173.50' S= both interior, Flow Are	o fill, Ke= 0.500 0.0002 '/' Cc= 0.900 a= 0.20 sf	
#4	Device 3	173	3.25'	6.000 in/hr Exfiltra	tion over Surface are	а	
#5	Primary	179	9.60'	10.0' long x 6.0' b Head (feet) 0.20 0 2.50 3.00 3.50 4.0 Coef. (English) 2.3 2.65 2.66 2.66 2.6	readth Broad-Crested .40 0.60 0.80 1.00 1 00 4.50 5.00 5.50 7 2.51 2.70 2.68 2.6 57 2.69 2.72 2.76 2.8	Rectangular Weir .20 1.40 1.60 1.80 2.00 8 2.67 2.65 2.65 2.65 33 3 3 3	

Barrington Storage-Office PostConstructioType III 24-hr 50-YR SEACOAST Rainfall=6.98" Prepared by Tritech Engineering Corp. HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

Primary OutFlow Max=4.31 cfs @ 12.61 hrs HW=179.60' TW=0.00' (Dynamic Tailwater)

1=Culvert (Passes 4.31 cfs of 13.83 cfs potential flow)

2=Orifice/Grate (Orifice Controls 3.27 cfs @ 3.73 fps)

3=UnderDrain (Barrel Controls 1.05 cfs @ 5.32 fps) **4=Exfiltration** (Passes 1.05 cfs of 1.60 cfs potential flow)

-5=Broad-Crested Rectangular Weir (Weir Controls 0.00 cfs @ 0.08 fps)

Barrington Storage-Office PostConstructioType III 24-hr 50-YR SEACOAST Rainfall=6.98"

Prepared by Tritech Engineering Corp. HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
173.25	6,338	0	178.55	9,962	25,837
173.35	6,338	254	178.65	10,112	26.841
173.45	6,338	507	178,75	10,262	27,859
173 55	6,338	761	178 85	10 412	28,893
173.65	6 338	1 014	178.95	10,562	20,000
173.05	6 3 3 8	1 268	170.05	10,302	20,042
173.85	6 3 3 8	1,200	170.15	10,712	32,084
172.05	6 2 2 9	1,321	179.15	11,001	22,004 22,170
173.95	0,000	1,775	179.25	11,011	24 206
174.05	0,000	2,020	179.33	11,101	34,200
174.15	0,330	2,202		11,311	35,410
174.25	0,338	2,535	179.55	11,464	36,549
174.35	6,338	2,789	179.65	11,619	37,703
1/4.45	6,338	3,042	1/9./5	11,775	38,873
174.55	6,338	3,220	179.85	11,931	40,058
174.65	6,338	3,346	179.95	12,086	41,259
174.75	6,338	3,473			
174.85	6,338	3,600			
174.95	6,338	3,727			
175.05	6,338	3,854			
175.15	6,338	3,980			
175.25	6,338	4,107			
175.35	6,338	4,234			
175.45	6,338	4,361			
175.55	6,338	4,487			
175.65	6,338	4,614			
175.75	6,338	4,741			
175.85	6.338	4.868			
175.95	6,338	4,994			
176.05	6,408	5,427			
176 15	6 548	6 075			
176.25	6 688	6 737			
176.20	6 828	7 412			
176.00	6 968	8 102			
176.55	7 108	8 806			
176.65	7,100	9 524			
176.05	7 388	10 256			
176.85	7,500	11 001			
176.05	7,520	11,001			
170.95	7,000	10 525			
177.00	7,000	12,000			
177.15	7,948	13,323			
177.25	8,088	14,125			
177.35	8,228	14,940			
177.45	8,368	15,770			
177.55	8,508	16,614			
177.65	8,648	17,472			
1//.75	8,788	18,344			
177.85	8,928	19,229			
177.95	9,068	20,129			
178.05	9,213	21,043			
178.15	9,363	21,972			
178.25	9,513	22,916			
178.35	9,663	23,875			
178.45	9,812	24,848			

Stage-Area-Storage for Pond BIO-1: BIORETENTION-1

DRAINAGE ANALYSIS, EROSION AND SEDIMENT CONTROL, & SITE DEVELOPMENT PLAN NARRATIVE FOR

BARRINGTON STORAGE-OFFICE ROUTE 125 BARRINGTON, NEW HAMPSHIRE MAY 2020 REVISED JULY 2020

PREPARED FOR MILL FALLS REALTY, LLC

P.O. BOX 627 CENTER OSSIPEE, NEW HAMPSHIRE 03814-0627

PREPARED BY TRITECH ENGINEERING CORPORATION 755 CENTRAL AVENUE DOVER, NEW HAMPSHIRE 03820

DRAINAGE ANALYSIS, EROSION AND SEDIMENT CONTROL,

& SITE DEVELOPMENT PLAN

NARRATIVE FOR

BARRINGTON STORAGE-OFFICE CALEF HIGHWAY

BARRINGTON, NEW HAMPSHIRE

MAY 2020 REVISED JULY 2020

TABLE OF CONTENTS

Section I Computations

- 1. Pre-Construction Drainage Plan (D-1)
- 2. Pre-Development Watershed Diagram
- 3. Pre-Development Area & Soils Listings
- 4. Pre-Development Drainage Node Summary (2 year storm)
- 5. Pre-Development Drainage Node Summary (10 year storm)
- 6. Pre-Development Drainage Node Summary (50 year storm)
- 7. Pre-Development Drainage Full Computations (10 year storm)
- 8. Post-Construction Drainage Plans (D-2)
- 9. Post-Development Watershed Diagram
- 10. Post-Development Area & Soils Listings
- 11. Post-Development Drainage Node Summary (2 year storm)
- 12. Post-Development Drainage Node Summary (10 year storm)
- 13. Post-Development Drainage Node Summary (50 year storm)
- 14. Post-Development Drainage Full Computations (10 year storm)

Section II Exhibits

- 1. Boundaries for SCS Rainfall Distributions
- 2. Extreme Precipitation Table
- 3. Hydrologic Soil Groups
- 4. Runoff Curve Numbers
- 5. Manning's Number Tables
- 6. Broad Crested Weir Coefficients
- 7. Culvert Entrance Loss Coefficients
- 8. Sheet Flow Roughness Coefficients
- 9. Velocity Factors

DRAINAGE ANALYSIS, EROSION AND SEDIMENT CONTROL, & SITE DEVELOPMENT PLAN NARRATIVE

FOR BARRINGTON STORAGE-OFFICE

CALEF HIGHWAY

BARRINGTON, NEW HAMPSHIRE

MAY 2020 REVISED JULY 2020

SECTION I COMPUTATIONS

Barrington Storage-Office PreConstruction Prepared by Tritech Engineering Corp. HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
 (acres)		(subcatchment-numbers)
0.217	39	>75% Grass cover, Good, HSG A (1)
0.472	61	>75% Grass cover, Good, HSG B (1)
0.185	98	Paved roads w/curbs & sewers, HSG A (1)
0.359	98	Paved roads w/curbs & sewers, HSG B (1)
0.064	30	Woods, Good, HSG A (3)
0.948	55	Woods, Good, HSG B (1, 3)
11.258	70	Woods, Good, HSG C (1, 2, 3)
1.844	77	Woods, Good, HSG D (1, 3)
15.348	70	TOTAL AREA

Barrington Storage-Office PreConstruction Prepared by Tritech Engineering Corp. HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.467	HSG A	1, 3
1.779	HSG B	1, 3
11.258	HSG C	1, 2, 3
1.844	HSG D	1, 3
0.000	Other	
15.348		TOTAL AREA

Barrington Storage-Office PreConstruction Type III 24-hr 2-YR SEACOAST Rainfall=3.08" Prepared by Tritech Engineering Corp.

HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-28.00 hrs, dt=0.01 hrs, 2801 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1: SUBCAT-1	Runoff Area=460,054 sf 5.15% Impervious Runoff Depth=0.76" Flow Length=1,730' Tc=32.1 min CN=70 Runoff=4.55 cfs 0.668 af
Subcatchment 2: SUBCAT-2	Runoff Area=75,335 sf 0.00% Impervious Runoff Depth=0.76" Flow Length=655' Tc=42.0 min CN=70 Runoff=0.65 cfs 0.109 af
Subcatchment 3: SUBCAT-3	Runoff Area=133,174 sf 0.00% Impervious Runoff Depth=0.71" Flow Length=950' Tc=60.3 min CN=69 Runoff=0.86 cfs 0.182 af
Link AP-1: ANALYSIS POINT #1	Inflow=4.55 cfs 0.668 af Primary=4.55 cfs 0.668 af
Link AP-2: ANALYSIS POINT #2	Inflow=0.65 cfs 0.109 af Primary=0.65 cfs 0.109 af
Link AP-3: ANALYSIS POINT #3	Inflow=0.86 cfs 0.182 af Primary=0.86 cfs 0.182 af
Total Runoff Area = 15.348	ac Runoff Volume = 0.959 af Average Runoff Depth = 0.75" 96.45% Pervious = 14.804 ac 3.55% Impervious = 0.544 ac

Barrington Storage-Office PreConstruction*Type III 24-hr* 10-YR SEACOAST Rainfall=4.63" Prepared by Tritech Engineering Corp.

HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-28.00 hrs, dt=0.01 hrs, 2801 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1: SUBCAT-1	Runoff Area=460,054 sf 5.15% Impervious Runoff Depth=1.77" Flow Length=1,730' Tc=32.1 min CN=70 Runoff=11.64 cfs 1.555 af
Subcatchment2: SUBCAT-2	Runoff Area=75,335 sf 0.00% Impervious Runoff Depth=1.77" Flow Length=655' Tc=42.0 min CN=70 Runoff=1.67 cfs 0.255 af
Subcatchment 3: SUBCAT-3	Runoff Area=133,174 sf 0.00% Impervious Runoff Depth=1.69" Flow Length=950' Tc=60.3 min CN=69 Runoff=2.28 cfs 0.431 af
Link AP-1: ANALYSIS POINT #1	Inflow=11.64 cfs 1.555 af Primary=11.64 cfs 1.555 af
Link AP-2: ANALYSIS POINT #2	Inflow=1.67 cfs 0.255 af Primary=1.67 cfs 0.255 af
Link AP-3: ANALYSIS POINT #3	Inflow=2.28 cfs 0.431 af Primary=2.28 cfs 0.431 af
Total Runoff Area = 15.3	48 ac Runoff Volume = 2,241 af Average Runoff Depth = 1,75"

96.45% Pervious = 14.804 ac 3.55% Impervious = 0.544 ac

Barrington Storage-Office PreConstruction*Type III 24-hr 50-YR SEACOAST Rainfall=6.98*" Prepared by Tritech Engineering Corp.

HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-28.00 hrs, dt=0.01 hrs, 2801 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1: SUBCAT-1	Runoff Area=460,054 sf 5.15% Impervious Runoff Depth=3.60" Flow Length=1,730' Tc=32.1 min CN=70 Runoff=24.44 cfs 3.170 af
Subcatchment 2: SUBCAT-2	Runoff Area=75,335 sf 0.00% Impervious Runoff Depth=3.60" Flow Length=655' Tc=42.0 min CN=70 Runoff=3.50 cfs 0.519 af
Subcatchment3: SUBCAT-3	Runoff Area=133,174 sf 0.00% Impervious Runoff Depth=3.50" Flow Length=950' Tc=60.3 min CN=69 Runoff=4.90 cfs 0.891 af
Link AP-1: ANALYSIS POINT #1	Inflow=24.44 cfs 3.170 af Primary=24.44 cfs 3.170 af
Link AP-2: ANALYSIS POINT #2	Inflow=3.50 cfs 0.519 af Primary=3.50 cfs 0.519 af
Link AP-3: ANALYSIS POINT #3	Inflow=4.90 cfs 0.891 af Primary=4.90 cfs 0.891 af
Total Runoff Area = 15.3	48 ac Runoff Volume = 4.580 af Average Runoff Depth = 3.58

Total Runoff Area = 15.348 ac Runoff Volume = 4.580 af Average Runoff Depth = 3.58" 96.45% Pervious = 14.804 ac 3.55% Impervious = 0.544 ac
Summary for Subcatchment 1: SUBCAT-1

Runoff = 11.64 cfs @ 12.48 hrs, Volume= 1.555 af, Depth= 1.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR SEACOAST Rainfall=4.63"

Area (SI) CIN Description	
9,461 39 >75% Grass cover, Good, HSG A	
8,063 98 Paved roads w/curbs & sewers, HSG A	
29,252 55 Woods, Good, HSG B	
20,582 61 >75% Grass cover, Good, HSG B	
15,638 98 Paved roads w/curbs & sewers, HSG B	
319,802 70 Woods, Good, HSG C	
57,256 77 Woods, Good, HSG D	
460,054 70 Weighted Average	
436,353 94.85% Pervious Area	
23,701 5.15% Impervious Area	
Ic Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs)	
0.7 45 0.0200 1.14 Sheet Flow, Sheet Paved	
Smooth surfaces $n = 0.011$ P2= 3.0	0"
6.3 55 0.0200 0.15 Sneet Flow, Sneet Grass	
Grass: Short $n=0.150$ P2= 3.00	
0.1 25 0.0200 2.87 Shallow Concentrated Flow, Shallo	ow Paved
$12.6 \qquad 600 0.0250 \qquad 0.79 \qquad \text{Shallow Concentrated Flow Shallow}$	w Woods
Woodland Ky= 5.0 fps	
10.0 425 0.0200 0.71 Shallow Concentrated Flow Shallo	w Woods
Woodland $K_{v} = 5.0$ fps	
1.5 320 0.0075 3.66 48.82 Parabolic Channel. Stream	
W=10.00' D=2.00' Area=13.3 sf Per	rim=11.0'
n= 0.040 Mountain streams	
0.0 40 0.2000 18.91 252.10 Parabolic Channel, Stream	
W=10.00' D=2.00' Área=13.3 sf Per	rim=11.0'
n= 0.040 Mountain streams	
0.9 220 0.0100 4.23 56.37 Parabolic Channel, Stream	
W=10.00' D=2.00' Area=13.3 sf Per	rim=11.0'
n= 0.040 Mountain streams	

32.1 1,730 Total

Summary for Subcatchment 2: SUBCAT-2

Runoff = 1.67 cfs @ 12.60 hrs, Volume= 0.255 af, Depth= 1.77"

Prepared by Thtech Engineering Corp.	
HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC	

A	rea (sf)	CN	Description		
	75,335	70	Woods, Goo	d, HSG C	
	75,335		100.00% Per	rvious Area	
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description
24.9	100	0.0150	0.07		Sheet Flow, Sheet Woods
6.1	225	0.0150	0.61		Woods: Light underbrush n= 0.400 P2= 3.00" Shallow Concentrated Flow, Shallow Woods Woodland Kv= 5.0 fps
4.8	145	0.0400	0.50		Shallow Concentrated Flow, Shallow Woods
6.2	185	0.0100	0 0.50		Forest w/Heavy Litter Kv= 2.5 fps Shallow Concentrated Flow, Shallow Woods Woodland Kv= 5.0 fps
42.0	655	Total			

Summary for Subcatchment 3: SUBCAT-3

Runoff	=	2.28 cfs @	12.86 hrs, Volume=	0.431 af, Depth= 1.69"
				0, <u>20</u> pt

	A	rea (sf)	CN	Description		
		2,799	30	Woods, Goo	d, HSG A	
		12,043	55	Woods, Goo	d, HSG B	
		95,250	70	Woods, Goo	d, HSG C	
_		23,082	77	Woods, Goo	d, HSG D	
	1	33,174	69	Weighted Av	/erage	
	1	33,174		100.00% Pe	rvious Area	
	-		<u>.</u>		A	
	IC	Length	Slop	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft	:) (ft/sec)	(cts)	
	51.0	100	0.010	0.03		Sheet Flow, Sheet Woods
						Woods: Dense underbrush n= 0.800 P2= 3.00"
	3.5	130	0.015	0.61		Shallow Concentrated Flow, Shallow Woods
						Woodland Kv= 5.0 fps
	1.1	75	0.050	0 1.12		Shallow Concentrated Flow, Shallow Woods
				/ _		Woodland Kv= 5.0 fps
	0.5	60	0.180) 2.12		Shallow Concentrated Flow, Shallow Woods
		505	0.007		7.00	Woodland Kv= 5.0 fps
	4.2	585	0.007	5 2.31	7.69	Parabolic Channel, Stream
						W=5.00° D=1.00° Area=3.3 sf Perim=5.5°
_						n= 0.040 Mountain Streams
	60.3	950	Total			

Summary for Link AP-1: ANALYSIS POINT #1

 Inflow Area =
 10.561 ac, 5.15% Impervious, Inflow Depth = 1.77" for 10-YR SEACOAST event

 Inflow =
 11.64 cfs @ 12.48 hrs, Volume=
 1.555 af

 Primary =
 11.64 cfs @ 12.48 hrs, Volume=
 1.555 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs

Summary for Link AP-2: ANALYSIS POINT #2

Inflow	Area =	1.729 ac,	0.00% Imperviou	is, Inflow Depth =	1.77	" for 10-YR SEACOAST event
Inflow	=	1.67 cfs @	12.60 hrs, Vol	lume= 0.2	255 af	
Primar	ту =	1.67 cfs @	12.60 hrs, Vol	lume= 0.2	255 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs

Summary for Link AP-3: ANALYSIS POINT #3

Inflow .	Area =	3.057 ac,	0.00% Impervious,	Inflow Depth =	1.69"	for 10-YF	R SEACOAST	event
Inflow	=	2.28 cfs @	12.86 hrs, Volur	me= 0.43	1 af			
Primar	y =	2.28 cfs @	12.86 hrs, Volur	me= 0.43	1 af,	Atten= 0%,	Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs

Barrington Storage-Office PostConstruction Prepared by Tritech Engineering Corp. HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

CN	Description
	(subcatchment-numbers)
39	>75% Grass cover, Good, HSG A (102)
61	>75% Grass cover, Good, HSG B (101, 102)
74	>75% Grass cover, Good, HSG C (101, 102, 104, 105, 106, 107, 108, 201, 301)
98	Paved roads w/curbs & sewers, HSG A (102)
98	Paved roads w/curbs & sewers, HSG B (101, 102, 103)
98	Paved roads w/curbs & sewers, HSG C (103, 104, 105, 106, 107)
98	Roofs, HSG C (101-A, 103, 104-A, 105, 105-A, 106-A, 107, 107-A)
30	Woods, Good, HSG A (301)
55	Woods, Good, HSG B (101, 102, 301)
70	Woods, Good, HSG C (101, 102, 201, 301)
77	Woods, Good, HSG D (101, 102, 301)
76	TOTAL AREA
	CN 39 61 74 98 98 98 98 30 55 70 77 77 76

Barrington Storage-Office PostConstruction Prepared by Tritech Engineering Corp. HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.467	HSG A	102, 301
1.779	HSG B	101, 102, 103, 301
11.258	HSG C	101, 101-A, 102, 103, 104, 104-A, 105, 105-A, 106, 106-A, 107, 107-A, 108, 201,
		301
1.844	HSG D	101, 102, 301
0.000	Other	
15.348		TOTAL AREA

HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-28.00 hrs, dt=0.01 hrs, 2801 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 101: SUBCAT-101	Runoff Area=188,382 sf $$ 1.53% Impervious Runoff Depth=0.91" Flow Length=1,370' Tc=25.3 min CN=73 Runoff=2.59 cfs 0.327 af
Subcatchment 101-A: SUBCAT-101-A	Runoff Area=3,125 sf 100.00% Impervious Runoff Depth=2.85" Tc=6.0 min CN=98 Runoff=0.21 cfs 0.017 af
Subcatchment 102: SUBCAT 102 Flow Length=57	Runoff Area=146,573 sf 13.29% Impervious Runoff Depth=0.71" 75' Slope=0.0200 '/' Tc=17.7 min CN=69 Runoff=1.70 cfs 0.200 af
Subcatchment 103: SUBCAT-103	Runoff Area=14,699 sf 100.00% Impervious Runoff Depth=2.85" Flow Length=330' Tc=4.4 min CN=98 Runoff=1.07 cfs 0.080 af
Subcatchment 104: SUBCAT-104	Runoff Area=13,835 sf 78.81% Impervious Runoff Depth=2.33" Flow Length=268' Tc=11.9 min CN=93 Runoff=0.70 cfs 0.062 af
Subcatchment 104-A: SUBCAT-104-A	Runoff Area=2,500 sf 100.00% Impervious Runoff Depth=2.85" Tc=6.0 min CN=98 Runoff=0.17 cfs 0.014 af
Subcatchment 105: SUBCAT-105	Runoff Area=25,054 sf 77.47% Impervious Runoff Depth=2.33" Flow Length=268' Tc=11.9 min CN=93 Runoff=1.26 cfs 0.112 af
Subcatchment 105-A: SUBCAT-105-A	Runoff Area=2,500 sf 100.00% Impervious Runoff Depth=2.85" Tc=6.0 min CN=98 Runoff=0.17 cfs 0.014 af
Subcatchment 106: SUBCAT-106	Runoff Area=28,969 sf 73.36% Impervious Runoff Depth=2.24" Flow Length=228' Tc=12.3 min CN=92 Runoff=1.39 cfs 0.124 af
Subcatchment 106-A: SUBCAT-106-A	Runoff Area=13,750 sf 100.00% Impervious Runoff Depth=2.85" Tc=6.0 min CN=98 Runoff=0.94 cfs 0.075 af
Subcatchment 107: SUBCAT-107	Runoff Area=49,993 sf 63.90% Impervious Runoff Depth=1.97" Flow Length=228' Tc=12.3 min CN=89 Runoff=2.15 cfs 0.189 af
Subcatchment 107-A: SUBCAT-107-A	Runoff Area=13,750 sf 100.00% Impervious Runoff Depth=2.85" Tc=6.0 min CN=98 Runoff=0.94 cfs 0.075 af
Subcatchment 108: SUBCAT 108	Runoff Area=14,789 sf 0.00% Impervious Runoff Depth=0.96" Tc=6.0 min CN=74 Runoff=0.36 cfs 0.027 af
Subcatchment 201: SUBCAT-201	Runoff Area=26,125 sf 0.00% Impervious Runoff Depth=0.91" Flow Length=500' Tc=17.4 min CN=73 Runoff=0.42 cfs 0.045 af
Subcatchment 301: SUBCAT-301	Runoff Area=124,494 sf 0.00% Impervious Runoff Depth=0.71" Flow Length=950' Tc=60.3 min CN=69 Runoff=0.80 cfs 0.170 af
Reach 1R: RIP RAP n=0.041	Avg. Flow Depth=0.23' Max Vel=1.27 fps Inflow=1.70 cfs 0.200 af L=20.0' S=0.0100 '/' Capacity=23.00 cfs Outflow=1.70 cfs 0.200 af

Reach 2R: SCF WOODS	Avg. Flow Depth=0.19' Max Vel=0.57 fps Inflow=1.70 cfs 0.20 n=0.120 L=165.0' S=0.0330 '/' Capacity=57.21 cfs Outflow=1.61 cfs 0.20)0 af)0 af
Reach 3R: SCF-WOODS	Avg. Flow Depth=0.23' Max Vel=0.35 fps Inflow=1.61 cfs 0.20 n=0.120 L=270.0' S=0.0100 '/' Capacity=31.48 cfs Outflow=1.30 cfs 0.20)0 af)0 af
Reach 4R: STREAM	Avg. Flow Depth=0.36' Max Vel=1.24 fps Inflow=1.30 cfs 0.20 n=0.040 L=320.0' S=0.0075 '/' Capacity=48.82 cfs Outflow=1.28 cfs 0.20)0 af)0 af
Reach 5R: STREAM	Avg. Flow Depth=0.17' Max Vel=3.88 fps Inflow=1.28 cfs 0.20 n=0.040 L=40.0' S=0.2000 '/' Capacity=252.10 cfs Outflow=1.28 cfs 0.20)0 af)0 af
Reach 6R: STREAM	Avg. Flow Depth=0.34' Max Vel=1.36 fps Inflow=1.28 cfs 0.20 n=0.040 L=220.0' S=0.0100 '/' Capacity=56.37 cfs Outflow=1.27 cfs 0.20)0 af)0 af
Pond BIO-1: BIORETENTION	I-1 Peak Elev=177.08' Storage=12,785 cf Inflow=6.42 cfs 0.59 Outflow=0.78 cfs 0.56	93 af 37 af
Pond CB-1: CATCH BASIN 1	Peak Elev=189.16' Inflow=1.07 cfs 0.08 15.0" Round Culvert n=0.013 L=300.0' S=0.0110 '/' Outflow=1.07 cfs 0.08	30 af 30 af
Pond CB-2: CATCH BASIN 2	Peak Elev=185.94' Inflow=0.70 cfs 0.06 15.0" Round Culvert n=0.013 L=7.0' S=0.0143 '/' Outflow=0.70 cfs 0.06	52 af 52 af
Pond CB-3: CATCH BASIN 3	Peak Elev=185.67' Inflow=1.26 cfs 0.11 18.0" Round Culvert n=0.013 L=215.0' S=0.0253 '/' Outflow=1.26 cfs 0.11	2 af 2 af
Pond CB-4: CATCH BASIN 4	Peak Elev=180.00' Inflow=1.39 cfs 0.12 18.0" Round Culvert n=0.013 L=44.0' S=0.0261 '/' Outflow=1.39 cfs 0.12	24 af 24 af
Pond CB-5: CATCH BASIN 5	Peak Elev=180.40' Inflow=2.15 cfs 0.18 18.0" Round Culvert n=0.013 L=44.0' S=0.0102 '/' Outflow=2.15 cfs 0.18	39 af 39 af
Pond CB-6: CATCH BASIN 6	Peak Elev=189.62' Inflow=1.70 cfs 0.20 18.0" Round Culvert n=0.013 L=80.0' S=0.0150 '/' Outflow=1.70 cfs 0.20)0 af)0 af
Pond D.E.101: Stone Drip Ed Dis	Ige Peak Elev=189.68' Storage=169 cf Inflow=0.21 cfs 0.01 scarded=0.04 cfs 0.017 af Primary=0.00 cfs 0.000 af Outflow=0.04 cfs 0.01	7 af 7 af
Pond D.E.104: Stone Drip Ed Dis	Ige Peak Elev=192.98' Storage=157 cf Inflow=0.17 cfs 0.01 scarded=0.03 cfs 0.014 af Primary=0.00 cfs 0.000 af Outflow=0.03 cfs 0.01	4 af 4 af
Pond D.E.105: Stone Drip Ed	Ige Peak Elev=192.98' Storage=157 cf Inflow=0.17 cfs 0.01 scarded=0.03 cfs 0.014 af Primary=0.00 cfs 0.000 af Outflow=0.03 cfs 0.01	4 af 4 af
Pond D.E.106: Stone Drip Ed	lge Peak Elev=185.39' Storage=830 cf Inflow=0.94 cfs 0.07 scarded=0.16 cfs 0.075 af Primary=0.00 cfs 0.000 af Outflow=0.16 cfs 0.07	'5 af '5 af
Pond D.E.107: Stone Drip Ed	lge Peak Elev=185.38' Storage=822 cf Inflow=0.94 cfs 0.07 scarded=0.21 cfs 0.075 af Primary=0.00 cfs 0.000 af Outflow=0.21 cfs 0.07	'5 af '5 af
Pond DMH-1: DMH-1	Peak Elev=185.85' Inflow=1.58 cfs 0.14 18.0" Round Culvert n=0.013 L=215.0' S=0.0321 '/' Outflow=1.58 cfs 0.14	l2 af l2 af

Pond DMH-2: DMH-2	Peak Elev=179.38 30.0" Round Culvert n=0.013 L=18.0' S=0.0083 '/	' Inflow=6.11 cfs Outflow=6.11 cfs	0.566 af 0.566 af
Pond DMH-3: DMH-3	Peak Elev=180.00 24.0" Round Culvert n=0.013 L=128.0' S=0.0059 '/')' Inflow=3.41 cfs Outflow=3.41 cfs	0.300 af 0.300 af
Link AP-1: ANALYSIS POINT	#1	Inflow=4.21 cfs Primary=4.21 cfs	1.093 af 1.093 af
Link AP-2: ANALYSIS POINT	#2	Inflow=0.42 cfs Primary=0.42 cfs	0.045 af 0.045 af
Link AP-3: ANALYSIS POINT	#3	Inflow=0.80 cfs Primary=0.80 cfs	0.170 af 0.170 af

Total Runoff Area = 15.348 ac Runoff Volume = 1.529 af Average Runoff Depth = 1.20" 76.64% Pervious = 11.762 ac 23.36% Impervious = 3.586 ac

HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-28.00 hrs, dt=0.01 hrs, 2801 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 101: SUBCAT-101	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Subcatchment 101-A: SUBCAT-101-A	Runoff Area=3,125 sf 100.00% Impervious Runoff Depth=4.39" Tc=6.0 min CN=98 Runoff=0.32 cfs 0.026 af
Subcatchment 102: SUBCAT 102 Flow Length=57	Runoff Area=146,573 sf 13.29% Impervious Runoff Depth=1.69" 75' Slope=0.0200 '/' Tc=17.7 min CN=69 Runoff=4.56 cfs 0.475 af
Subcatchment 103: SUBCAT-103	Runoff Area=14,699 sf 100.00% Impervious Runoff Depth=4.39" Flow Length=330' Tc=4.4 min CN=98 Runoff=1.62 cfs 0.124 af
Subcatchment 104: SUBCAT-104	Runoff Area=13,835 sf 78.81% Impervious Runoff Depth=3.84" Flow Length=268' Tc=11.9 min CN=93 Runoff=1.12 cfs 0.102 af
Subcatchment 104-A: SUBCAT-104-A	Runoff Area=2,500 sf 100.00% Impervious Runoff Depth=4.39" Tc=6.0 min CN=98 Runoff=0.26 cfs 0.021 af
Subcatchment 105: SUBCAT-105	Runoff Area=25,054 sf 77.47% Impervious Runoff Depth=3.84" Flow Length=268' Tc=11.9 min CN=93 Runoff=2.02 cfs 0.184 af
Subcatchment 105-A: SUBCAT-105-A	Runoff Area=2,500 sf 100.00% Impervious Runoff Depth=4.39" Tc=6.0 min CN=98 Runoff=0.26 cfs 0.021 af
Subcatchment 106: SUBCAT-106	Runoff Area=28,969 sf 73.36% Impervious Runoff Depth=3.73" Flow Length=228' Tc=12.3 min CN=92 Runoff=2.27 cfs 0.207 af
Subcatchment 106-A: SUBCAT-106-A	Runoff Area=13,750 sf 100.00% Impervious Runoff Depth=4.39" Tc=6.0 min CN=98 Runoff=1.43 cfs 0.116 af
Subcatchment 107: SUBCAT-107	Runoff Area=49,993 sf 63.90% Impervious Runoff Depth=3.42" Flow Length=228' Tc=12.3 min CN=89 Runoff=3.67 cfs 0.327 af
Subcatchment 107-A: SUBCAT-107-A	Runoff Area=13,750 sf 100.00% Impervious Runoff Depth=4.39" Tc=6.0 min CN=98 Runoff=1.43 cfs 0.116 af
Subcatchment 108: SUBCAT 108	Runoff Area=14,789 sf 0.00% Impervious Runoff Depth=2.07" Tc=6.0 min CN=74 Runoff=0.82 cfs 0.059 af
Subcatchment 201: SUBCAT-201	Runoff Area=26,125 sf 0.00% Impervious Runoff Depth=1.99" Flow Length=500' Tc=17.4 min CN=73 Runoff=0.99 cfs 0.100 af
Subcatchment 301: SUBCAT-301	Runoff Area=124,494 sf 0.00% Impervious Runoff Depth=1.69" Flow Length=950' Tc=60.3 min CN=69 Runoff=2.13 cfs 0.403 af
Reach 1R: RIP RAP n=0.041	Avg. Flow Depth=0.41' Max Vel=1.76 fps Inflow=4.56 cfs 0.475 af L=20.0' S=0.0100 '/' Capacity=23.00 cfs Outflow=4.55 cfs 0.475 af

Reach 2R: SCF WOODS	Avg. Flow Depth=0.31' Max Vel=0.78 fps Inflow=4.55 cfs 0.47 n=0.120 L=165.0' S=0.0330 '/' Capacity=57.21 cfs Outflow=4.42 cfs 0.47	5 af 5 af
Reach 3R: SCF-WOODS	Avg. Flow Depth=0.38' Max Vel=0.49 fps Inflow=4.42 cfs 0.47 n=0.120 L=270.0' S=0.0100 '/' Capacity=31.48 cfs Outflow=3.85 cfs 0.47	5 af 5 af
Reach 4R: STREAM	Avg. Flow Depth=0.60' Max Vel=1.72 fps Inflow=3.85 cfs 0.47 n=0.040 L=320.0' S=0.0075 '/' Capacity=48.82 cfs Outflow=3.80 cfs 0.47	5 af 5 af
Reach 5R: STREAM	Avg. Flow Depth=0.28' Max Vel=5.39 fps Inflow=3.80 cfs 0.47 n=0.040 L=40.0' S=0.2000 '/' Capacity=252.10 cfs Outflow=3.80 cfs 0.47	5 af 5 af
Reach 6R: STREAM	Avg. Flow Depth=0.56' Max Vel=1.90 fps Inflow=3.80 cfs 0.47 n=0.040 L=220.0' S=0.0100 '/' Capacity=56.37 cfs Outflow=3.78 cfs 0.47	5 af 4 af
Pond BIO-1: BIORETENTION	V-1 Peak Elev=178.39' Storage=24,276 cf Inflow=13.16 cfs 1.03 Outflow=0.93 cfs 0.99	5 af 9 af
Pond CB-1: CATCH BASIN 1	Peak Elev=189.31' Inflow=1.62 cfs 0.12 15.0" Round Culvert n=0.013 L=300.0' S=0.0110 '/' Outflow=1.62 cfs 0.12	4 af 4 af
Pond CB-2: CATCH BASIN 2	Peak Elev=186.23' Inflow=1.35 cfs 0.10 15.0" Round Culvert n=0.013 L=7.0' S=0.0143 '/' Outflow=1.35 cfs 0.10	5 af 5 af
Pond CB-3: CATCH BASIN 3	Peak Elev=185.88' Inflow=2.22 cfs 0.18 18.0" Round Culvert n=0.013 L=215.0' S=0.0253 '/' Outflow=2.22 cfs 0.18	7 af 7 af
Pond CB-4: CATCH BASIN 4	Peak Elev=180.51' Inflow=3.50 cfs 0.22 18.0" Round Culvert n=0.013 L=44.0' S=0.0261 '/' Outflow=3.50 cfs 0.22	1 af 1 af
Pond CB-5: CATCH BASIN 5	Peak Elev=181.11' Inflow=4.78 cfs 0.34 18.0" Round Culvert n=0.013 L=44.0' S=0.0102 '/' Outflow=4.78 cfs 0.34	0 af 0 af
Pond CB-6: CATCH BASIN 6	Peak Elev=190.17' Inflow=4.56 cfs 0.47 18.0" Round Culvert n=0.013 L=80.0' S=0.0150 '/' Outflow=4.56 cfs 0.47	5 af 5 af
Pond D.E.101: Stone Drip Ed Dis	Ige Peak Elev=190.00' Storage=249 cf Inflow=0.32 cfs 0.02 scarded=0.04 cfs 0.024 af Primary=0.18 cfs 0.002 af Outflow=0.22 cfs 0.024	6 af 6 af
Pond D.E.104: Stone Drip Ed Dis	Ige Peak Elev=193.00' Storage=160 cf Inflow=0.26 cfs 0.02 scarded=0.03 cfs 0.018 af Primary=0.29 cfs 0.003 af Outflow=0.32 cfs 0.02	1 af 1 af
Pond D.E.105: Stone Drip Ed	Ige Peak Elev=193.00' Storage=160 cf Inflow=0.26 cfs 0.02 scarded=0.03 cfs 0.018 af Primary=0.29 cfs 0.003 af Outflow=0.32 cfs 0.02	1 af 1 af
Pond D.E.106: Stone Drip Ed Dis	Ige Peak Elev=185.50' Storage=936 cf Inflow=1.43 cfs 0.11 scarded=0.16 cfs 0.101 af Primary=1.28 cfs 0.014 af Outflow=1.44 cfs 0.11	6 af 6 af
Pond D.E.107: Stone Drip Ed Dis	Ige Peak Elev=185.50' Storage=936 cf Inflow=1.43 cfs 0.11 scarded=0.21 cfs 0.102 af Primary=1.27 cfs 0.013 af Outflow=1.48 cfs 0.11	6 af 6 af
Pond DMH-1: DMH-1	Peak Elev=186.06' Inflow=2.60 cfs 0.22 18.0" Round Culvert n=0.013 L=215.0' S=0.0321 '/' Outflow=2.60 cfs 0.22	8 af 8 af

			_	<i></i>		<i>(</i>		- ·			
								Primary=2.1	3 cfs	0.40	3 af
Link AP-3: ANALYSIS POINT	#3							Inflow=2.1	3 cfs	0.40	3 af
								Primary=0.9	99 CIS	0.10	0 af
LINK AF-2: ANAL 1515 PUINT	#2									0.10	0 al
Link AD 2: ANAL VEIS DOINT	#2							Inflow-0.0	0 of c	0 10	0 of
							F	rimary=10.4	4 cfs	2.19	4 af
LINK AP-1: ANALYSIS POINT	#1						_	Inflow=10.4	14 cfs	2.19	4 af
										0.40	
	24.0"	Round Cul	lvert	n=0.013	L=128.0	° S=0.00	59 '/'	Outflow=6.8	38 cfs	0.52	7 af
Pona DIVIH-3: DMH-3				0.040	Pea		50.60	11110W=6.8		0.52	
					Dec		00.00		o ofo	0 50	7 of
	30.0"	Round Cul	lvert	n=0.013	L=18.0'	S=0.008	3 7 C	Dutflow=12.4	6 cts	0.97	6 af
Pond DMH-2: DMH-2		-			Peak	<pre>< Elev=18</pre>	0.02 ⁻	Inflow=12.4	16 cfs	0.97	6 af
					D I				0 -4-	0.07	0 - 4

Total Runoff Area = 15.348 acRunoff Volume = 2.997 afAverage Runoff Depth = 2.34"76.64% Pervious = 11.762 ac23.36% Impervious = 3.586 ac

Time span=0.00-28.00 hrs, dt=0.01 hrs, 2801 points x 3 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 101: SUBCAT-101	Runoff Area=188,382 sf 1.53% Impervious Runoff Depth=3.92" Flow Length=1,370' Tc=25.3 min CN=73 Runoff=12.14 cfs 1.412 af
Subcatchment 101-A: SUBCAT-101-A	Runoff Area=3,125 sf 100.00% Impervious Runoff Depth=6.74" Tc=6.0 min CN=98 Runoff=0.49 cfs 0.040 af
Subcatchment 102: SUBCAT 102 Flow Length=	Runoff Area=146,573 sf 13.29% Impervious Runoff Depth=3.50" 575' Slope=0.0200 '/' Tc=17.7 min CN=69 Runoff=9.75 cfs 0.981 af
Subcatchment103: SUBCAT-103	Runoff Area=14,699 sf 100.00% Impervious Runoff Depth=6.74" Flow Length=330' Tc=4.4 min CN=98 Runoff=2.45 cfs 0.190 af
Subcatchment 104: SUBCAT-104	Runoff Area=13,835 sf 78.81% Impervious Runoff Depth=6.15" Flow Length=268' Tc=11.9 min CN=93 Runoff=1.75 cfs 0.163 af
Subcatchment 104-A: SUBCAT-104-A	Runoff Area=2,500 sf 100.00% Impervious Runoff Depth=6.74" Tc=6.0 min CN=98 Runoff=0.39 cfs 0.032 af
Subcatchment 105: SUBCAT-105	Runoff Area=25,054 sf 77.47% Impervious Runoff Depth=6.15" Flow Length=268' Tc=11.9 min CN=93 Runoff=3.16 cfs 0.295 af
Subcatchment 105-A: SUBCAT-105-A	Runoff Area=2,500 sf 100.00% Impervious Runoff Depth=6.74" Tc=6.0 min CN=98 Runoff=0.39 cfs 0.032 af
Subcatchment 106: SUBCAT-106	Runoff Area=28,969 sf 73.36% Impervious Runoff Depth=6.04" Flow Length=228' Tc=12.3 min CN=92 Runoff=3.58 cfs 0.334 af
Subcatchment106-A: SUBCAT-106-A	Runoff Area=13,750 sf 100.00% Impervious Runoff Depth=6.74" Tc=6.0 min CN=98 Runoff=2.16 cfs 0.177 af
Subcatchment 107: SUBCAT-107	Runoff Area=49,993 sf 63.90% Impervious Runoff Depth=5.69" Flow Length=228' Tc=12.3 min CN=89 Runoff=5.95 cfs 0.544 af
Subcatchment 107-A: SUBCAT-107-A	Runoff Area=13,750 sf 100.00% Impervious Runoff Depth=6.74" Tc=6.0 min CN=98 Runoff=2.16 cfs 0.177 af
Subcatchment 108: SUBCAT 108	Runoff Area=14,789 sf 0.00% Impervious Runoff Depth=4.02" Tc=6.0 min_CN=74_Runoff=1.60 cfs_0.114 af
Subcatchment 201: SUBCAT-201	Runoff Area=26,125 sf 0.00% Impervious Runoff Depth=3.92" Flow Length=500' Tc=17.4 min CN=73 Runoff=1.97 cfs 0.196 af
Subcatchment 301: SUBCAT-301	Runoff Area=124,494 sf 0.00% Impervious Runoff Depth=3.50"
Reach 1R: RIP RAP n=0.041	Avg. Flow Depth=0.63' Max Vel=2.24 fps Inflow=9.75 cfs 0.981 af L=20.0' S=0.0100 '/' Capacity=23.00 cfs Outflow=9.75 cfs 0.981 af

Reach 2R: SCF WOODS	Avg. Flow Depth=0.44' Max Vel=0.99 fps Inflow=9.75 cfs 0.981 n=0.120 L=165.0' S=0.0330 '/' Capacity=57.21 cfs Outflow=9.55 cfs 0.981	af af
Reach 3R: SCF-WOODS	Avg. Flow Depth=0.55' Max Vel=0.64 fps Inflow=9.55 cfs 0.981 n=0.120 L=270.0' S=0.0100 '/' Capacity=31.48 cfs Outflow=8.68 cfs 0.981	af af
Reach 4R: STREAM	Avg. Flow Depth=0.88' Max Vel=2.19 fps Inflow=8.68 cfs 0.981 n=0.040 L=320.0' S=0.0075 '/' Capacity=48.82 cfs Outflow=8.59 cfs 0.981	af af
Reach 5R: STREAM	Avg. Flow Depth=0.41' Max Vel=6.91 fps Inflow=8.59 cfs 0.981 n=0.040 L=40.0' S=0.2000 '/' Capacity=252.10 cfs Outflow=8.59 cfs 0.981	af af
Reach 6R: STREAM	Avg. Flow Depth=0.82' Max Vel=2.42 fps Inflow=8.59 cfs 0.981 n=0.040 L=220.0' S=0.0100 '/' Capacity=56.37 cfs Outflow=8.56 cfs 0.980	af) af
Pond BIO-1: BIORETENTION	I-1 Peak Elev=179.60' Storage=37,136 cf Inflow=21.12 cfs 1.740 Outflow=4.31 cfs 1.650) af) af
Pond CB-1: CATCH BASIN 1	Peak Elev=189.51' Inflow=2.45 cfs 0.190 15.0" Round Culvert n=0.013 L=300.0' S=0.0110 '/' Outflow=2.45 cfs 0.190) af) af
Pond CB-2: CATCH BASIN 2	Peak Elev=186.53' Inflow=2.08 cfs 0.171 15.0" Round Culvert n=0.013 L=7.0' S=0.0143 '/' Outflow=2.08 cfs 0.171	∣af ∣af
Pond CB-3: CATCH BASIN 3	Peak Elev=186.12' Inflow=3.49 cfs 0.303 18.0" Round Culvert n=0.013 L=215.0' S=0.0253 '/' Outflow=3.49 cfs 0.303	3 af 3 af
Pond CB-4: CATCH BASIN 4	Peak Elev=181.37' Inflow=5.68 cfs 0.378 18.0" Round Culvert n=0.013 L=44.0' S=0.0261 '/' Outflow=5.68 cfs 0.378	3 af 3 af
Pond CB-5: CATCH BASIN 5	Peak Elev=182.97' Inflow=8.01 cfs 0.584 18.0" Round Culvert n=0.013 L=44.0' S=0.0102 '/' Outflow=8.01 cfs 0.584	↓af ↓af
Pond CB-6: CATCH BASIN 6	Peak Elev=191.81' Inflow=9.75 cfs 0.981 18.0" Round Culvert n=0.013 L=80.0' S=0.0150 '/' Outflow=9.75 cfs 0.981	∣af ∣af
Pond D.E.101: Stone Drip Ed Dis	Ige Peak Elev=190.01' Storage=250 cf Inflow=0.49 cfs 0.040 scarded=0.04 cfs 0.032 af Primary=0.67 cfs 0.008 af Outflow=0.72 cfs 0.040) af) af
Pond D.E.104: Stone Drip Ed	Ige Peak Elev=193.01' Storage=160 cf Inflow=0.39 cfs 0.032 scarded=0.03 cfs 0.024 af Primary=0.43 cfs 0.008 af Outflow=0.45 cfs 0.032	2 af 2 af
Pond D.E.105: Stone Drip Ed	Ige Peak Elev=193.01' Storage=160 cf Inflow=0.39 cfs 0.032 scarded=0.03 cfs 0.024 af Primary=0.43 cfs 0.008 af Outflow=0.45 cfs 0.032	2 af 2 af
Pond D.E.106: Stone Drip Ed	Ige Peak Elev=185.51' Storage=936 cf Inflow=2.16 cfs 0.177 scarded=0.16 cfs 0.134 af Primary=2.53 cfs 0.043 af Outflow=2.69 cfs 0.177	′ af ′ af
Pond D.E.107: Stone Drip Ed	lge Peak Elev=185.51' Storage=936 cf Inflow=2.16 cfs 0.177 scarded=0.21 cfs 0.137 af Primary=2.58 cfs 0.040 af Outflow=2.79 cfs 0.177	′ af ′ af
Pond DMH-1: DMH-1	Peak Elev=186.35' Inflow=4.17 cfs 0.361 18.0" Round Culvert n=0.013 L=215.0' S=0.0321 '/' Outflow=4.17 cfs 0.361	af af

Pond DMH-2: DMH-2	Peak Elev=180.66	5' Inflow=19.68 cfs	1.626 af
	30.0" Round Culvert n=0.013 L=18.0' S=0.0083 '/	Outflow=19.68 cfs	1.626 af
Pond DMH-3: DMH-3	Peak Elev=181.55	5' Inflow=11.36 cfs	0.888 af
	24.0" Round Culvert n=0.013 L=128.0' S=0.0059 '/'	Outflow=11.36 cfs	0.888 af
Link AP-1: ANALYSIS POIN	T #1	Inflow=24.30 cfs	4.050 af
		Primary=24.30 cfs	4.050 af
Link AP-2: ANALYSIS POIN	T #2	Inflow=1.97 cfs	0.196 af
		Primary=1.97 cfs	0.196 af
Link AP-3: ANALYSIS POIN	T #3	Inflow=4.58 cfs	0.833 af
		Primary=4.58 cfs	0.833 af
Tatal Dama (C		D	(1. 4.00

Total Runoff Area = 15.348 acRunoff Volume = 5.521 afAverage Runoff Depth = 4.32"76.64% Pervious = 11.762 ac23.36% Impervious = 3.586 ac

Summary for Subcatchment 101: SUBCAT-101

Runoff = 6.07 cfs @ 12.37 hrs, Volume= 0.719 af, Depth= 1.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR SEACOAST Rainfall=4.63"

3,28255Woods, Good, HSG B2,37261>75% Grass cover, Good, HSG B2,87598Paved roads w/curbs & sewers, HSG B98,06870Woods, Good, HSG C35,91574>75% Grass cover, Good, HSG C45,87077Woods, Good, HSG D	
2,372 61 >75% Grass cover, Good, HSG B 2,875 98 Paved roads w/curbs & sewers, HSG B 98,068 70 Woods, Good, HSG C 35,915 74 >75% Grass cover, Good, HSG C 45,870 77 Woods, Good, HSG D	
2,875 98 Paved roads w/curbs & sewers, HSG B 98,068 70 Woods, Good, HSG C 35,915 74 >75% Grass cover, Good, HSG C 45,870 77 Woods, Good, HSG D	
98,068 70 Woods, Good, HSG C 35,915 74 >75% Grass cover, Good, HSG C 45,870 77 Woods, Good, HSG D	
35,915 74 >75% Grass cover, Good, HSG C 45,870 77 Woods, Good, HSG D 188,382 73 Weighted Average	
45,870 77 Woods, Good, HSG D	
188 382 73 Weighted Average	
100,002 10 WEIGHTEU AVELAGE	
185,507 98.47% Pervious Area	
2,875 1.53% Impervious Area	
Tc Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs)	
0.5 30 0.0200 1.05 Sheet Flow, Sheet Paved	
Smooth surfaces n= 0.011 P2= 3.00"	
4.9 70 0.0600 0.24 Sheet Flow, Sheet Grass	
Grass: Short n= 0.150 P2= 3.00"	
1.7900.03000.87Shallow Concentrated Flow, Shallow We	oods
Woodland Kv= 5.0 fps	
5.8 175 0.0100 0.50 Shallow Concentrated Flow, Shallow We	oods
Woodland Kv= 5.0 fps	
10.0 425 0.0200 0.71 Shallow Concentrated Flow, Shallow We	ooas
Woodiand KV= 5.0 fps	
1.5 320 0.0075 3.00 46.62 Parabolic Gnannel, Stream	11.0'
W=10.00 D=2.00 Aled=15.5 Si Pelilie1 n= 0.040 Mountain strooms	1.0
1 = 0.040 Mountain Streams	
$W/-10.00^{\circ}$ D-2.00 10.91 252.10 Faiabolic Challer, Stream $W/-10.00^{\circ}$ D-2.00 Area-13.3 of Perim-1	11 0'
n = 0.040 Mountain streams	1.0
0.9 220 0.0100 4.23 56.37 Parabolic Channel Stream	
W=10.00' D=2.00' Area=13.3 sf Perim=1	1.0
n = 0.040 Mountain streams	
25.3 1.370 Total	

Summary for Subcatchment 101-A: SUBCAT-101-A

Runoff = 0.32 cfs @ 12.08 hrs, Volume= 0.026 af, Depth= 4.39" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs

Type III 24-hr 10-YR SEACOAST Rainfall=4.63"

Prepared by Thech Enginee	ening Corp.
HydroCAD® 10.10-3a s/n 00652	© 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN D	escription						
	3,125	98 R	loofs, HSG	С					
	3,125	1	00.00% Imj	pervious Ar	ea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry, Min TOC				
Summary for Subcatchment 102: SUBCAT 102									
Runoff	=	4.56	cfs @ 12.2	25 hrs, Vol	ume= 0.475 af, Depth= 1.69"				
Runoff b Type III :	y SCS TF 24-hr 10-	R-20 meth YR SEA0	nod, UH=S0 COAST Rai	CS, Weighte infall=4.63"	ed-CN, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs				
A	rea (sf)	CN D	escription						
	9,461	39 >	75% Grass	cover, Goo	od, HSG A				
	8,063	98 P	aved roads	w/curbs &	sewers, HSG A				
	28,410	55 V	Voods, Goo	d, HSG B					
	14,637	61 >	75% Grass	cover, Goo	bd, HSG B				
	11,420	98 P	aved roads	w/curbs &	sewers, HSG B				
	51,719	70 V	Voods, Goo	d, HSG C					
	11,506	74 >	75% Grass	cover, Goo	od, HSG C				
	11,357	77 V	Voods, Goo	d, HSG D					
1	46,573	69 V	Veighted Av	/erage					
1	27,090	8	6.71% Perv	vious Area					
	19,483	1	3.29% Imp	ervious Are	a				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
0.7	45	0.0200	1.14		Sheet Flow, Sheet Road				
					Smooth surfaces n= 0.011 P2= 3.00"				
6.3	55	0.0200	0.15		Sheet Flow, Sheet Grass				
					Grass: Short n= 0.150 P2= 3.00"				
0.1	25	0.0200	2.87		Shallow Concentrated Flow, Shallow Paved				
					Paved Kv= 20.3 fps				
10.6	450	0.0200	0.71		Shallow Concentrated Flow, Shallow Woods Woodland Kv= 5.0 fps				
17.7	575	Total							

Summary for Subcatchment 103: SUBCAT-103

Runoff =	1.62 cfs @	12.06 hrs, Volume	= 0.124 af, Depth= 4.39"
----------	------------	-------------------	--------------------------

		,	0	5 1				
H	/droCAD®	10.10-3a	s/n 00652	© 2020 H	ydroCAD	Software	Solutions LL	_C

Area (sf)	CN	Description						
2,444	98	Paved roads	Paved roads w/curbs & sewers, HSG B					
3,125	98	Roofs, HSG	С					
9,130	98	Paved roads	s w/curbs &	sewers, HSG C				
14,699	98	98 Weighted Average						
14,699		100.00% Im	pervious Ar	ea				
Tc Length	Slop	e Velocity	Capacity	Description				
(min) (feet)	(ft/f	t) (ft/sec)	(cfs)					
1.7 100	0.010	0 1.01		Sheet Flow, Sheet Road				
				Smooth surfaces n= 0.011 P2= 3.00"				
2.7 230	0.005	0 1.44		Shallow Concentrated Flow, Shallow Road				
				Paved Kv= 20.3 fps				
4.4 330	Total							

Summary for Subcatchment 104: SUBCAT-104

Runoff = $1.12 \text{ cfs } @$	12.16 hrs, Volume=	0.102 af, Depth= 3.84"
--------------------------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR SEACOAST Rainfall=4.63"

Α	rea (sf)	CN	Description							
	2,931	74	>75% Grass cover, Good, HSG C							
	10,904	98	Paved roads	w/curbs &	sewers, HSG C					
	13,835	93	Weighted Av	verage						
	2,931		21.19% Perv	vious Area						
	10,904		78.81% Impe	ervious Are	a					
_										
Тс	Length	Slope	 Velocity 	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
10.1	50	0.0050	0.08		Sheet Flow, Sheet Grass					
					Grass: Short n= 0.150 P2= 3.00"					
0.5	28	0.0200	1.03		Sheet Flow, Sheet Road					
					Smooth surfaces n= 0.011 P2= 3.00"					
1.3	190	0.0150	2.49		Shallow Concentrated Flow, Shallow Road					
					Paved Kv= 20.3 fps					
11.9	268	Total								

Summary for Subcatchment 104-A: SUBCAT-104-A

Runoff = 0.26 cfs @ 12.08 hrs, Volume= 0.021 af, Depth= 4.39"

Frepared by Thied	i Enginee	ning Corp.				
HydroCAD® 10.10-3a	s/n 00652	© 2020 Hyd	droCAD	Software	Solutions L	LC
-						

A	rea (sf)	CN E	Description							
2,500 98 Roofs, HSG C										
2,500 100.00% Impervious Area										
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0 Direct Entry, MIN. TOC										
Summary for Subcatchment 105: SUBCAT-105										
Runoff	=	2.02	cfs @ 12.	16 hrs, Vol	ume= 0.184 af, Depth= 3.84"					
Runoff b Type III	y SCS TF 24-hr 10-	R-20 met YR SEA	hod, UH=S(COAST Rai	CS, Weight nfall=4.63"	ed-CN, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs					
Α	rea (sf)	CN E	Description							
	5,644	74 >	75% Grass	cover, Goo	od, HSG C					
	7,500	98 F 98 F	Roofs, HSG	C	Sewers, 1130 C					
	25,054	93 V	Veighted Av	/erage						
	5,644	2	2.53% Perv	vious Area						
	19,410	7	7.47% Imp	ervious Are	a					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.1	50	0.0050	0.08	· · · ·	Sheet Flow, Sheet Grass					
					Grass: Short n= 0.150 P2= 3.00"					
0.5	28	0.0200	1.03		Sheet Flow, Sheet Road					
1.3	190	0.0150	2.49		Smooth surfaces n= 0.011 P2= 3.00" Shallow Concentrated Flow, Shallow Road Paved Kv= 20.3 fps					
11.9	268	Total								

Summary for Subcatchment 105-A: SUBCAT-105-A

Runoff = 0.26 cfs @ 12.08 hrs, Volume= 0.021 af, Depth= 4.39"

A	rea (sf)	CN	Description				
	2,500	98	Roofs, HSG	С			
	2,500		100.00% Impervious Area				
Tc (min)	Length (feet)	Slop (ft/ft	e Velocity t) (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry, MIN. TOC		

Summary for Subcatchment 106: SUBCAT-106

Runoff = 2.27 cfs @ 12.16 hrs, Volume= 0.207 af, Depth= 3.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR SEACOAST Rainfall=4.63"

A	rea (sf)	CN D	escription							
	7,716	74 >	74 >75% Grass cover, Good, HSG C							
	21,253	98 P	B Paved roads w/curbs & sewers, HSG C							
	28,969	92 V	/eighted Av	rerage						
7,716 26.64% Pervious Area			6.64% Perv	vious Area						
	21,253	7	3.36% Impe	ervious Are	a					
_										
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
10.1	50	0.0050	0.08		Sheet Flow, Sheet Grass					
					Grass: Short n= 0.150 P2= 3.00"					
0.5	28	0.0200	1.03		Sheet Flow, Sheet Road					
					Smooth surfaces n= 0.011 P2= 3.00"					
1.7	150	0.0050	1.44		Shallow Concentrated Flow, Shallow Road					
					Paved Kv= 20.3 fps					
12.3	228	Total								

Summary for Subcatchment 106-A: SUBCAT-106-A

Runoff = 1.43 cfs @ 12.08 hrs, Volume= 0.116 af, Depth= 4.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR SEACOAST Rainfall=4.63"

Area (sf)	CN	Description		
13,750	98	Roofs, HSG	С	
13,750		100.00% lmp	pervious Ar	ea
Tc Length	Slop	e Velocity	Capacity	Description
(min) (feet)	(ft/f	t) (ft/sec)	(cfs)	
6.0				Direct Entry, Min TOC

Summary for Subcatchment 107: SUBCAT-107

Runoff = 3.67 cfs @ 12.17 hrs, Volume= 0.327 af, Depth= 3.42"

		2	0					
Hy	/droCAD®	10.10-3a	s/n 00652	© 2020 H	ydroCAD	Software	Solutions LI	LC

	rea (sf)	CN D	escription							
	18,045	74 >	75% Grass	cover, Goo	od, HSG C					
	7,500	98 R	98 Roofs, HSG C							
	24,448	<u>98 P</u>	98 Paved roads w/curbs & sewers, HSG C							
	49,993	89 W	/eighted Av	verage						
	18,045	30	6.10% Perv 2.00% Imp	/IOUS Area	2					
	31,940	0.	5.90 % impe	ervious Area	a					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.1	50	0.0050	0.08	(0.0)	Sheet Flow, Sheet Grass					
0.5	28	0.0200	1.03		Grass: Short n= 0.150 P2= 3.00" Sheet Flow, Sheet Road					
1.7	150	0.0050	1.44		Smooth surfaces n= 0.011 P2= 3.00" Shallow Concentrated Flow, Shallow Road					
					Paved Kv= 20.3 fps					
12.3	228	Total								
	Summary for Subcatchment 107-A: SUBCAT-107-A									
Runoff	Runoff = 1.43 cfs @ 12.08 hrs, Volume= 0.116 af, Depth= 4.39"									
Runoff b Type III	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR SEACOAST Rainfall=4.63"									
А	rea (sf)	CN D	escription							
	13,750	98 R	oofs, HSG	С						
	13,750	1	00.00% Imp	pervious Ar	ea					
Tc (min)	l enath									
(111111)	(feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0	(feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description Direct Entry, Min TOC					
6.0	(feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description Direct Entry, Min TOC					
6.0	(feet)	Slope (ft/ft) St	Velocity (ft/sec) ummary f	Capacity (cfs)	Description Direct Entry, Min TOC htchment 108: SUBCAT 108					
6.0 Runoff	(feet)	Slope (ft/ft) St 0.82 c	Velocity (ft/sec) ummary f	Capacity (cfs) f or Subca 09 hrs, Volu	Description Direct Entry, Min TOC atchment 108: SUBCAT 108 ume= 0.059 af, Depth= 2.07"					
Runoff Runoff b Type III	= y SCS TF 24-hr 10-	Slope (ft/ft) 0.82 c 2.20 meth YR SEAC	Velocity (ft/sec) ummary f cfs @ 12.0 iod, UH=S0 COAST Rai	Capacity (cfs) f or Subca 09 hrs, Volu CS, Weighte nfall=4.63"	Description Direct Entry, Min TOC Atchment 108: SUBCAT 108 ume= 0.059 af, Depth= 2.07" ed-CN, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs					
Runoff Runoff b Type III	= y SCS TF 24-hr 10-	Slope (ft/ft) 0.82 c 20 meth YR SEAC	Velocity (ft/sec) ummary f cfs @ 12.0 iod, UH=S0 COAST Rai	Capacity (cfs) f or Subca 09 hrs, Volu CS, Weighte nfall=4.63"	Description Direct Entry, Min TOC Atchment 108: SUBCAT 108 ume= 0.059 af, Depth= 2.07" ed-CN, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs					
Runoff Runoff b Type III	= ey SCS TF 24-hr 10- <u>rea (sf)</u>	Slope (ft/ft) 0.82 c 20 meth YR SEAC <u>CN D</u>	Velocity (ft/sec) ummary f cfs @ 12.0 nod, UH=S0 COAST Rai escription	Capacity (cfs) f or Subca 09 hrs, Volu CS, Weighte nfall=4.63"	Description Direct Entry, Min TOC Atchment 108: SUBCAT 108 ume= 0.059 af, Depth= 2.07" ed-CN, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs					
Runoff Runoff b Type III	= y SCS TF 24-hr 10- <u>trea (sf)</u> 14,789	Slope (ft/ft) 0.82 c ₹-20 meth YR SEAC <u>CN D</u> 74 >	Velocity (ft/sec) ummary f cfs @ 12.0 nod, UH=S0 COAST Rai <u>escription</u> 75% Grass	Capacity (cfs)	Description Direct Entry, Min TOC Atchment 108: SUBCAT 108 ume= 0.059 af, Depth= 2.07" ed-CN, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs od, HSG C					
Runoff Runoff b Type III	= y SCS TF 24-hr 10- <u>trea (sf)</u> 14,789	Slope (ft/ft) 0.82 (₹-20 meth YR SEAC <u>CN D</u> 74 >	Velocity (ft/sec) ummary f cfs @ 12.0 nod, UH=S0 COAST Rai <u>escription</u> <u>75% Grass</u> 00.00% Per	Capacity (cfs) f or Subca 09 hrs, Volu CS, Weighte nfall=4.63" <u>cover, Goo</u> rvious Area	Description Direct Entry, Min TOC Atchment 108: SUBCAT 108 ume= 0.059 af, Depth= 2.07" ed-CN, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs od, HSG C					
Runoff Runoff b Type III	= by SCS TF 24-hr 10- <u>trea (sf)</u> 14,789 14,789 Length (feet)	Slope (ft/ft) 0.82 (₹-20 meth YR SEAC <u>CN D</u> 74 > ⁻ 10 Slope (ft/ft)	Velocity (ft/sec) ummary f cfs @ 12.0 nod, UH=S0 COAST Rai <u>escription</u> <u>75% Grass</u> 00.00% Pel Velocity (ft/sec)	Capacity (cfs) for Subca 09 hrs, Volu 09 hrs, Volu 00 hrs	Description Direct Entry, Min TOC Atchment 108: SUBCAT 108 ume= 0.059 af, Depth= 2.07" ed-CN, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs od, HSG C Description					

Summary for Subcatchment 201: SUBCAT-201

Runoff = 0.99 cfs @ 12.24 hrs, Volume= 0.100 af, Depth= 1.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs Type III 24-hr 10-YR SEACOAST Rainfall=4.63"

A	rea (sf)	CN	Description							
	21,075	74	74 >75% Grass cover, Good, HSG C							
	5,050 70 Woods, Good, HSG C									
26,125 73 Weighted Average										
26,125 100.00% Pervious Area										
Тс	Length	Slope	e Velocity	Capacity	Description					
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)						
11.4	100	0.0150	0.15		Sheet Flow, Sheet Grass					
					Grass: Short n= 0.150 P2= 3.00"					
3.3	170	0.0150	0.86		Shallow Concentrated Flow, Shallow Grass					
					Short Grass Pasture Kv= 7.0 fps					
2.7	230	0.0400) 1.40		Shallow Concentrated Flow, Shallow Grass					
					Short Grass Pasture Kv= 7.0 fps					
17.4	500	Total								

Summary for Subcatchment 301: SUBCAT-301

Runoff = 2.13 cfs @ 12.86 hrs, Volume= 0.403 af, Depth= 1.69"

Area (sf)	CN	Description
2,799	30	Woods, Good, HSG A
12,043	55	Woods, Good, HSG B
17,154	74	>75% Grass cover, Good, HSG C
69,412	70	Woods, Good, HSG C
23,086	77	Woods, Good, HSG D
124,494 124,494	69	Weighted Average 100.00% Pervious Area

			•	U U			
Hyd	lroCAD®	10.10-3a	s/n 00652	© 2020 H	ydroCAD	Software	Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
51.0	100	0.0100	0.03		Sheet Flow, Sheet Woods
3.5	130	0.0150	0.61		Woods: Dense underbrush n= 0.800 P2= 3.00" Shallow Concentrated Flow, Shallow Woods Woodland Kv= 5.0 fps
1.1	75	0.0500	1.12		Shallow Concentrated Flow, Shallow Woods
0.5	60	0.1800	2.12		Woodland Kv= 5.0 fps Shallow Concentrated Flow, Shallow Woods Woodland Kv= 5.0 fps
4.2	585	0.0075	2.31	7.69	Parabolic Channel, Stream
					W=5.00' D=1.00' Area=3.3 st Perim=5.5' n= 0.040 Mountain streams

60.3 950 Total

Summary for Reach 1R: RIP RAP

Inflow	Area =	3.365 ac, 13.29% Impervious, Inflow	Depth = 1.69"	for 10-YR SEACOAST event
Inflow	=	4.56 cfs @ 12.25 hrs, Volume=	0.475 af	
Outflov	N =	4.55 cfs @ 12.26 hrs, Volume=	0.475 af, A	utten= 0%, Lag= 0.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 1.76 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.62 fps, Avg. Travel Time= 0.5 min

Peak Storage= 52 cf @ 12.26 hrs Average Depth at Peak Storage= 0.41', Surface Width= 7.48' Bank-Full Depth= 1.00' Flow Area= 8.0 sf, Capacity= 23.00 cfs

Summary for Reach 2R: SCF WOODS

Inflow Area =3.365 ac, 13.29% Impervious, Inflow Depth =1.69" for 10-YR SEACOAST eventInflow =4.55 cfs @12.26 hrs, Volume=0.475 afOutflow =4.42 cfs @12.31 hrs, Volume=0.475 af, Atten= 3%, Lag= 2.8 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 0.78 fps, Min. Travel Time= 3.5 min Avg. Velocity = 0.28 fps, Avg. Travel Time= 10.0 min

Peak Storage= 933 cf @ 12.31 hrs Average Depth at Peak Storage= 0.31', Surface Width= 27.68' Bank-Full Depth= 1.00' Flow Area= 33.3 sf, Capacity= 57.21 cfs

50.00' x 1.00' deep Parabolic Channel, n= 0.120 Heavy timber, flow below branches Length= 165.0' Slope= 0.0330 '/' Inlet Invert= 187.55', Outlet Invert= 182.10'

t

Summary for Reach 3R: SCF-WOODS

Inflow A	Area =	3.365 ac, 13.29% Impervious, Inflow D	epth = 1.69"	for 10-YR SEACOAST event
Inflow	=	4.42 cfs @ 12.31 hrs, Volume=	0.475 af	
Outflow	/ =	3.85 cfs @ 12.42 hrs, Volume=	0.475 af, A	tten= 13%, Lag= 7.2 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 0.49 fps, Min. Travel Time= 9.1 min Avg. Velocity = 0.18 fps, Avg. Travel Time= 24.3 min

Peak Storage= 2,099 cf @ 12.42 hrs Average Depth at Peak Storage= 0.38', Surface Width= 30.78' Bank-Full Depth= 1.00' Flow Area= 33.3 sf, Capacity= 31.48 cfs

50.00' x 1.00' deep Parabolic Channel, n= 0.120 Heavy timber, flow below branches Length= 270.0' Slope= 0.0100 '/' Inlet Invert= 182.05', Outlet Invert= 179.35'

Summary for Reach 4R: STREAM

Inflow .	Area =	3.365 ac, 13.29% Impervious, Inflow D	epth > 1.69"	for 10-YR SEACOAST event
Inflow	=	3.85 cfs @ 12.42 hrs, Volume=	0.475 af	
Outflow	N =	3.80 cfs @ 12.47 hrs, Volume=	0.475 af, A	tten= 1%, Lag= 2.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 1.72 fps, Min. Travel Time= 3.1 min Avg. Velocity = 0.66 fps, Avg. Travel Time= 8.1 min

Peak Storage= 707 cf @ 12.47 hrs Average Depth at Peak Storage= 0.60', Surface Width= 5.49' Bank-Full Depth= 2.00' Flow Area= 13.3 sf, Capacity= 48.82 cfs

10.00' x 2.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 320.0' Slope= 0.0075 '/' Inlet Invert= 179.35', Outlet Invert= 176.95'

Summary for Reach 5R: STREAM

Inflow A	Area =	3.365 ac, 13.29% Impervious, Inflow	Depth > 1.69" for 10-YR SEACOAS	ST event
Inflow	=	3.80 cfs @ 12.47 hrs, Volume=	0.475 af	
Outflov	v =	3.80 cfs @ 12.47 hrs, Volume=	0.475 af, Atten= 0%, Lag= 0.1 mi	in

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 5.39 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.12 fps, Avg. Travel Time= 0.3 min

Peak Storage= 28 cf @ 12.47 hrs Average Depth at Peak Storage= 0.28', Surface Width= 3.75' Bank-Full Depth= 2.00' Flow Area= 13.3 sf, Capacity= 252.10 cfs

10.00' x 2.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 40.0' Slope= 0.2000 '/' Inlet Invert= 176.95', Outlet Invert= 168.95'

Summary for Reach 6R: STREAM

Inflow	Area =	3.365 ac, 13.29% Impervious, Inflow	w Depth > 1.69" for 10-YR SEACOAST even	nt
Inflow	=	3.80 cfs @ 12.47 hrs, Volume=	0.475 af	
Outflow	N =	3.78 cfs @ 12.49 hrs, Volume=	0.474 af, Atten= 0%, Lag= 1.5 min	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Max. Velocity= 1.90 fps, Min. Travel Time= 1.9 min Avg. Velocity = 0.73 fps, Avg. Travel Time= 5.0 min

Peak Storage= 438 cf @ 12.49 hrs Average Depth at Peak Storage= 0.56', Surface Width= 5.31' Bank-Full Depth= 2.00' Flow Area= 13.3 sf, Capacity= 56.37 cfs

10.00' x 2.00' deep Parabolic Channel, n= 0.040 Mountain streams Length= 220.0' Slope= 0.0100 '/' Inlet Invert= 168.95', Outlet Invert= 166.75'

Summary for Pond BIO-1: BIORETENTION-1

Inflow /	Area =	4.129 ac, 72.68% Impervious, Inflow D	Depth = 3.01" for 10-YR SEACOAST even	ıt
Inflow	=	13.16 cfs @ 12.14 hrs, Volume=	1.035 af	
Outflow	/ =	0.93 cfs @ 13.58 hrs, Volume=	0.999 af, Atten= 93%, Lag= 86.5 min	
Primary	/ =	0.93 cfs @ 13.58 hrs, Volume=	0.999 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 178.39' @ 13.58 hrs Surf.Area= 9,725 sf Storage= 24,276 cf

Plug-Flow detention time= 297.6 min calculated for 0.999 af (97% of inflow) Center-of-Mass det. time= 277.5 min (1,066.8 - 789.3)

Volume	Inve	ert Ava	il.Stor	age	Storage Descrip	otion	
#1	173.2	25'	41,86	5 cf	Custom Stage	Data (Prismatic)Lis	ted below (Recalc)
Elevatio	on	Surf.Area	Void	S	Inc.Store	Cum.Store	
(166	et)	(sq-n)	(%)	(cubic-feet)	(CUDIC-TEET)	
173.2	25	6,338	0.	0	0	0	
173.2	26	6,338	40.	0	25	25	
174.2	24	6,338	40.	0	2,484	2,510	
174.2	25	6,338	40.	0	25	2,535	
174.4	19	6,338	40.	0	608	3,144	
174.5	50	6,338	20.	0	13	3,156	
175.9	99	6,338	20.	0	1,889	5,045	
176.0	00	6,338	100.	0	63	5,108	
178.0	00	9,138	100.	0	15,476	20,584	
179.5	50	11,386	100.	0	15,393	35,977	
180.0	00	12,164	100.	0	5,888	41,865	
Device	Routing	In	vert	Outlet	Devices		
#1	Drimony	172		15 0"	Bound Culver	r 4	
#1	Filliary	173	5.50	15.0		L	
				L=40	.0 CPP, enu-s		$0.0125 \frac{1}{2}$
				met /		/3.30 / /3.00 5=	= 0.0125 / CC = 0.900
		470		n = 0.0	13 Corrugated	PE, Smooth Interior	, Flow Area= 1.23 st
#2	Device 1	179	9.00	0.5" X	4.5" Horiz. Or	ifice/Grate X 14.00	columns
				X 4 ro	ows C= 0.600 in	22.0" x 22.0" Grate	(26% open area)

Barrington Storage-Office PostConstructioType III 24-hr 10-YR SEACOAST Rainfall=4.63"

Prepared by Tritech Engineering Corp. HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

			Limited to weir flow at low heads
#3	Device 1	173.55'	6.0" Round UnderDrain
			L= 240.0' CPP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet Invert= 173.55' / 173.50' S= 0.0002 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.20 sf
#4	Device 3	173.25'	6.000 in/hr Exfiltration over Surface area
#5	Primary	179.60'	10.0' long x 6.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65
			2.65 2.66 2.66 2.67 2.69 2.72 2.76 2.83

Primary OutFlow Max=0.93 cfs @ 13.58 hrs HW=178.39' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 0.93 cfs of 12.20 cfs potential flow)

-2=Orifice/Grate (Controls 0.00 cfs)

3=UnderDrain (Barrel Controls 0.93 cfs @ 4.71 fps)

4=Exfiltration (Passes 0.93 cfs of 1.35 cfs potential flow)

-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond CB-1: CATCH BASIN 1

Inflow Area	a =	0.337 ac,100	.00% Impervi	ous, Inflow D	epth = 4.39"	for 10-YR	SEACOAST event
Inflow	=	1.62 cfs @	12.06 hrs, V	/olume=	0.124 af		
Outflow	=	1.62 cfs @	12.06 hrs, V	/olume=	0.124 af, A	Atten= 0%,	Lag= 0.0 min
Primary	=	1.62 cfs @	12.06 hrs, V	/olume=	0.124 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 189.31' @ 12.06 hrs Flood Elev= 193.00'

Device Rodding Invert Oddet Devices	
#1 Primary 188.60' 15.0" Round Culvert L= 300.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 188.60' / 185.30' S= 0.0110 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23	900 sf

Primary OutFlow Max=1.61 cfs @ 12.06 hrs HW=189.31' TW=186.02' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.61 cfs @ 2.26 fps)

Summary for Pond CB-2: CATCH BASIN 2

 Inflow Area =
 0.375 ac, 82.06% Impervious, Inflow Depth =
 3.34" for 10-YR SEACOAST event

 Inflow =
 1.35 cfs @
 12.12 hrs, Volume=
 0.105 af

 Outflow =
 1.35 cfs @
 12.12 hrs, Volume=
 0.105 af, Atten= 0%, Lag= 0.0 min

 Primary =
 1.35 cfs @
 12.12 hrs, Volume=
 0.105 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 186.23' @ 12.12 hrs Flood Elev= 189.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	185.40'	15.0" Round Culvert
Barrington Storage-Office PostConstructio*Type III 24-hr 10-YR SEACOAST Rainfall=4.63*" Prepared by Tritech Engineering Corp. HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

> L= 7.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 185.40' / 185.30' S= 0.0143 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.33 cfs @ 12.12 hrs HW=186.22' TW=186.05' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.33 cfs @ 1.56 fps)

Summary for Pond CB-3: CATCH BASIN 3

 Inflow Area =
 0.633 ac, 79.52% Impervious, Inflow Depth = 3.54" for 10-YR SEACOAST event

 Inflow =
 2.22 cfs @ 12.14 hrs, Volume=
 0.187 af

 Outflow =
 2.22 cfs @ 12.14 hrs, Volume=
 0.187 af, Atten= 0%, Lag= 0.0 min

 Primary =
 2.22 cfs @ 12.14 hrs, Volume=
 0.187 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 185.88' @ 12.14 hrs Flood Elev= 189.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	185.10'	18.0" Round Culvert
	-		L= 215.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 185.10' / 179.65' S= 0.0253 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=2.21 cfs @ 12.14 hrs HW=185.88' TW=180.59' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 2.21 cfs @ 2.38 fps)

Summary for Pond CB-4: CATCH BASIN 4

 Inflow Area =
 0.981 ac, 81.94% Impervious, Inflow Depth = 2.70" for 10-YR SEACOAST event

 Inflow =
 3.50 cfs @ 12.14 hrs, Volume=
 0.221 af

 Outflow =
 3.50 cfs @ 12.14 hrs, Volume=
 0.221 af, Atten= 0%, Lag= 0.0 min

 Primary =
 3.50 cfs @ 12.14 hrs, Volume=
 0.221 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 180.51' @ 12.14 hrs Flood Elev= 184.10'

Device	Routing	Invert	Outlet Devices
#1	Primary	179.40'	18.0" Round Culvert L= 44.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= $179.40' / 178.25'$ S= 0.0261 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=3.47 cfs @ 12.14 hrs HW=180.51' TW=180.02' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 3.47 cfs @ 3.46 fps) Barrington Storage-Office PostConstructioType III 24-hr 10-YR SEACOAST Rainfall=4.63" Prepared by Tritech Engineering Corp. HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

Summary for Pond CB-5: CATCH BASIN 5

Inflow Area = $1.463 ext{ ac}, 71.69\%$ Impervious, Inflow Depth = 2.79" for 10-YR SEACOAST eventInflow = $4.78 ext{ cfs} @ 12.13 ext{ hrs}, Volume =<math>0.340 ext{ af}$ Outflow = $4.78 ext{ cfs} @ 12.13 ext{ hrs}, Volume =<math>0.340 ext{ af}$ Primary = $4.78 ext{ cfs} @ 12.13 ext{ hrs}, Volume =<math>0.340 ext{ af}$ 0.340 ext{ af} $0.340 ext{ af}$ $0.340 ext{ af}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 181.11' @ 12.13 hrs Flood Elev= 184.10'

Device	Routing	Invert	Outlet Devices
#1	Primary	179.55'	18.0" Round Culvert
			Inlet / Outlet Invert= 179.55' / 179.10' S= 0.0102 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=4.74 cfs @ 12.13 hrs HW=181.10' TW=180.60' (Dynamic Tailwater) -1=Culvert (Inlet Controls 4.74 cfs @ 2.68 fps)

Summary for Pond CB-6: CATCH BASIN 6

Inflow	Area =	3.365 ac, 13.29% Impervious, Inflow D	Depth = 1.69" for 10-YR SEACOAST eve	nt
Inflow	=	4.56 cfs @ 12.25 hrs, Volume=	0.475 af	
Outflow	N =	4.56 cfs @ 12.25 hrs, Volume=	0.475 af, Atten= 0%, Lag= 0.0 min	
Primar	у =	4.56 cfs @ 12.25 hrs, Volume=	0.475 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 190.17' @ 12.25 hrs Flood Elev= 192.65'

Device	Routing	Invert	Outlet Devices
#1	Primary	188.95'	18.0" Round Culvert L= 80.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 188.95' / 187.75' S= 0.0150 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=4.55 cfs @ 12.25 hrs HW=190.17' TW=188.16' (Dynamic Tailwater) ↓ 1=Culvert (Inlet Controls 4.55 cfs @ 2.96 fps)

Summary for Pond D.E.101: Stone Drip Edge

Inflow Area	ι =	0.072 ac,100	.00% Imperv	vious, Inflow	Depth = 4.39"	for 10-YR	SEACOAST event
Inflow	=	0.32 cfs @	12.08 hrs,	Volume=	0.026 af		
Outflow	=	0.22 cfs @	12.21 hrs,	Volume=	0.026 af,	Atten= 31%,	Lag= 7.7 min
Discarded	=	0.04 cfs @	11.68 hrs,	Volume=	0.024 af		
Primary	=	0.18 cfs @	12.21 hrs,	Volume=	0.002 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3

Barrington Storage-Office PostConstructioType III 24-hr 10-YR SEACOAST Rainfall=4.63"

Prepared by Tritech Engineering Corp. HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

Peak Elev= 190.00' @ 12.21 hrs Surf.Area= 625 sf Storage= 249 cf

Plug-Flow detention time= 29.4 min calculated for 0.026 af (100% of inflow) Center-of-Mass det. time= 29.4 min (778.7 - 749.3)

Volume	Invert	Avail.Stor	rage	Storage Description
#1	189.00'	25	50 cf	5.00'W x 125.00'L x 1.00'H Drip Edges 625 cf Overall x 40.0% Voids
Device	Routing	Invert	Outle	et Devices
#1 #2	Discarded Primary	189.00' 189.99'	3.00 125. Head 2.50 Coef 3.30	0 in/hr Exfiltration over Surface area Phase-In= 0.01' 0' long x 1.0' breadth Broad-Crested Rectangular Weir d (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 3.00 f. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.31 3.32

Discarded OutFlow Max=0.04 cfs @ 11.68 hrs HW=189.02' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.04 cfs)

Primary OutFlow Max=0.16 cfs @ 12.21 hrs HW=190.00' TW=0.00' (Dynamic Tailwater) 2=Broad-Crested Rectangular Weir (Weir Controls 0.16 cfs @ 0.21 fps)

Summary for Pond D.E.104: Stone Drip Edge

Inflow Area	ι =	0.057 ac,100	.00% Impervi	ious, Inflow	Depth =	4.39'	for	10-YR	SEACOAS	Γ event
Inflow	=	0.26 cfs @	12.08 hrs, \	/olume=	0.02	1 af				
Outflow	=	0.32 cfs @	12.12 hrs, \	/olume=	0.02	1 af,	Atten=	0%, L	_ag= 2.2 mir	n
Discarded	=	0.03 cfs @	11.61 hrs, \	/olume=	0.01	8 af				
Primary	=	0.29 cfs @	12.12 hrs, \	/olume=	0.00	3 af				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 193.00' @ 12.12 hrs Surf.Area= 400 sf Storage= 160 cf

Plug-Flow detention time= 27.9 min calculated for 0.021 af (100% of inflow) Center-of-Mass det. time= 27.9 min (777.3 - 749.3)

Volume	Invert	Avail.Stor	rage	Storage Description
#1	192.00'	16	60 cf	5.00'W x 80.00'L x 1.00'H Drip Edges 400 cf Overall x 40.0% Voids
Device	Routing	Invert	Outle	et Devices
#1 #2	Discarded Primary	192.00' 192.99'	3.00 80.0 Head 2.50 Coef 3.30	0 in/hr Exfiltration over Surface area Phase-In= 0.01' ' long x 1.0' breadth Broad-Crested Rectangular Weir d (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 3.00 f. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.31 3.32

Barrington Storage-Office PostConstructioType III 24-hr 10-YR SEACOAST Rainfall=4.63" Prepared by Tritech Engineering Corp. HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

Discarded OutFlow Max=0.03 cfs @ 11.61 hrs HW=192.02' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.28 cfs @ 12.12 hrs HW=193.00' TW=186.22' (Dynamic Tailwater) ←2=Broad-Crested Rectangular Weir (Weir Controls 0.28 cfs @ 0.30 fps)

Summary for Pond D.E.105: Stone Drip Edge

Inflow Area	a =	0.057 ac,100	.00% Imper	vious, Inflow De	epth = 4.39"	for 10-YR	SEACOAST event
Inflow	=	0.26 cfs @	12.08 hrs,	Volume=	0.021 af		
Outflow	=	0.32 cfs @	12.12 hrs,	Volume=	0.021 af, A	tten= 0%,	Lag= 2.2 min
Discarded	=	0.03 cfs @	11.61 hrs,	Volume=	0.018 af		
Primary	=	0.29 cfs @	12.12 hrs,	Volume=	0.003 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 193.00' @ 12.12 hrs Surf.Area= 400 sf Storage= 160 cf

Plug-Flow detention time= 27.9 min calculated for 0.021 af (100% of inflow) Center-of-Mass det. time= 27.9 min (777.3 - 749.3)

Volume	Invert	Avail.Storag	ge Storage Description
#1	192.00'	160	cf 5.00'W x 80.00'L x 1.00'H Drip Edges 400 cf Overall x 40.0% Voids
Device	Routing	Invert C	Dutlet Devices
#1	Discarded	192.00' 3	3.000 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	192.99' 8	80.0' long x 1.0' breadth Broad-Crested Rectangular Weir

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Discarded OutFlow Max=0.03 cfs @ 11.61 hrs HW=192.02' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.28 cfs @ 12.12 hrs HW=193.00' TW=185.88' (Dynamic Tailwater) —2=Broad-Crested Rectangular Weir (Weir Controls 0.28 cfs @ 0.30 fps)

Summary for Pond D.E.106: Stone Drip Edge

Inflow Area	a =	0.316 ac,100	.00% Impervie	ous, Inflow D	Depth = 4.39	9" for 10-YF	R SEACOAST even	۱t
Inflow	=	1.43 cfs @	12.08 hrs, V	/olume=	0.116 af			
Outflow	=	1.44 cfs @	12.14 hrs, V	/olume=	0.116 af,	Atten= 0%,	Lag= 3.4 min	
Discarded	=	0.16 cfs @	11.64 hrs, V	/olume=	0.101 af		-	
Primary	=	1.28 cfs @	12.14 hrs, V	/olume=	0.014 af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 185.50' @ 12.14 hrs Surf.Area= 2,340 sf Storage= 936 cf

Plug-Flow detention time= 28.3 min calculated for 0.116 af (100% of inflow) Center-of-Mass det. time= 28.3 min (777.6 - 749.3) Barrington Storage-Office PostConstructioType III 24-hr 10-YR SEACOAST Rainfall=4.63"

Prepared by Tritech Engineering Corp.

HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Stor	age	Storage Description	
#1	184.50'	93	6 cf	6.50'W x 360.00'L x 1.00'H Drip Edges 2,340 cf Overall x 40.0% Voids	
Device	Routing	Invert	Outle	et Devices	
#1 #2	Discarded Primary	184.50' 185.49'	3.00 360.0 Head 2.50 Coef 3.30	D in/hr Exfiltration over Surface area Phase-In= 0.01' D' long x 1.0' breadth Broad-Crested Rectangular Weir d (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 3.00 . (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.31 3.32	
Discard 1=Ex	ed OutFlow Ma filtration (Exfilt	ax=0.16 cfs ration Con	: @ 1 ⁻ trols 0	1.64 hrs HW=184.52' (Free Discharge) .16 cfs)	
Primary OutFlow Max=1.26 cfs @ 12.14 hrs HW=185.50′ TW=180.51′ (Dynamic Tailwater) [●] 2=Broad-Crested Rectangular Weir (Weir Controls 1.26 cfs @ 0.29 fps)					

Summary for Pond D.E.107: Stone Drip Edge

Inflow Area	a =	0.316 ac,100	.00% Imper	vious, Inflow	Depth = 4.39"	for 10-YR	SEACOAST event
Inflow	=	1.43 cfs @	12.08 hrs,	Volume=	0.116 af		
Outflow	=	1.48 cfs @	12.13 hrs,	Volume=	0.116 af, A	Atten= 0%, La	ag= 2.8 min
Discarded	=	0.21 cfs @	12.13 hrs,	Volume=	0.102 af		
Primary	=	1.27 cfs @	12.13 hrs,	Volume=	0.013 af		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 185.50' @ 12.13 hrs Surf.Area= 2,340 sf Storage= 936 cf

Plug-Flow detention time= 26.4 min calculated for 0.116 af (100% of inflow) Center-of-Mass det. time= 26.4 min (775.8 - 749.3)

Volume	Invert	Avail.Stora	age Storage Description
#1	184.50'	936	6 cf 6.50'W x 360.00'L x 1.00'H Drip Edges 2,340 cf Overall x 40.0% Voids
Device	Routing	Invert (Outlet Devices
#1 #2	Discarded Primary	184.50' 185.49' 185.49'	3.000 in/hr Exfiltration over Wetted area Phase-In= 0.10' 360.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Discarded OutFlow Max=0.21 cfs @ 12.13 hrs HW=185.50' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.21 cfs)

Primary OutFlow Max=1.26 cfs @ 12.13 hrs HW=185.50' TW=181.11' (Dynamic Tailwater) ←2=Broad-Crested Rectangular Weir (Weir Controls 1.26 cfs @ 0.29 fps) **Barrington Storage-Office PostConstructio***Type III 24-hr 10-YR SEACOAST Rainfall=4.63*" Prepared by Tritech Engineering Corp. HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

Summary for Pond DMH-1: DMH-1

 Inflow Area =
 0.712 ac, 90.56% Impervious, Inflow Depth = 3.84" for 10-YR SEACOAST event

 Inflow =
 2.60 cfs @ 12.12 hrs, Volume=
 0.228 af

 Outflow =
 2.60 cfs @ 12.12 hrs, Volume=
 0.228 af, Atten= 0%, Lag= 0.0 min

 Primary =
 2.60 cfs @ 12.12 hrs, Volume=
 0.228 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 186.06' @ 12.12 hrs Flood Elev= 189.80'

Device	Routing	Invert	Outlet Devices
#1	Primary	185.20'	18.0" Round Culvert L= 215.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 185.20' / 178.30' S= 0.0321 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=2.58 cfs @ 12.12 hrs HW=186.05' TW=179.87' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.58 cfs @ 2.48 fps)

Summary for Pond DMH-2: DMH-2

Inflow Area	a =	3.789 ac,	79.20% Imperv	/ious,	Inflow Depth	n = 3.09	" for '	10-YR	SEACOAST	event
Inflow	=	12.46 cfs @	@ 12.14 hrs,	Volum	e= (0.976 af				
Outflow	=	12.46 cfs @	@ 12.14 hrs,	Volum	e= (0.976 af,	Atten=	0%, L	.ag= 0.0 min	
Primary	=	12.46 cfs @	@ 12.14 hrs,	Volum	e= (0.976 af			-	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 180.02' @ 12.14 hrs Flood Elev= 185.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	178.15'	30.0" Round Culvert
			L= 18.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 178.15' / 178.00' S= 0.0083 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 4.91 sf

Summary for Pond DMH-3: DMH-3

Inflow /	Area =	2.096 ac, 74.05% Impervious, Ir	nflow Depth = 3.02" for 10-YR SEAC	DAST event
Inflow	=	6.88 cfs @ 12.13 hrs, Volume	= 0.527 af	
Outflov	v =	6.88 cfs @ 12.13 hrs, Volume	= 0.527 af, Atten= 0%, Lag= 0.4) min
Primar	y =	6.88 cfs @ 12.13 hrs, Volume	= 0.527 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 180.60' @ 12.13 hrs Flood Elev= 184.60' **Barrington Storage-Office PostConstructio***Type III 24-hr 10-YR SEACOAST Rainfall=4.63*" Prepared by Tritech Engineering Corp.

HydroCAD® 10.10-3a s/n 00652 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	179.00'	24.0" Round Culvert L= 128.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 179.00' / 178.25' S= 0.0059 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=6.83 cfs @ 12.13 hrs HW=180.60' TW=179.99' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 6.83 cfs @ 3.47 fps)

Summary for Link AP-1: ANALYSIS POINT #1

Inflow	Area =	11.890 ac, 30.16% Impervious, Inflow D	Depth > 2.21" for 10-YR SEACOAST ev	ent
Inflow	=	10.44 cfs @ 12.42 hrs, Volume=	2.194 af	
Primar	ту =	10.44 cfs @ 12.42 hrs, Volume=	2.194 af, Atten= 0%, Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs

Summary for Link AP-2: ANALYSIS POINT #2

Inflow <i>J</i>	Area =	0.600 ac, 0.0	00% Impervious	s, Inflow Depth	= 1.99	" for 10-YF	R SEACOAST	event
Inflow	=	0.99 cfs @	12.24 hrs, Volu	ume= 0.	100 af			
Primar	y =	0.99 cfs @	12.24 hrs, Volu	ıme= 0.	100 af,	Atten= 0%,	Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs

Summary for Link AP-3: ANALYSIS POINT #3

Inflow	Area =	2.858 ac, 0.0	0% Impervious,	Inflow Depth = 1	1.69" for	10-YR SEACOAST event
Inflow	=	2.13 cfs @ 1	2.86 hrs, Volun	ne= 0.403	af	
Primar	^у =	2.13 cfs @ 1	2.86 hrs, Volun	ne= 0.403	af, Atten=	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-28.00 hrs, dt= 0.01 hrs

DRAINAGE ANALYSIS, EROSION AND SEDIMENT CONTROL, & SITE DEVELOPMENT PLAN NARRATIVE FOR **BARRINGTON STORAGE-OFFICE** CALEF HIGHWAY

BARRINGTON, NEW HAMPSHIRE

MAY 2020 REVISED JULY 2020

> SECTION II EXHIBITS

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	New Hampshire
Location	
Longitude	70.984 degrees West
Latitude	43.243 degrees North
Elevation	0 feet
Date/Time	Thu, 07 May 2020 10:37:42 -0400

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.49	0.65	0.81	1.02	1yr	0.70	0.98	1.19	1.53	1.97	2.55	2.82	1yr	2.26	2.71	3.13	3.85	4.42	1yr
2yr	0.32	0.49	0.61	0.80	1.01	1.28	2yr	0.87	1.16	1.49	1.89	2.41	<mark>3.08</mark>	3.44	2yr	2.73	3.30	3.80	4.53	5.16	2yr
5yr	0.37	0.57	0.72	0.96	1.23	1.57	5yr	1.06	1.44	1.84	2.36	3.03	3.89	4.39	5yr	3.44	4.22	4.85	5.70	6.45	5yr
10yr	0.40	0.63	0.80	1.09	1.42	1.84	10yr	1.23	1.69	2.17	2.80	3.60	<mark>4.63</mark>	5.29	10yr	4.10	5.09	5.83	6.79	7.64	10yr
25yr	0.47	0.74	0.94	1.30	1.73	2.27	25yr	1.49	2.08	2.69	3.50	4.53	5.85	6.77	25yr	5.18	6.51	7.43	8.56	9.55	25yr
50yr	0.52	0.83	1.07	1.49	2.01	2.67	50yr	1.74	2.45	3.18	4.15	5.40	<mark>6.98</mark>	8.16	50yr	6.18	7.85	8.94	10.20	11.32	50yr
100yr	0.59	0.95	1.22	1.72	2.34	3.14	100yr	2.02	2.88	3.75	4.92	6.42	8.33	9.84	100yr	7.38	9.46	10.76	12.16	13.42	100yr
200yr	0.65	1.06	1.38	1.97	2.73	3.70	200yr	2.36	3.39	4.44	5.85	7.65	9.95	11.87	200yr	8.81	11.42	12.96	14.51	15.92	200yr
500yr	0.77	1.26	1.65	2.39	3.35	4.58	500yr	2.89	4.21	5.52	7.33	9.64	12.60	15.22	500yr	11.15	14.64	16.56	18.33	19.97	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.24	0.36	0.44	0.60	0.73	0.90	1yr	0.63	0.88	0.91	1.25	1.50	1.97	2.47	1yr	1.74	2.38	2.92	3.29	3.96	1yr
2yr	0.31	0.48	0.59	0.80	0.99	1.18	2yr	0.86	1.15	1.35	1.81	2.33	2.99	3.34	2yr	2.65	3.21	3.69	4.41	5.03	2yr
5yr	0.35	0.54	0.67	0.91	1.16	1.40	5yr	1.00	1.37	1.60	2.13	2.76	3.60	4.05	5yr	3.19	3.90	4.52	5.34	6.03	5yr
10yr	0.38	0.59	0.73	1.02	1.32	1.60	10yr	1.14	1.56	1.81	2.42	3.11	4.12	4.69	10yr	3.65	4.51	5.24	6.16	6.90	10yr
25yr	0.44	0.67	0.83	1.19	1.56	1.91	25yr	1.35	1.87	2.12	2.83	3.61	4.92	5.67	25yr	4.36	5.45	6.39	7.40	8.17	25yr
50yr	0.49	0.74	0.92	1.33	1.78	2.19	50yr	1.54	2.14	2.37	3.19	4.03	5.62	6.54	50yr	4.97	6.29	7.43	8.52	9.42	50yr
100yr	0.55	0.82	1.03	1.49	2.05	2.52	100yr	1.77	2.46	2.68	3.58	4.48	6.41	7.54	100yr	5.67	7.25	8.64	9.81	10.74	100yr
200yr	0.61	0.91	1.16	1.68	2.34	2.89	200yr	2.02	2.82	3.00	4.03	4.99	7.30	8.70	200yr	6.46	8.37	10.06	11.30	12.26	200yr
500yr	0.71	1.06	1.36	1.98	2.82	3.49	500yr	2.43	3.41	3.52	4.70	5.76	8.62	10.50	500yr	7.63	10.10	12.31	13.63	14.56	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.28	0.43	0.53	0.71	0.87	1.07	1yr	0.75	1.05	1.23	1.72	2.17	2.77	3.02	1yr	2.45	2.91	3.35	4.14	4.74	1yr
2yr	0.33	0.50	0.62	0.84	1.03	1.24	2yr	0.89	1.21	1.46	1.93	2.50	3.19	3.55	2yr	2.82	3.42	3.93	4.67	5.32	2yr
5yr	0.39	0.60	0.75	1.02	1.30	1.57	5yr	1.12	1.53	1.83	2.47	3.16	4.17	4.72	5yr	3.69	4.54	5.18	6.08	6.84	5yr
10yr	0.45	0.70	0.87	1.21	1.56	1.90	10yr	1.35	1.85	2.21	3.00	3.81	5.14	5.86	10yr	4.55	5.64	6.44	7.42	8.29	10yr
25yr	0.55	0.84	1.05	1.50	1.97	2.43	25yr	1.70	2.38	2.84	3.91	4.89	6.80	7.83	25yr	6.02	7.53	8.54	9.80	10.75	25yr
50yr	0.64	0.98	1.22	1.75	2.35	2.93	50yr	2.03	2.86	3.44	4.75	5.93	8.40	9.75	50yr	7.44	9.38	10.59	12.03	13.19	50yr
100yr	0.75	1.13	1.42	2.05	2.81	3.53	100yr	2.42	3.45	4.17	5.80	7.20	10.39	12.16	100yr	9.19	11.69	13.12	14.78	16.09	100yr
200yr	0.87	1.31	1.66	2.40	3.35	4.26	200yr	2.89	4.17	5.06	7.08	8.74	12.89	15.18	200yr	11.40	14.60	16.27	18.15	19.66	200yr
500yr	1.06	1.58	2.04	2.96	4.21	5.45	500yr	3.63	5.32	6.53	9.24	11.30	17.17	20.35	500yr	15.19	19.57	21.62	23.87	25.66	500yr

i

Source: USDA Soil Conservation Service

SSSNNE Special Pub No. 5 September, 2009

Other	loamy over loamy sand	occasionally flooded		single grain in C		strata	strata of fine sand		loamy cap	ioarriy cap	aravelly coarse sand	organic over sand	ortstein	gravelly surface		slate, loamy cap		loamv over sandv	sandy or sandy-skeletal	sandy loam in Cd	silty over gravelly	very fine sandy loam	<mark>silty clay loam</mark>								loarriy over loarriy sariu loamv sand in Cd	loamy sand in Cd	sandy or sandy-skeletal	mucky loam	loamy cap	gravelly sandy loam in Cd	very cobbly loamy sand	line sandy loam		fine sandy loam	fine sandv loam in Cd		less than 20 in. deep	less than 20 in. deep	20 to 40 in. deep	20 to 40 in. deep	less than 20 in. deep	less than 20 in. deep	less than 20 in. deep	20 to 40 in. aeep 20 to 40 in. deep	10 V 10 10 V V
Spodosol ?	ou	ou	ou	ou	ou	ou	ou	ou	on o		ves	ou	yes	yes	yes	yes		ves	yes	ou	ou	no	ou	ou	ou	ou	yes	01	01	yes 20	01 01	ou	yes	ou	yes	yes	yes	2		SUI	Ves	ves	Ves	ou	yes	ou	yes	yes	or	yes	y
Soil lextures	loamy	sandy	loamy	loamy	loamy	silty	silty	silty over loamy	gravelly sand	sandy-skeletal sandv-skeletal	sandv-skeletal	sandv	sandy	sandy-skeletal	sandy-skeletal	sandy-skeletal		loamv	loamy over sandy	loamy	silty	silty	fine	fine	sandy	gravelly sand	sandy Icomi ariat alariari		sariuy over idarriy	loani araa aadii	ioarriy over sariuy Ioamv	loamy	loamy over sandy	loamy	sandy-skeletal	loamy	sandy-skeletal	loamy	loamy	loamv	loamv	loamv	loamv-skeletal	loamy	loamy-skeletal	loamy	loamy	loamy	loamy	loamy	1.11M
lemp.	mesic	mesic	mesic	mesic	mesic	mesic	mesic	mesic	mesic	mesic	friaid	friaid	mesic	frigid	frigid	trigid	mesic	friaid	frigid	mesic	mesic	mesic	mesic	mesic	mesic	frigid			fricio	mocio	mesic	frigid	frigid	mesic	frigid	frigid	trigid	mesic	meein	frinid	frinid	friaid	frigid	mesic	frigid	mesic	frigid	frigid	frigid	friaid	2
Land Form	Flood Plain (Bottom Land)	Flood Plain (Bottomland)	Flood Plain (Bottom Land)	Outwash and Stream Terraces	Saliuy Till Outwash and Stream Terraces	Outwash and Stream Terraces	Firm, platy, loamy till	Terraces and glacial lake plains	Terraces and glacial lake plains	Silt and Clay Deposits	Silt and Clay Deposits	Outwash and Stream Terraces	Outwash and Stream Terraces	Conditional and Stream Lerraces	Sandyhoanny over siivciay	Cirm cloth condutiil		LUOSE III, Saridy textures Firm: platy: sandy till	Firm, platy, sandy till	Outwash and Stream Terraces	Firm, platy, loamy till	Sandy Till	Firm, platy, sandy till	Loose till, sandy textures	Eiter alativ loamiv till	Loce till loamy textures	Loce till Joamy textures	Firm platy loamy till	Firm, platy, loamy till	Friable till, silty, schist & phyllite	Loose till, bedrock	Friable till, silty, schist & phyllite	Loose till, bedrock	Loose till, bedrock	Loose till, bedrock	Loose till, bedrock	Loose till, bedrock Loose till, bedrock														
Group	2	.	5	3	5	9	2				·ε	9	5	1	-	- c	، ۲	- C	с	3	2	2	<mark>3</mark>	<mark>5</mark>	5		- c	ი <mark>ი</mark>	<mark>ר)</mark> מ	n (νm	ę	3	9	£	e	m (V 0	ი ო) (1 0		4	4	4	4	4	4 •	4 •	4 4	r
Hyd. Grp.	В	A	υ	в	ပ	۵	в	ш	A	< ⊲	: B		U	A	A	٩d	۵	: œ	в	ပ	В	В	<mark>0</mark>	<mark>0</mark>	υ	A -	≮ (<mark>ر</mark>	<mark>ی</mark> ر	ء ر	<u>ہ</u> د	U	в	D	A	υ	<u></u>	۵ ر	<u>م</u> د	а Ш	n ر.	0	C/D	C/D	υ	в	υ	DA Q	C/D	ں د	,
Ksat high - C in/hr	20.0	20.0	20.0	20.0	20.0	20.0	6.0	6.0	20.0	100.0	20.0	20.0	20.0	100.0	100.0	20.0	20.00	6.0	20.0	0.6	20.0	2.0	0.2	0.2	20.0	100.0	99.0	7:0 90	0.0	0.00	0.6	0.6	20.0	0.2	20.0	0.6	20.0	0.0	6.0 6	9.0 9	0.6	0.6	2.0	6.0	2.0	6.0	6.0	6.0	6.0	6.0 6	2
Ksat low - C in/hr	6.00	6.00	6.00	6.00	6.00	6.00	0.60	0.60	6.00 6.00	20.00	6.00	6.00	6.00	20.00	20.00	6.00 20.00	6 00	0.60	6.00	0.00	2.00	0.20	0.00	0.00	6.00	20.00	20.00	0.00	0.0	00 0	0.06	0.06	6.00	0.00	6.00	0.06	6.00	0.00	0.00	0.60	0.06	0.06	0.60	0.60	0.60	0.60	2.00	2.00	2.00	0.60 0.60	~~~
Ksat high - B in/hr	2.0	20.0	2.0	6.0	6.0	2.0	2.0	6.0	20.0	20.0	20.0	20.0	0.2	20.0	20.0	20.0	20.0	2.0	2.0	2.0	2.0	2.0	0.2	<mark>0.2</mark>	20.0	20.0	20:U	0.0	0.02	0.0	6.0 6	2.0	2.0	0.2	20.0	2.0	20.0	0.0	6.0 6.0	6.0	0.0	2.0	2.0	6.0	2.0	6.0	6.0	6.0	6.0	6.0 6.0	2
Ksat Iow - B in/hr	0.6	6.0	0.6	0.6	0.6	0.6	0.6	0.6	2.0	0.0	6.0	6.0	0.06	6.0	6.0	6.0 6.0	0.0	0.6	0.6	0.6	0.6	0.6	0.1	0.0	6.0	6.0	0.0	2.0	0.0	c	2.0 0.6	0.6	0.6	0.0	2.0	0.6	2.0	0.0	0.0	0.6	0.6	0.6	0.6	0.6	0.6	0.6	2.0	2.0	2.0	0.0 0.6	222
legend number	٢	2	ю	4	5	9	8	6	10	- 6	14	15	16	21	22	52	24 26	27	28	29	30	31	<mark>32</mark>	<mark>33</mark>	34	35	00 21	10 10	o <mark>c</mark> oc	50	44	46	48	49	55	56	58	70	00	22	76	78	84	86	88	89	91	92	93	α 66	3
Soil Series	Occum	Suncook	Lim	Pootatuck	Rippowam	Saco	Hadley	Winooski	Merrimac	Hincklev	Sheepscot	Searsport	Saugatuck	Colton, gravelly	Colton	Masardis	Windsor	Groveton	Madawaska	Woodbridge	Unadilla	Hartland	Boxford	Scitico	Wareham	Champlain	Adams			NIIIIS	Montauk	Henniker	Madawaska, aquentic	Whitman	Hermon	Becket	Waumbeck	Devter	Sutton	Barkchira	Marlow	Peru	Thorndike	Hollis	Winnecook	Chatfield	Hogback	Lyman	Woodstock	Tunbridge	202212121

Sorted by Numerical Legend K_{set} B and C horizons SSSNNE Special pub no. 5

legend number	101
il Series	Indawa

		_	_	_	_	_			_					_	_				_	_	_	_	_	-	-		-	-	-		_	-	_	_		_	_	_	_	_	_				_	_	_						_	_	_
04h o.:	Other	loamy over loamy sand	occasionally flooded	very fine sandy loam	loamy to coarse sand in C		strata of fine sand, occ flooded		organic over sand, non stony	cemented (ortstein)	loam over gravelly sand	channery silt loam in Cd	channery silt loam in Cd	loamy over sandy	20 to 40 in. deep	silt loam to silt in C	organic over silt	thin strata silty clay loam	less than 20 in. deep	silt over clay	less than 20 in. deep	gravelly loamy sand in C	cobbly loamy sand	deep organic	cemented	loam in Cd		deep organic	occ flood, loamy over I. sand	frequently flooded	very fine sandy loam		loamy over slate gravel		loamy cap		sandy loam	channery silt loam in Cd	silt loam in C	silty clay		organic over clay	loam in Cd			20 to 10 in Joon	20 to 40 In. deep	20 to 40 in. deep	very cnannery	trigia dystrudept	mwd to swpd			shale	single grain in C
loooloon 0	spoaosol ?	ou	no	no	ou	no	ou	ou	no	yes	no	yes	yes	yes	yes	no	no	no	yes	ou	yes	yes	ou	ou	yes	no	yes	ou	ou	ou	ou	ou	no	yes	no	no	no	no	ou	ou	ou	no	no	ou	on 2	01	01	yes	ou	yes	uo	01		2 0	2 OU
Coll Totalized	Soli rextures	loamy	sandy	silty	loamy	loamy	silty	silty	sandy	sandy	sandy	loamy	loamy	loamy over sandy	loamy	silty	loamy	silty	loamy	fine	sandy	loamy over sandy, sandy-skeletal	sandy-skeletal	peat	sandy-skeletal	loamy	loamý	peat	loamy	sandy	silty	silty	loamy-skeletal	sandy	sandy-skeletal	loamy	loamy	loamy	silty	fine	IINE	fine	loamy	loamy over clayey	loamy	loamy	loamy	loamy-skeletal	loamy	loamy	loamy	nemic	sapric	sandv-skeletal	sandv
Toms	i emp.	frigid	frigid	mesic	frigid	frigid	mesic	mesic	mesic	frigid	mesic	frigid	frigid	frigid	frigid	mesic	frigid	mesic	frigid	mesic	mesic	frigid	mesic	frigid	frigid	frigid	frigid	frigid	frigid	frigid	frigid	frigid	mesic	frigid	frigid	cryic	frigid	frigid	mesic	frigid	Trigid	frigid	frigid	mesic	trigia €=i≃i⊲	trigia fricia		trigid		Trigia	mesic	mooio	fridid	mesic	mesic
and Farm	Land Form	Flood Plain (Bottom Land)	Flood Plain (Bottomland)	Flood Plain (Bottom Land)	Flood Plain (Bottom Land)	Outwash and Stream Terraces	Outwash and Stream Terraces	Outwash and Stream Terraces	Firm, platy, silty till, schist & phyllite	Firm, platy, silty till, schist & phyllite	Outwash and Stream Terraces	Friable till, silty, schist & phyllite	Terraces and glacial lake plains	Firm, platy, silty till, schist & phylitte	Terraces and glacial lake plains	Friable till, silty, schist & phyllite	Silt and Clay Deposits	Sandy Till	Loose till, sandy textures	Loose till, sandy textures	Organic Materials - Freshwater	Sandy Till	Firm, platy, loamy till	Loose till, loamy textures	Organic Materials - Freshwater	Flood Plain (Bottom Land)	Flood Plain (Bottomland)	Flood Plain (Bottom Land)	Flood Plain (Bottom Land)	Outwash and Stream Terraces	Outwash and Stream Terraces	Outwash and Stream Terraces	Firm, platy, loamy till	Loose till, loamy textures	Firm, platy, silty till, schist & phyllite	Terraces and glacial lake plains	Silt and Clay Deposits	Slit and Clay Deposits	Silt and Clay Deposits	Firm, platy, loamy till	zandy/loamy over silf/clay	Firm, platy, slity till, schist & phyllite	Loose till, sandy textures		Frable till, slity, schist & phyllite	weathered bedrock, phyllite	Loose till, loamy textures	Correction Materials Frankrinter	Organic Materials - Freshwater	Diganic Materials - Freshwater Elood Diaio (Bottom Lond)	רוטטט רומוון (דטיוטטון בעויט) Duitwash and Stream Terraces	Outwash and Stream Terraces			
	Group	2	1	3	3	5	2	2	9	3	e	3	e	2	4	ო	9	3	4	9	4	2	Э	9	-	e	e	9	2	1	2	5	1	5	-	5	2	3	e	m ı	Ω	9	с (n u	0 L	، ۵	4 •	4 0		n u		0 (0 0	.) . -	- m
11.11	пуа. Grp.	В	A	В	В	С	В	с I	D	С	в	ပ	ပ	В	В	В	D	В	D	D	C/D	В	В	D	A	ပ	в	D	В	A	В	ပ	A	ပ	A	С	В	С	В	с u	2	Ō	с o	ں د.	ى ر	ى د	ە د	ۍ پ	<u>ر/</u> ا	מ מ	Ъ	A/A	2 2 a	a ⊲	: @
	Nsat nign - ບ in/hr	20.0	20.0	6.0	20.0	20.0	6.0	2.0	20.0		20.0	0.2	0.2	20.0	2.0	0.6	0.2	0.6	2.0	0.2		6.0	20.0		20.0	0.6	6.0		20.0	20.0	6.0	100.0	100.0	20.0	100.0	0.2	6.0	0.2	2.0	0.2	0.2	0.2	0.2 ô.ô	0.2	0.0	0.0	0.0	2.0	20.0	6.0	6.0		00	100.0	100.0
0 1	ר Nsat Iow - כ in/hr	6.00	6.00	0.60	6.00	6.00	0.60	0.60	6.00		2.00	0.02	0.02	6.00	0.60	0.06	0.02	0.06	0.60	00.00		2.00	2.00		6.00	0.06	09.0		6.00	6.00	2.00	09.0	20.00	6.00	20.00	0.00	0.60	0.06	0.20	0.00	0.00	0.00	0.06	0.00	0.00	0.00	0.00	0.60	2.00	0.60	0.60		U EU	20.00	20.00
	NSat nign - B in/hr	6.0	20.0	6.0	6.0	6.0	2.0	2.0	20.0		6.0	2.0	2.0	2.0	2.0	2.0	6.0	2.0	2.0	0.2		2.0	20.0		6.0	2.0	2.0		6.0	20.0	2.0	100.0	6.0	20.0	20.0	0.2	6.0	2.0	2.0	0.6 2.0	0.2	0.2	2.0	6.0	2.0	0.0	0.0	2.0	6.0	2.0	6.0		000	20.0	20.0
	NSATIOW - B in/hr	0.6	6.0	0.6	0.6	0.6	0.6	0.6	6.0		2.0	0.6	0.6	0.6	0.6	0.6	0.2	0.6	0.6	0.0		0.6	2.0		2.0	0.6	0.6		0.6	6.0	0.6	9.0	2.0	6.0	6.0	0.6	0.6	0.6	0.6	0.1	0.0	0.0	0.6	2.0	0.0	0.0	0.0	0.6	0.6	0.0	0.6		e e	2.0	6.0
10000	legena number	101	102	103	104	105	108	109	115	116	118	123	126	127	128	130	131	132	133	134	136	142	146	150	154	166	168	195	201	202	208	209	210	214	220	224	226	228	230	232	233	234	237	238	240	240	1020	222	692	697	289	230	207	310 310	313
Coll Coulor	Soli Series	Ondawa	Sunday	Winooski	Podunk	Rumney	Hadley	Limerick	Scarboro	Finch	Sudbury	Telos	Chesuncook	Allagash	Elliottsville	Hitchcock	Burnham	Dartmouth	Monson	Maybid	Shapleigh	Monadnock	Acton	Vassalboro	Success	Canterbury	Sunapee	Waskish	Ondawa	Sunday	Fryeburg	Charles	Warwick	Naumburg	Boscawen	Bemis	Bice	Lanesboro	Poocham	Buxton	Scantic	Biddeford	Buckland	Elmridge	Brayton	Lyme Milloito		Macomber	Lombard	Sunapee var	Chattield Var.	Greenwood		Quonset	Deerfield

Sorted by Numerical Legend K_{sat} B and C horizons SSSNNE Special pub no. 5

	lb No. 5	r, 2009	
DUVINE	Special F	Septemb	

			am in Cd	he C	am in Cd			deep	r. deep	hery	n n Cd	sand	sand	nic	oding	-skeletal vr cilt	d/aravel	tstein)					ny sand	-skeletal	in Cd	in Cd	deep		loam		sanu	aveiry	/ cap	-skeletal		loose		aveily	in 2C	sand			IY C			meor		am in Cd	/ in Cd	
Other			channery silt loa	silt loam in t	channery silt loa			20 to 40 in.	less than 20 ir	very chanr	tine sandy loai	organic over	organic over	deep orga	frequent floo	sandy or sandy	loamv over san	cemented (or					loamy over loai	sandy or sandy	loamy sand	loamy sand	20 to 40 in.	Tine sandy loan	organic over	organic over			slate, loam)	sandy or sandy		single grain,	strata sand/gra		aravellv sand	strata of fine			deep to cla				loamy sand	channerv silt lo	silt loam, plat	
Spodosol ?	yes	yes	no	ou	ou	ou	ou	no	no	9	yes	no	no	ou	ou	2		ves	ou	no	no	ou	ou	ou	ou	no	ou	on s	2	01	0	2 0	ou	ou	no	yes	yes	yes DO		ou	ou	ou	ou	yes	ou		011	ves	ves	
Soil Textures	sandy	sandy	loamy	silty	loamy	loamy over clayey	loamy	loamy	loamy	loamy	loamy	sandy or sandy-skeletal	sandy or sandy-skeletal	hemic/sapric	sandy	loamy over sandy	loamv over sandv	sandv-skeletal	sandy	co. loamy over sandy (skeletal)	co. loamy over clayey	co. loamy over clayey	loamy over sandy	loamy over sandy	loamy	loamy	loamy-skeletal	loamy	loamy		loomy over condy of otol	co. loamv over sandy (skeletal)	sandy-skeletal	loamy over sandy	loamy	sandy	sandy or sandy-skeletal	sariuy-sveletal coarse sand	siltv	silty	silty	silty	silty over clayey	sandy over loamy	co. loamy over sandy (skeletal)	Saliuy Ioamu	loamy	loamv	loamv	
Temp.	mesic	mesic	mesic	frigid	mesic	frigid	mesic	mesic	mesic	mesic	trigid	mesic	trigid	mesic	mesic	frigid	mesic	frigid	frigid	frigid	frigid	mesic	frigid	mesic	mesic	frigid	mesic		mocio	mesic	fricio	frigid	mesic	mesic	mesic	trigid	frigid	mesir	mesic	mesic	mesic	mesic	mesic	mesic	mesic	fridid	frigid	frigid	fricid	
Land Form	Outwash and Stream Terraces	Outwash and Stream Terraces	Firm, platy, silty till, schist & phyllite	Terraces and glacial lake plains	Firm, platy, silty till, schist & phyllite	Sandy/loamy over silt/clay	Firm, platy, silty till, schist & phyllite	Friable till, silty, schist & phyllite	Friable till, silty, schist & phyllite	Friable till, silty, schist & phyllite	Firm, platy, loamy till	Organic Materials - Freshwater	Organic Materials - Freshwater	Tidal Flat	Flood Plain (Bottomland)	Flood Plain (Bottom Land) Elood Plain (Bottom Land)	Outwash and Stream Terraces	Outwash and Stream Terraces	Loose till, sandy textures	Outwash and Stream Terraces	Sandy/loamy over silt/clay	Sandy/loamy over silt/clay	Loose till, sandy textures	Loose till, sandy textures	Firm, platy, sandy till	Firm, platy, sandy till	Friable till, silty, schist & phyllite	Firm, platy, loamy till	Organic Materials - Freshwater	Olganic Materials - Fleshwater Tidol Flot	Litute ond Streem Terroom	Flood Plain (Bottom Land)	Outwash and Stream Terraces	Outwash and Stream Terraces	Loose till, loamy textures	Outwash and Stream Lerraces	Outwash and Stream Terraces	Outwasti and Stream Terraces	Terraces and clacial lake plains	Terraces and glacial lake plains	Terraces and glacial lake plains	Terraces and glacial lake plains	Sandy/loamy over silt/clay	Sandy/loamy over silt/clay	Outwash and Stream Terraces	Dutwasht and Surgant Tenaces Firm platy eithy till echiet & phylithe	Firm, placy, sing tin, scriist & prigrice Firm, platy, sandy till	Firm. platy. silty till. schist & phyllite	Eim nlatv eiltv till echiet & nhvillite	רוווו, טומוע, סוווע נווו, סטווסו מ טוואוווע
Group	5	5	3	5	e	ო I	5	4	4	~ ~	n o	9	9	9	- 1	n u	0	ı ო	5	5	5	5		з	e	ю	4 0	γ	9	0 4	o c	2	.	3	1 2	5	m c	7 4	- ന	3	5	5	3	5	υ L	ი ფ	0 0	n m		`
нуd. Grp.	в	ш	ပ	ပ	U I	ပ (ပ ၊	шı	шı	ш	ں د		D		A	ם כ	а С	ы	ပ	ပ	с С	υ	В	ш	U I	υ	ш	ם כי			ם ב	ں n	A	в	U I	ш	<u>т</u> а	۵ ۵	< m	в	ပ	۵	ပ	U I		ב כ	ے د	0		>
Ksat high - C in/hr		20.0	0.2	0.6	0.2	0.2	0.2	2.0	2.0	2:0	0.6	100.0	20.0		20.0	100.0	100.0	20.0	20.0	2.0	0.2	0.2	6.0	2.0	0.2	0.6	2:0	0.0	0.2	100.0	0.001	33.0 100.0	100.0	20.0	20.0		20.0	100.0	2.0	2.0	0.2	0.2	0.2	0.6	100.0	20.0	0.6	0.0	0.0	4.0
Ksat low - C in/hr		6.00	0.06	0.06	0.06	0.00	0.06	0.60	0.60	0.60	0.06	6.00	6.00		6.00	0.00	20.00	6.00	6.00	0.60	0.00	0.00	2.00	0.60	0.06	0.06	0.60	0.00	0.20	07.0	00.02	0.60	20.00	6.00	0.60	4	6.00 6.00	20.00	0,60	0.06	0.06	0.06	0.00	0.06	6.00 6.00	0.00	0.00	0.06	90.0	0.00
Ksat high - B in/hr		20.0	2.0	2.0	2.0	6.0 2 2	2.0	2.0	2.0	2.0	2.0				20.0	100.0	2.0	20.0	20.0	2.0	6.0	6.0	2.0	2.0	2.0	2.0	2.0	2.0			ç	2.0	20.0	6.0	6.0	4	6.0 6.0	1000	2.0	2.0	2.0	2.0	2.0	20.0 2	2.0	0.0	0.2	2.0		2.4
Ksat low - B in/hr		6.0	0.6	0.2	0.6	2.0	0.6	0.6	0.6	0.6	0.6				6.0	0.6	0.0	6.0	6.0	0.6	2.0	2.0	0.6	0.6	0.6	0.6	0.6	0.0		I	u د	0.0	2.0	0.6	0.6	4	2.0	20.0	0.6	0.6	0.2	0.2	0.6	6.0	0.6	2.0	0.0	0.0	9.0	0.0
legend number	314	315	330	333	334	338	340	357	359	366	3/8	393	395	397	402	404	410	413	414	433	438	439	442	444	448	458	460	4/8	430	430	431 E01	505	510	513	514	516	520 520	323 576	531	532	533	534	536	538	540 E46	040	049 758	563	555	2000
Soil Series	Pipestone	Mashpee	Bernardston	Roundabout	Pittstown	Elmwood	Stissing	Cardigan	Kearsarge	Dutchess	Dixfield	Timakwa	Chocorua	Ipswich	Suncook	Medamak	Haven	Duane	Moosilauke	Grange	Swanton	Shaker	Chichester	Newfields	Scituate	Metacomet	Pennichuck	Gilmanton	Ussipee Notaboura	Device trick	Abooduick	Cohas	Hoosic	Ninigret	Leicester	Au Gres	Machias Stoteon	Caecar	Scio	Belgrade	Raynham	Binghamville	Suffield	Squamscott	Kaypol	Deacham	Skarn	Plaisted	Poreland Howeland	

Sorted by Numerical Legend K_{sat} B and C horizons SSSNNE Special pub no. 5

SSSNNE	Special Pub No. 5	September, 2009
ŝ	Ś	Š

r –	-			_	_					_			_														_
Other		silt loam, platy in C		organic over loam	gravelly sandy loam in Cd	single grain in C		very fine sandy loam	very fine sandy loam				less than 20 in. deep	loamy cap	sandy loam in Cd	mwd, sandy loam in Cd	20 to 40 in. deep	less than 20 in. deep	well drained, less than 20 in. deep	cobbly fine sandy loam	organic over sand	deep organic	deep organic	loam in Cd	organic over sand	organic over loam	less than 20 in. deep
Spodosol	2	yes	ou	ou	yes	yes	yes	yes	yes	ou	ou	ou	yes	yes	yes	yes	yes	yes	ou	yes	ou	ou	ou	yes	ou	ou	ou
Soil Textures		loamy	loamy	loamy	loamy	sandy	sandy	silty	silty	silty	silty	loamy	loamy-skeletal	fragmental	loamy	loamy	loamy	loamy	fibric to hemic	loamy	sandy	peat	sapric	loamy	sandy or sandy-skeletal	loamy	loamy
Temp.		frigid	frigid	mesic	frigid	frigid	frigid	frigid	frigid	frigid	frigid	mesic	frigid	frigid	cryic	cryic	cryic	cryic	cryic	frigid	mesic	frigid	frigid	frigid	frigid	frigid	frigid
Land Form		Friable till, silty, schist & phyllite	Firm, platy, silty till, schist & phyllite	Tidal Flat	Firm, platy, loamy till	Outwash and Stream Terraces	Outwash and Stream Terraces	Terraces and glacial lake plains	Terraces and glacial lake plains	Terraces and glacial lake plains	Firm, platy, loamy till	Firm, platy, loamy till	Weathered Bedrock Till	Weathered Bedrock Till	Firm, platy, loamy till	Firm, platy, loamy till	Loose till, bedrock	Loose till, bedrock	Organic over bedrock (up to 4" of mineral)	Loose till, loamy textures	Tidal Flat	Organic Materials - Freshwater	Organic Materials - Freshwater	Firm, platy, loamy till	Organic Materials - Freshwater	Organic Materials - Freshwater	Friable till, silty, schist & phyllite
Group		3	5	9	3	£	2	2	3	2	5	5	4	۱,	8	3	4	4	4	2	9	9	9	3	9	9	4
Hyd.	Grp.	C	۵	D	С	в	c	В	ပ	С	ပ	ပ	ပ	A	ပ	с С	ပ	C/D	A	В	D	D	D	c	D	D	D
Ksat high - C	in/hr	2.0	0.2	2.0	9.0	100.0	20.0	2.0	2.0	9.0	0.2	0.2	20.0	20.0	9.0	0.6	0.0	2.0	6.0	0.0	100.0			9.0	20.0	2.0	2
Ksat low - C	in/hr	09.0	90.0	00.0	90.0	20.00	00'9	09.0	09.0	90.0	90.0	00.0	2.00	00'9	00'0	00.0	2.00	09.0	2.00	09.0	20.00			90.0	00.9	0.20	0.60
Ksat high - B	in/hr	2.0	2.0		2.0	100.0	20.0	2.0	2.0	2.0	2.0	0.9	20.0	0.9	2.0	2.0	0.9	2.0	6.0	0.9				2.0			2.0
Ksat low - B	in/hr	0.6	0.6		0.6	20.0	6.0	0.6	0.6	0.6	0.6	0.6	2.0	2.0	0.6	0.6	2.0	0.6	2.0	0.6				0.6		1	0.6
legend	number	578	589	262	610	613	614	630	632	633	646	656	663	665	667	699	671	673	674	795	797	894	895	927	992	995	NA
Soil Series	_	Dixmont	Cabot	Westbrook	Mundal	Croghan	Kinsman	Salmon	Nicholville	Pemi	Pillsbury	Ridgebury	Canaan	Redstone	Sisk	Surplus	Glebe	Saddleback	Ricker	Houghtonville	Matunuck	Meadowsedge	Bucksport	Colonel	Pondicherry	Wonsqueak	Glover

no longer recognized organic materials Sorted by Numerical Legend K_{sat} B and C horizons SSSNNE Special pub no. 5 TABLE 6-4.1 -- RUNOFF CURVE NUMBERS (Average Watershed Condition)

CUVER VENCKIFILUN	Autorado portont	CURVE NU	HBERS FOR H	LUKOLUGI	SOIL GROUP
Cover type and hydrologic condition	impervious area	A	ß	U	٩
LY DEVELOPED URBAN AREAS ¹ (Vegetation Established)					
ms, open spaces, parks, golf courses, cemeteries, etc. good condition; grass cover on 75% or more of the area		39	19	74	80
fair condition; grass cover on 50% to 75% of the area poor condition; grass cover on 50% or less of the area		49. 68	69 29	83	78 68
ed parking lots, roofs, driveways, etc. Pets and roads.		98	98	98	98
paved with curbs and storm sewers		98	98	98	98
gravel dirt		22	88	89 87	91 80
paved with open ditches		83	B9	5	63 53
mercial and business areas Justriel districts	82 22	89 81	92 88	94 91	95 93
 A houses, town houses, and residential with lot sizes 1/8 acre or less 	65	1	85	06	92
idential Averace lot size					
1/4 acre 1/4 acre	38 30	61 57	К С	83 81	87 86
1/2 acre	ល	: 2, 2	:23	5 8 F	3 2 3 3
l acre 2 acre	12	97	8 2	22	82 83
<u>'ELOPING URBAN AREAS</u> ³ (No vegetation Established)	· .				
ity graded area		11	86	16	
for land uses with impervious areas, curve numbers are directly connected to the drainage system. Pervious ar condition and the impervious areas have an RCN of 98.	computed assuming t eas (lawn) are cons	hat 100% of idered to be	runoff from equivalent	impervic to lawns	ous areas is in good
Includes paved streets.					
Use for the design of temporary measures during grading under development vary considerably. The user will det	and construction. ermine the percent	Impervious - impervious.	area percent Then using	t for urb the newl	an areas Y graded are

Source: USDA Soil Conservation Service

Source: USDA Soil Conservation Service

Cover type and hydrologic condition Merchangle, all low N	Cover type and hydrologic condition Marchagic A B C D Cultivitie Asticutures(LND) Earlier Bare soil condition 77 85 91 94 Fallow Bare soil Crop residue cover (CR) poor 77 85 91 94 Care residue cover (CR) poor 77 85 91 95 Care residue cover (CR) poor 77 85 89 91 95 Care residue cover (CR) poor 77 85 <th>Cover type and hydrologic condition Mydrologic Mydrologic Mydrologic condition Mydrologic Mydr</th> <th>Cover typ CULTIVATED AGRIC</th> <th>COVER DESCRIPTION</th> <th>:</th> <th>CURVEN</th> <th>UMBERS FOR HY</th> <th>DROLOGIC S</th> <th>OIL GROUP</th>	Cover type and hydrologic condition Mydrologic Mydrologic Mydrologic condition Mydrologic Mydr	Cover typ CULTIVATED AGRIC	COVER DESCRIPTION	:	CURVEN	UMBERS FOR HY	DROLOGIC S	OIL GROUP
Jultivitie Antiouturbed. Lawe Strength row (st) poor 77 84 91 92 allow Bare soil Crop residue cover (st) poor 77 84 91 92 Cor Streight row (st) poor 77 85 90 93 Cor Streight row (st) poor 77 85 93 93 Cor Cross Streight row (st) poor 77 85 93 93 Cor Call Streight row (st) poor 77 85 73 85 93 Cor Call poor Call poor 65 73 73 85 <th>Cut II VALED Fall Leve Cut II VALED The set I The set I</th> <th>Cut II VALED Fall (Jav Bare soil 77 86 91 94 Fall (Jav Bare soil 77 85 91 94 CR Straight row (SR) poor 77 85 91 94 CR Straight row (SR) poor 77 85 91 94 CR Straight row (SR) poor 77 85 91 95 SR & CR spood 67 77 85 87 91 CR Straight row (SR) poor 77 85 87 91 SR & CR poor 77 80 77 85 87 Cattal poor 77 90 77 81 85 Cattal cattal poor 57 73 81 87 Cattal cattal poor 55 73 81 87 Cattal cattal poor 55 73 81 85 Cattal cattal poor 55 73 81 85 Cattal cattal poor 55 73 81 85 Cattal cattal poor 55 55</th> <th>CULTIVATED AGRIC</th> <th>e and hydrologic condition</th> <th>Hydrologic condition⁴</th> <th>A</th> <th>8</th> <th>U</th> <th>0</th>	Cut II VALED Fall Leve Cut II VALED The set I	Cut II VALED Fall (Jav Bare soil 77 86 91 94 Fall (Jav Bare soil 77 85 91 94 CR Straight row (SR) poor 77 85 91 94 CR Straight row (SR) poor 77 85 91 94 CR Straight row (SR) poor 77 85 91 95 SR & CR spood 67 77 85 87 91 CR Straight row (SR) poor 77 85 87 91 SR & CR poor 77 80 77 85 87 Cattal poor 77 90 77 81 85 Cattal cattal poor 57 73 81 87 Cattal cattal poor 55 73 81 87 Cattal cattal poor 55 73 81 85 Cattal cattal poor 55 73 81 85 Cattal cattal poor 55 73 81 85 Cattal cattal poor 55 55	CULTIVATED AGRIC	e and hydrologic condition	Hydrologic condition ⁴	A	8	U	0
aillou Bare soil poor 73 %	Fallow Bare soil The soil	Fallow Bare soil The soil		ULTURAL LAND					
Crops Straight row (SR) poor 75 85 90 90 72 85 90<	Crops Straight row (R) poor 75 85 90 95 60x crops Straight row (St) poor 77 81 85 90 95 58 Straight row (St) poor 77 81 85 90 95 58 St CR poor 77 81 85 8	Crops Streight row (R) poor 75 85 97 RW crops Streight row (R) poor 77 81 88 91 RW crops Streight row (R) poor 77 81 88 91 St & C St & C poor 67 73 81 88 91 St & C St & C poor 67 73 81 88 91 St & C C poor 67 73 82 85	Failow	Bare soil			7 86	91	70
Nov Crops Straight row (SR) Straight row (SR) </td <td>Box cross Straight row (SR) poor 72 81 83 91 R & CR 900 67 78 85 90 77 80 87 90 R & CR 900 67 78 85 75 81 88 91 C & CR 900 67 73 86 75 82 85 C & CR 900 67 73 86 85 75 82 85 C & CR 900 67 73 86 73 73 81 85 C & CR 900 61 73 73 73 73 81 87 C & CR 900 61 73 73 81 87</td> <td>Dur Crops Straight row (SR) poor 51 81 91 - SR & CR good 61 73 81 81 91 - SR & CR good 61 71 81 82 81 - Contoured (C) good 61 73 82 82 82 - C & C C C 81 900 61 73 82 82 82 C & C C C C 82 900 61 73 81 81 82 82</td> <td></td> <td>LFOP FESTQUE COVER (CR) CR</td> <td>poor</td> <td>~ ~</td> <td>6 85 6 85</td> <td>06</td> <td>5</td>	Box cross Straight row (SR) poor 72 81 83 91 R & CR 900 67 78 85 90 77 80 87 90 R & CR 900 67 78 85 75 81 88 91 C & CR 900 67 73 86 75 82 85 C & CR 900 67 73 86 85 75 82 85 C & CR 900 67 73 86 73 73 81 85 C & CR 900 61 73 73 73 73 81 87 C & CR 900 61 73 73 81 87	Dur Crops Straight row (SR) poor 51 81 91 - SR & CR good 61 73 81 81 91 - SR & CR good 61 71 81 82 81 - Contoured (C) good 61 73 82 82 82 - C & C C C 81 900 61 73 82 82 82 C & C C C C 82 900 61 73 81 81 82		LFOP FESTQUE COVER (CR) CR	poor	~ ~	6 85 6 85	06	5
The second sec		The factor of the fa	Bou crone	Ctaritht and Your	3	-	3	8	Ŋ
- 53 & 6.7 State 9000 91	- Sit & CR sit & CR Contoured (C) Dood Sood C/ C R/ C	- " "		SR	poor		2 81	88	91
- " " Sk & K & Contoured (C) C & C & C & C & C & C & C & C & C & C	- SR & GR you - You You <thyou< th=""> You <thyou< th=""></thyou<></thyou<>	- SR & GR 9000 51 75 82 93 C C C C 7 82 83<		SR & CR	noofi	• •	8/	85	89
Contoured (c) Contoured (c) C & C C & C & C C & C & C C & C & C C & C & C & C C & C & C & C & C & C & C & C & C & C &	Contoured (c) poor	Contoured (C) poor	I	SR & CR		-	3 2	87	90 1
C C	C C <thc< th=""> <thc< th=""> <thc< th=""> <thc< th=""></thc<></thc<></thc<></thc<>	C & C & C & C & C & C & C & C & C & C &		Contoured (C)	boot	5.		78	£ 8
C & C & C & C & C & C & C & C & C & C &	C & C & C & C & C & C & C & C & C & C &	C & C & C & C & C & C & C & C & C & C &			good	-9	κ 	82	8 %
Current of terraces (Ck1) poor 6 7 8 Current of terraces (Ck1) poor 6 7 8 8 Call & CR State (CR1) poor 6 7 7 8 8 Mall grain State (CR1) poor 6 7 7 8 8 State (CR1) poor 6 7 7 7 8 8 State (CR1) poor 6 7 7 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Control R Total R <th< td=""><td></td><td></td><td>poor</td><td>9</td><td>7. 7B</td><td>83</td><td>87</td></th<>			poor	9	7. 7B	83	87
Controtted a fertaces (LAI) Door 66 7 80 81 <		Call & CR Call & CR <t< td=""><td></td><td></td><td>poof</td><td>õ</td><td>. 74</td><td>81</td><td>85</td></t<>			poof	õ	. 74	81	85
Instruction	Title CR 900d 62 71 78 81 Gal & CR 900d 61 70 77 81 SR & CR 900d 65 76 84 83 85 SR & CR 900d 65 76 84 85 85 SR & CR 900d 65 77 80 85 85 SR & CR 900d 65 77 81 85 85 C C 8 900d 61 73 81 85 C & CR 900d 61 73 81 85 8	Till & CR good 62 71 78 81 Gal & CR good 61 70 79 81 SR SR good 65 76 84 88 SR SR good 65 76 84 88 SR SR good 65 76 84 88 SR SR good 65 77 88 87 C C good 65 77 88 87 C C good 65 73 81 84 C C good 65 73 81 84 C C good 65 73 81 84 C C good 60 73 81 84 C C good 60 73 81 85 C C good 60 73 81 85 C C good 60 73 81 81 C C good 60 73 81 81 C S good 56 73 81 81 C <td></td> <td>contoured & Terraces (C&T)</td> <td>poor</td> <td>ð</td> <td>5 74</td> <td>80</td> <td>82</td>		contoured & Terraces (C&T)	poor	ð	5 74	80	82
Taill grain State Door Contract Contract <thcontract< th=""> <thcontrand< th=""> <thco< td=""><td>Carl & CR Door C5 73 79 61 mall grain SR C 70 71 60 SR & CR good C5 75 82 83 87 SR & CR good C5 75 83 87 83 87 SR & CR good C5 75 83 87 83 87 SR & CR good C5 75 83 87 83 87 C C good C5 73 81 84 C & C good C5 73 81 84 C & C good C6 77 80 81 C & C Gal & CR good 56 77 81 84 C & C S good 56 77 85 81 84 C & C S good 56 77 85 81 85 C & S <td< td=""><td>maill grain SR poor 65 73 79 61 SR & CR poor 65 76 84 88 SR & CR poor 65 76 84 88 SR & CR poor 65 75 84 88 SR & CR poor 65 75 84 88 C C poor 65 75 84 88 C C poor 65 75 84 88 C C poor 65 73 81 84 C C poor 61 73 81 84 C C R poor 66 77 80 81 C C R poor 61 77 81 81 C C R poor 61 77 81 81 C G S good 51</td><td></td><td>COL FET E FD</td><td>poof</td><td>50</td><td>7</td><td>78</td><td>81</td></td<></td></thco<></thcontrand<></thcontract<>	Carl & CR Door C5 73 79 61 mall grain SR C 70 71 60 SR & CR good C5 75 82 83 87 SR & CR good C5 75 83 87 83 87 SR & CR good C5 75 83 87 83 87 SR & CR good C5 75 83 87 83 87 C C good C5 73 81 84 C & C good C5 73 81 84 C & C good C6 77 80 81 C & C Gal & CR good 56 77 81 84 C & C S good 56 77 85 81 84 C & C S good 56 77 85 81 85 C & S <td< td=""><td>maill grain SR poor 65 73 79 61 SR & CR poor 65 76 84 88 SR & CR poor 65 76 84 88 SR & CR poor 65 75 84 88 SR & CR poor 65 75 84 88 C C poor 65 75 84 88 C C poor 65 75 84 88 C C poor 65 73 81 84 C C poor 61 73 81 84 C C R poor 66 77 80 81 C C R poor 61 77 81 81 C C R poor 61 77 81 81 C G S good 51</td><td></td><td>COL FET E FD</td><td>poof</td><td>50</td><td>7</td><td>78</td><td>81</td></td<>	maill grain SR poor 65 73 79 61 SR & CR poor 65 76 84 88 SR & CR poor 65 76 84 88 SR & CR poor 65 75 84 88 SR & CR poor 65 75 84 88 C C poor 65 75 84 88 C C poor 65 75 84 88 C C poor 65 73 81 84 C C poor 61 73 81 84 C C R poor 66 77 80 81 C C R poor 61 77 81 81 C C R poor 61 77 81 81 C G S good 51		COL FET E FD	poof	50	7	78	81
maill grain ss	mail grain sr good 61 70 77 80 sr	mail grain SR CM 70 77 80 SR & CR poor 65 75 83 87 C C poor 61 73 81 84 C & CR poor 60 77 81 84 C & CR poor 60 77 78 81 C & CR poor 60 77 78 81 C & CR poor 60 77 78 81 C & CR scod 58 60 77 85			poor	50		٤.	81
mell grain sx rs rs rs	mall grain SR SR & CR SR & CR SR & CR Poor Sood Door GS C C C C C C C C C C C C C C C C C C C	maill grain SR Poor 65 76 84 83 SR & CR 900d 63 77 83 84 SR & CR 900d 63 77 83 84 SR & CR 900d 63 77 83 84 C C 900d 61 77 81 84 C & C C 900d 61 77 81 84 C & C C 800d 61 77 81 84 C & C 800d 60 77 81 84 C & C 800d 60 77 81 84 C & C 800d 60 77 81 84 C & C S 900d 61 77 85 87 C & C S 900d 66 77 85 87 81 C & C S 60 77 85 87 81 85			nonfi	o	R	2	80
State State <td< td=""><td>SR & CR good 63 75 83 87 C C poor 63 74 82 85 C C good 61 73 81 84 C C good 61 73 81 84 C C good 61 73 81 84 C & CR poor 63 73 81 84 C & CR poor 63 73 81 84 C & CR poor 61 73 81 84 C & CR poor 53 60 71 78 81 C & CR sood 58 60 71 78 81 85 C & CR sood 51</td><td>R SR SR</td><td>imall grain</td><td>SR</td><td>poor</td><td>50</td><td>5 76</td><td>72</td><td>88</td></td<>	SR & CR good 63 75 83 87 C C poor 63 74 82 85 C C good 61 73 81 84 C C good 61 73 81 84 C C good 61 73 81 84 C & CR poor 63 73 81 84 C & CR poor 63 73 81 84 C & CR poor 61 73 81 84 C & CR poor 53 60 71 78 81 C & CR sood 58 60 71 78 81 85 C & CR sood 51	R SR	imall grain	SR	poor	50	5 76	72	88
SR # CR SR # CR SR # CR SR # CR SR # CR 9000 C & CR 7 C & CR 7 SR # CR 9000 C & CR 7 SR # CR 8000 Poor 60 C & CR 7 Poor 60 C & CR 80 Poor 60 C & CR 7 Poor 65 C & CR 7 Poor 65 C & CR 7 Poor 65 Poor 66 C & CR 7 Poor 66 C & CR 7 Poor 66 C & CR 7 Poor 57 Poor 57	SR & CR SR & CR poor 64 75 65 65 85 85 C C poor 63 74 82 85 85 C C poor 63 74 82 85 85 C C C poor 63 74 82 85 C C C poor 63 77 81 84 C C C poor 63 77 81 84 C C C poor 60 77 81 81 C C C poor 60 77 85 87 81 C C S poor 56 77 85 81 81 C C S poor 56 77 85 87 81 85 C C S poor 56 77 85 85 85 C C S poor 56 77 85<	SR & CR poor 64 75 83 84 C C poor 63 74 82 85 C C poor 61 73 81 84 C & CR poor 61 73 81 84 C & CR poor 62 73 81 84 C & CR poor 62 73 81 84 C & CR poor 62 73 81 84 C & CR poor 63 77 80 83 C & CR poor 60 77 80 83 C & CR poor 60 77 85 89 C & CR poor 60 77 85 89 C & CR poor 60 77 85 89 C & CR R poor 66 77 85 89 C & CR R poor 66 77 85 89 83 C & CR R poor 66 <td< td=""><td></td><td>S.R.</td><td>poof</td><td>50</td><td>κ 2</td><td>58</td><td>22</td></td<>		S.R.	poof	50	κ 2	58	22
Since a control of a contro of a control	SR & CR good 60 72 80 85 C C C 81 84 85 85 85 C C C C 73 81 84 85 <	SR & GR 50 od 60 72 80 84 C C C 73 81 84 C & GR C 000 61 73 81 84 C & GR C & GR 000 61 73 81 84 C & GR C & GR 000 61 73 81 84 C & GR C & GR 000 61 73 81 84 C & GR 000 61 73 81 84 81 C & GR 000 60 71 78 81 81 C & GR 000 58 67 77 81 85 C & GR SR 000 58 67 77 85 89 C & GR SR 000 58 77 85 89 85 85 C & GR SR 000 58 77 85 87 85 85 85 85 85 85 85 85 85 85 85 86		SR & CR	poor	20	ĸ	83	5 28
Poor 63 7 82 83 Poor 63 7 81 82 83 Poor 63 7 81 82 83 Poor 63 61 7 81 83 Poor 63 61 7 81 83 Poor 63 61 7 83 83 Poor 63 60 7 7 83 Poor 63 60 7 7 83 Poor 63 7 7 83 83 Poor 64 7 7 83 83 Poor 65 7 7 83 83 Poor 66 7 7 83 83 Poor 65 7 7 83 83 Poor 65 7 83 83 83 Poor 65 7<	C C	C C		SR & CR	poog	9(22	80	78
G G <td>C & C &</td> <td>C & CR good 61 73 81 84 C & CR C & CR good 62 73 81 84 C & CR good 61 72 80 83 C & CR good 61 72 80 83 C & CR good 61 72 80 83 C & CR good 59 70 78 81 C & CR good 50 71 78 81 C & CR good 58 67 77 85 89 C & CR good 58 77 85 87 89 85 equess or SR good 58 77 85 87 89 85 87 85 89 85 89 85 89 85</td> <td></td> <td>، د</td> <td>poor</td> <td>9</td> <td>72 5</td> <td>82</td> <td>85</td>	C & C & C & C & C & C & C & C & C & C &	C & CR good 61 73 81 84 C & CR C & CR good 62 73 81 84 C & CR good 61 72 80 83 C & CR good 61 72 80 83 C & CR good 61 72 80 83 C & CR good 59 70 78 81 C & CR good 50 71 78 81 C & CR good 58 67 77 85 89 C & CR good 58 77 85 87 89 85 equess or SR good 58 77 85 87 89 85 87 85 89 85 89 85 89 85		، د	poor	9	72 5	82	85
Control	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C C C C C C C C C C C C C C C C C C C		ن د ب	poofi	61	۲ ۲	81	78
Califie	Call	Car & Car Car & Car good 60 72 80 83 Car & Car Car & Car good 61 72 79 82 Car & Car Car & Car poor 60 71 78 81 Car & Car Car & Car poor 60 71 78 81 Car & Car Car & Car poor 60 77 85 89 caumes or S8 poor 66 77 85 89 egumes or S8 poor 66 77 85 89 eddut S8 poor 66 77 85 89 eddut C good 58 77 85 89 eddut C poor 64 75 81 85 Car Car 51 67 76 80 83 Car Car 51 67 76 80 83 Car Car 51 67 76 80 83 80 83			poor	.99	5	81	28
Call Call 72 77 82 Call E 73 77 82 Call E 70 78 81 Boor Call E 70 78 81 Boor Call E 70 78 81 Call E 56 60 71 78 81 Poor 66 77 85 89 89 equines or 58 72 81 85 equines or 58 72 81 85 cattion Call 55 69 78 83 Call Call 55 69 78 83 Call Call 51 67 76 80 Call Call 51 67 76 80	Call Call 72 79 82 Call Call 72 79 82 Call Call Call 72 79 81 Call Call Call 77 89 81 81 Call Sa poor 58 67 77 85 89 equres or Sa poor 58 77 85 83 85 eadow ³ C Call 75 81 85 83 85 Call Call Call poor 64 77 83 85 83 85 83 85 83 85 83 85 83 85 83 85 83 85 83 85 83 85 83 85 83 85 83 85 83	Call			goog	9 (22	80	83
Iose-seeded SR 70 78 81 Iose-seeded SR 9000 59 70 78 81 Iose-seeded SR 9000 58 77 85 89 egumes or SR 9000 58 77 85 89 otation C SR 77 85 89 egumes or SR 77 85 83 calou ³ C SR 77 83 85 eadow ³ C SR 77 83 85 calou ³ C SR 77 83 85 calou ⁴ C 9000 53 69 78 83 calou ¹³ C S 9000 53 69 78 83 calou ¹³ C S 9000 53 69 78 83 calou ¹³ C S 9000 51 67 76 80	Gail & CR good 59 70 78 81 Cail & CR cail & CR poor 60 71 78 81 Cail & CR cail & CR good 58 77 85 89 equmes or sR good 58 77 85 89 otatipn C good 58 77 85 83 eadow ³ C good 53 69 78 83 85 catipn C good 53 69 78 83 85 cadow ³ C Si 73 80 83 85 83 85 cadow ³ C Si 73 80 83 85 83 85 83 85 83 85 83 85 83 85 83 85 83 85 83 85 83 85 83 85 83 85 83 85 85 85 85 85 85 85 85 85 85 86<	Call & CR good 59 70 78 81 Call & CR Call & CR good 71 78 81 Call & CR Call & CR good 71 78 81 Call & CR Call & CR good 53 69 77 85 89 egumes or SR good 58 77 85 89 otation C good 58 72 81 85 eadow ³ C good 53 73 80 83 83 cation Call good 51 67 76 80 83 84 75 80		181 181	poor	9	22	ድ	82
Lose-seeded SR 9000 7 78 81 Lose-seeded SR 9000 58 77 85 89 egumes or SR 9000 58 77 85 89 otation C 9000 58 77 85 89 eddow ² C 9000 58 77 85 83 cattion C 9000 58 77 83 85 eadow ² C 9000 53 69 78 83 cattion C 9000 53 69 78 83 cadow ² C 9000 53 69 78 83 cadow ² C 9000 53 69 78 83 cadow ² C 9000 51 67 76 80	C31 & CR C11 & CR <td< td=""><td>C%1 % C% C%1 % C%1 %</td><td></td><td></td><td>0000</td><td>52.5</td><td>21</td><td>82</td><td>81</td></td<>	C%1 % C% C%1 %			0000	52.5	21	82	81
lose-seeded SR poor 66 77 85 89 egures or SR poor 64 77 85 89 otation C good 58 77 85 89 otation C good 58 77 85 83 85 eadow ² C good 58 77 83 85 cation C good 58 77 83 85 eadow ² C good 53 69 78 83 85 cation good 53 67 78 83 83 85 catou catou good 53 67 76 80 83 catou good 51 67 76 80 83	lose-seeded SR poor 56 77 85 89 egumes or SR poor 66 77 85 89 otation C 88 77 85 89 otation C 88 77 85 83 eadow ³ C 59 77 85 83 89 categor 55 69 78 83 categor 73 80 83 correction tillage poor hydrologic condition, 5 to 20 percent of the surface is covered with residue (less than 750 #/sere row crops or 300#/sere small grain).	<pre>dose-seeded SR</pre>				20		21	81
lose-seeded SR poor 66 77 85 89 egumes or SR good 58 72 81 85 equines or SR good 58 72 81 85 otatipn C poor 64 75 83 85 eadow ³ C good 55 69 78 83 85 cadow ³ C good 55 69 78 83 85 cadow ³ C good 53 67 78 83 83 C&I good 51 67 76 80 83 C&I good 51 67 76 80 83	lose-seeded SR poor 66 77 85 89 egumes or SR good 58 72 81 85 otatipn C 64 75 83 85 eadow ³ C 55 69 78 83 Cal 75 83 85 good 55 69 78 83 cal 73 80 83 good 51 67 76 80 73 73 80 83 73 80 83 73 80 83 73 80 83 73 73 80 83 73 73 80 83 75 45 76 80 750 #/sere row crops or 300#/acre small grain).	<pre>ilose-seeded SR poor 66 77 85 89 equres or SR good 58 72 81 85 equres or SR good 58 72 81 85 equres or C c good 55 69 78 83 85 eadow C c 63 73 80 equipment c c 63 73 80 equipment c c 63 73 80 equipment conservation tillage poor hydrologic condition, 5 to 20 percent of the surface is covered with residue (less th for conservation tillage poor hydrologic condition, more than 20 percent of the surface is covered with residue (less th for conservation tillage poor hydrologic condition, more than 20 percent of the surface is covered with residue (less th for conservation tillage poor hydrologic condition, more than 20 percent of the surface is covered with residue (less th for conservation tillage poor hydrologic condition, more than 20 percent of the surface is covered with residue (less th for conservation tillage poor hydrologic condition, more than 20 percent of the surface is covered with residue (less th for conservation tillage poor hydrologic condition, more than 20 percent of the surface is covered with residue (less th for conservation tillage poor hydrologic condition, more than 20 percent of the surface is covered with residue (less th for conservation tillage poor hydrologic condition, more than 20 percent of the surface is covered with residue (less th for conservation tillage poor hydrologic condition, more than 20 percent of the surface is covered with residue (less th for conservation tillage poor hydrologic condition, more than 20 percent of the surface is covered with residue (less th for conservation tillage poor hydrologic condition, for the surface is covered with residue (less th for conservation tillage poor hydrologic condition, for the surface is covered with residue (less th for conservation tillage poor hydrologic condition, for the surface is covered with residue (less th for conservation tillage poor hydrologic condition, for the surface is covered with residue (less th for conservation tillage poor hydrologic condition, for the surface is covered with residue (less th for conserva</pre>			700F		A 0	2	80
egumes or SR good 5B 72 81 85 otatipn C poor 64 75 83 85 eadow ³ C good 55 69 78 83 C&I poor 63 73 80 83 C&I poor 63 73 80 83 C&I poor 63 73 80 83	egumes or SR good 5B 72 81 85 otatipn C 64 75 83 85 eadow ³ C 55 69 78 83 Caf car 55 69 78 83 Caf 75 83 85 good 55 69 78 83 poor 63 73 80 83 good 51 67 76 80 750 #/acre row crops or 300#/acre small grain.	egumes or SR good 58 72 81 85 otatipn C 5 poor 64 75 83 85 eadow ³ C 55 69 78 83 85 can can can can can can can can can can	l ose-seeded	SR	poor	6	1	85	89
eadow ³ C poor 64 75 83 85 eadow ³ C good 55 69 78 83 C&I poor 63 73 80 83 C&I 77 80 83	ectation C 64 75 83 85 eadow ³ C 69 78 83 Car car 55 69 78 83 Car 73 80 83 good 51 67 76 80 . For conservation tillage poor hydrologic condition, 5 to 20 percent of the surface is covered with residue (less than 750 #/acre row crops or 300#/acre small grain).	eadow ³ C 5 83 85 eadow ³ C 55 69 78 83 C&1 73 80 83 C&1 73 80 83 C&1 73 80 83 For conservation tillage poor hydrologic condition, 5 to 20 percent of the surface is covered with residue (less th 750 #/scre row crops or 300#/acre small grain).	egumes or	SR	pood	26	2	81	85
eedow C 55 69 78 83 C&T 60 83 C&T 75 80 83 good 51 67 76 80	eadow C 55 69 78 83 C&T 68 poor 63 73 80 83 C&T 76 80 For conservation tillage poor hydrologic condition, 5 to 20 percent of the surface is covered with residue (less than 750 #/acre row crops or 300#/acre small grain).	<pre>emote 55 69 78 83 C&T C&T C&T Poor 55 69 78 83 C&T C&T 73 80 83 C&T 75 80 83 C&T 75 80 83 CAT 75 % Poor hydrologic condition, 5 to 20 percent of the surface is covered with residue (less th 750 %/acre row crops or 300#/acre small grain). For conservation rillane mond hydrologic condition more than 20 percent of the surface is covered with residue (less th </pre>		ינ	poor	3	ř	83	85
C&1 000 03 03 73 80 83 000 C&1 000 000 000 000 000 000 000 000 000 0	C&1 73 80 83 C&T 76 80 . For conservation tillage poor hydrologic condition, 5 to 20 percent of the surface is covered with residue (less than 750 #/acre row crops or 300#/acre small grain).	C&1 73 80 83 C&1 75 76 80 For conservation tillage poor hydrologic condition, 5 to 20 percent of the surface is covered with residue (less th 750 #/acre row crops or 300#/acre small grain). For conservation rillage pood hydrologic condition more than 20 percent of the surface is covered with residue (less th	MODBA	с С	poof	55	69	78	83
C&I 51 67 76 80	Carl Carl For conservation tillage poor hydrologic condition, 5 to 20 percent of the surface is covered with residue (less than 750 #/acre row crops or 300#/acre small grain).	Car Car 76 B0 For conservation tillage poor hydrologic condition, 5 to 20 percent of the surface is covered with residue (less th 750 #/scre row crops or 300#/acre small grain). For conservation rillage good hydrologic condition more than 20 percent of the surface is covered with residue		[3]	poor	63	2	80	. 83
	. For conservation tillage poor hydrologic condition, 5 to 20 percent of the surface is covered with residue (less than 750 #/acre row crops or 300#/acre small grain).	. For conservation tillage poor hydrologic condition, 5 to 20 percent of the surface is covered with residue (less th 750 #/acre row crops or 300#/acre small grain). For conservation tillage good hydrologic condition more than 20 percent of the surface is covered with credited		C&T	poog	5	67	76	80

. 1 1 ç TABLE 6-4.2 -- RUNDEF CUPVE NUMBER

1

-

6-20

TABLE 6-4.3 -- RUNOFF CURVE NUMBERS (Average Watershed Condition)

OH-CULTIVITED AGRICULTURAL LAND For grazing For grazing For grazing Fair 49 69 77 86 89 "Desture, grassland, or range - continuous forage for grazing Fair 49 69 61 74 80 tendow - continuous grass, protected from grazing 30 58 71 78 und generally moved for hay 30 58 71 78 dods-grass combination (orchard or tree farm) poor 57 73 82 85 77 78 frush - brush-weed-grass mixture with brush the poor 53 56 77 73 56 77 73 frush - brush-weed-grass mixture with brush the poor 48 60 77 73 56 77 73 frush - brush-weed-grass mixture with brush the poor 48 60 77 73 56 77 73 frush - ground cover density 30 55 76 77 75 76 77 74 83 doods surrounding lots	-Cull TIWTED AGRICULUTAND For grazing poor 68 79 66 77 75 66 77 75 66 77 75 66 77 75 66 77 75 66 77 75 66 77 75 85 85 77 73 82 82 73 82 82 73 82 82 73 82 82 73 82 82 73 82 82 73 82 82 73 82 73 73 53 73 73 82 73 73 82 73 73 56 73 73 56 73 73 56 73 73 56 73 73 56 73 73 56 73 73 56 73 73 56 73 73 56 73 73 56 73 73 56 73 73 56 73 73 56 73 73 56 73 73 56 73 73 56 73 7	#-CULTIVATED AGRICULTURAL LAND Seture, grassland, or range continuous forage poor 68 79 66 77 86 86 seture, grassland, or range continuous forage for grating poor 50 51 73 86 77 86 mod generally moved for hay 30 58 71 78 odds-grass continuous grass, protected from grating 30 58 77 73 82 86 odds-grass continue to criand or tree fam) poor 57 73 82 86 77 73 odds-grass continue to criand or tree fam) poor 53 55 76 77 83 66 77 73 83 77 73 83 73 73 75 77		S	~	8	ы	۵
"esture, grassland, or range - continuous forage for grazing poor good 59 69 79 85 89 for grazing poor good 59 61 73 85 85 teador - continuous grass, protected from grazing and generally moved for hay 30 58 71 78 teador - continuous grass, protected from grazing and generally moved for hay 30 58 73 82 85 teador - continuous grass, protected from grazing and generally moved for hay 30 58 73 73 82 83 73 73 83 63 73 73 83 73 73 83 73 73 73 73 73 73 73 74 85 70 73 73 73 73 73 73 74 84 65 73	sture, grassland, or range continuous forage for grain for grazing for second the second for hay and generally moved for hay the poor for grass combination (orchard or tree farm) fair good 32 58 77 73 58 77 79 75 77 79 78 78 78 78 78 78 78 78 78 78 78 78 78	sture, grassland, or range - continuous forma for grazing por fait and generally mowed for hay and generally mowed for hay and generally mowed for hay 30 58 71 78 and generally mowed for hay 57 73 82 88 fair major element major element fair fair fair fair fair fair fair fair	ATED AGRICULTURAL LAND					
teadow - continuous grass, protected from grazing and generally mowed for hay30587178doods-grass combination (orchard or tree farm)poor57738285fair435358777383fair3258777383frush - brush-weed-grass mixture with brush the major elementpoor48677783foodsfair3556777783foodsfair3655777783foodsfair3666777783foodsfair3656777783foodsfair3656777783foodsfair3656777783foodsfair3656777784foodsfair3656777785foodsfair3656777785foodsfair3656777785foodsfair3656748286foodssurrounding lots59748286food hydrologic condition has between 50 and 75 percent ground cover density.59748286food hydrologic condition has more than 75 percent ground cover density.59748286	addw - continuous grass, protected from grazing and generally mowed for hay30587178ods-grass combination (orchard or tree farm)poor57738286ds-grass combination (orchard or tree farm)poor5773657579ush - brush-weed-grass mixture with brush the major elementpoor48677783567773odsgood3048good304865777373odsmajor elementpoorfair4656777373odsfairgood3045667773odsfair366677737373odsfair3666777373odsfair3666777373oddsurrounding lots597482Poor hydrologic condition has less than 50 percent ground cover density.fair hydrologic condition has more than 75 percent ground cover density.	endow - continuous grass, protected from grazing and generally moved for hay 30 58 71 78 oods-grass combination (orchard or tree farm) poor 57 73 82 86 oods-grass combination (orchard or tree farm) poor 53 55 77 73 rush - brush-weed-grass mixture with brush the major element poor 48 67 77 83 odds fair 30 48 67 77 83 odds fair 30 48 67 77 83 odds fair 30 48 67 77 83 odd fair 30 48 67 77 73 odd fair 30 65 77 73 74 83 oods surrounding tots	rassland, or range - continuous forage poor for grazing fair good		39 49 6 8	62 63 I3	822	88 89 80
doods-grass combination (orchard or tree farm)poor57738285fair435556777373frush - brush-weed-grass mixture with brush thepoor48677783frush - brush-weed-grass mixture with brush thepoor48677783major elementpoor48677783fairpoor3048657777fair900d3048667777fair900d3055707777fairsurroundings, lanes, driveways, and597482fair hydrologic condition has less than 50 percent ground cover density597482fair hydrologic condition has more than 75 percent ground cover density597482	ods-gress combination (orchard or tree farm) poor 57 73 82 84 ush - brush-weed-grass mixture with brush the good 32 58 77 73 83 77 73 82 84 ush - brush-weed-grass mixture with brush the poor 48 67 77 73 83 56 77 73 83 74 83 74 73 74 73 74 73 74 85 76 70 74 74 85 76 70 74 85 76 70 74 85 76 70 74 85 76 70 74 85 76 76 74 85 76	odds-grass combination (orchard or tree farm) poor 57 73 82 82 rush - brush-weed-grass mixture with brush the good 32 58 77 73 77 73 82 82 82 82 82 82 82 73 74 83 74 83 74 83 74 83 74 83 74 73 74 83 74 83 74 83 74 83 74 83 74 83 74 83 74 83 74 74 74 74 74 <	ontinuous grass, protected from grazing and generally mowed for hay		30	58	12	R
Srush - brush-weed-grass mixture with brush the major element 0000 48 67 77 83 fair 35 56 70 77 83 doods fair 35 56 77 77 doods fair 36 66 77 77 doods fair 36 66 77 77 fair 36 66 77 77 77 fair 36 66 77 77 77 fair 30 55 70 77 77 fair 30 55 70 77 79 fair 30 55 70 77 79 fair 50 57 70 74 82 86 fair surrounding lots 59 74 82 86 fair hydrologic condition has less than 50 percent ground cover density. 59 74 82 86 fair hydrologic condition has between 50 and 75 percent ground cover density. 59 74 82	Ush - brush-weed-grass mixture with brush the major elementpoor fair48 55 56 3067 35 66 55 7083 77 73 73odstargottargot48 56 56 56 56 7045 76 77 70 77 70 70 7783 66 60 77 77 70 70 77 70 70 70 70 71 71 71 72 73 73 76 77 73 76 77 77 76 77 77 78 76 77 77 78 76 77 77 78 76 77 78 76 77 77 78 76 77 77 78 76 77 77 78 76 77 77 78 76 77 77 	rush - brush-weed-grass mixture with brush the major element 48 67 77 85 major element 50 48 67 77 85 pood 30 48 67 77 85 pood 45 66 77 77 poor 45 66 77 77 poor 53 55 70 77 armsteads - buildings, lanes, driveways, and surrounding lots 59 74 82 86 Poor hydrologic condition has less than 50 percent ground cover density. 59 74 82 86 fair hydrologic condition has more than 75 percent ground cover density. 59 74 82 86	s combination (orchard or tree farm) poor 		57 	73 65. 58	85 28 28	322
doodspoor fair45 36 60 3066 77 77 70 77 70 7783 70 77 70 77Farmsteads - buildings, lanes, driveways, and surrounding lots597482865974827485Farmsteads - buildings, lanes, driveways, and surrounding lots59748286Fair hydrologic condition has less than 50 percent ground cover density.Fair hydrologic condition has less than 50 percent ground cover density.Good hydrologic condition has between 50 and 75 percent ground cover density.	odspoor45667783fair36607779msteads - buildings, lanes, driveways, and30557077surrounding lots59748286Poor hydrologic condition has less than 50 percent ground cover density.59748286fair hydrologic condition has more than 75 percent ground cover density.600hydrologic condition has more than 75 percent ground cover density.	oodspoor45667783fair36557077formsteads - buildings, lanes, driveways, and59748286surrounding lots59748286Poor hydrologic condition has less than 50 percent ground cover density.Fair hydrologic condition has nore than 75 percent ground cover density.Good hydrologic condition has more than 75 percent ground cover density.	ush-weed-grass mixture with brush the poor major element fair good		48 35 30	67 56 48	77 265	8 7 7 8
Farmsteads - buildings, lanes, driveways, and surrounding lots 59 74 82 86 5. Poor hydrologic condition has less than 50 percent ground cover density. Fair hydrologic condition has between 50 and 75 percent ground cover density. Good hydrologic condition has more than 75 percent ground cover density.	rmsteads - buildings, lanes, driveways, and 59 74 82 86 surrounding lots 59 74 82 86 Poor hydrologic condition has less than 50 percent ground cover density. Fair hydrologic condition has between 50 and 75 percent ground cover density. Good hydrologic condition has more than 75 percent ground cover density.	Brinsteads - buildings, lanes, driveways, and surrounding lots 59 74 82 86 Poor hydrologic condition has less than 50 percent ground cover density. Fair hydrologic condition has between 50 and 75 percent ground cover density. Good hydrologic condition has more than 75 percent ground cover density.	poor fair good		45 36 30	2 2 60 8 2	12	325
5. Poor hydrologic condition has less than 50 percent ground cover density. Fair hydrologic condition has between 50 and 75 percent ground cover density. Good hydrologic condition has more than 75 percent ground cover density.	Poor hydrologic condition has less than 50 percent ground cover density. Fair hydrologic condition has between 50 and 75 percent ground cover density. Good hydrologic condition has more than 75 percent ground cover density.	. Poor hydrologic condition has less than 50 percent ground cover density. Fair hydrologic condition has between 50 and 75 percent ground cover density. Good hydrologic condition has more than 75 percent ground cover density.	 buildings, lanes, driveways, and surrounding lots 		59	74	82	8
	:	÷	ydrologic condition has less than 50 percent ground cover d ydrologic condition has between 50 and 75 percent ground co ydrologic condition has more than 75 percent ground cover d	nsity. er density. nsity.				

Source: USDA Soil Conservation Service

5	
COEFFICIENT	
ROUGHNESS	
THE	
0	
VALUES	

VALUES OF THE ROUG	GHNESS C	OEFFICIENT	n (contin	(pen
Type of channel and description		Minimum	Normal	Maximum
B. LINED OR BUILT-UP CHANNELS				
D-1. Metal a. Smooth steel surface				
1. Unpainted		0.011	0.012	0.014
2. Painted		0.012	0.013	0.017
b. Corrugated		0.021	0.025	0.030
B-2. Nonmetal				
a. Cement				
1. Neat, surface		0.010	0.011	0.013
2. Mortar		0.011	0.013	0.015
b. Wood				
1. Planed, untreated		0.010	0.012	0.014
2. Planed, creosoted		0.011	0.012	0.015
3. Unplaned		0.011	0.013	0.015
4. Plank with battens		0.012	0.015	0.018
5. Lined with roofing paper		0.010	0.014	0.017
c. Concrete				
1. Trowel finish		0.011	0.013	0.015
2. Float finish		0.013	0.015	0.016
3. Finished, with gravel on bot	ottom	0.015	0.017	0.020
4. Unfinished		0.014	0.017	0.020
5. Gunite, good section		0.016	0.019	0.023
6. Gunite, wavy section		0.018	0.022	0.025
7. On good excavated rock		0.017	0.020	
8. On irregular excavated rock		0.022	0.027	
d. Concrete bottom float finishe	bed with			
sides of				000 0
1. Dressed stone in mortar		0.010	110.0	07070
2. Random stone in mortar		0.017	0.020	0.024
3. Cement rubble masonry, pla	astered	0.016	0.020	0.024
4. Cement rubble masonry		0.020	0.025	0.030
5. Dry rubble or riprap		0.020	0.030	0.035
c. Uravel bottom with sides of		210 0	000 0	0.005
Dordom store is mostore		0.000	020.0	0.066
2 Der miktle er deren		070.0	0.020	0.026
5. Dry rubble of riprap		0.04	0.00	0.000
J. Glazed		0.011	0.013	0.015
2. In cement mortar		0.012	0.015	0.018
g. Masonry				
1. Cemented rubble		0.017	0.025	0.030
2. Dry rubble		0.023	0.032	0.035
h. Dressed ashlar		0.013	0.015	0.017
i. Asphalt				
1. Smooth		0.013	0.013	
2. Rough		0.016	0.016	
j. Vegetal lining		0.030	:	0.500

	(Boldface figures are values generally re-	commended	in design)	
	Type of channel and description	Minimum	Normal	Maximum
A. CLOSEI	D CONDUITS FLOWING PARTLY FULL			
	Brass, smooth	0.009	0.010	0.013
b.	Steel			
	1. Lockbar and welded	0.010	0.012	0.014
	2. Riveted and spiral	0.013	0.016	0.017
	Cast iron			
	1. Coated	0.010	0.013	0.014
	2. Uncoated	0.011	0.014	0.016
ď,	Wrought iron			
	1. Black	0.012	0.014	0.015
	2. Galvanized	0.013	0.016	0.017
ข	Corrugated metal			
	1. Subdrain	0.017	0.019	0.021
	2. Storm drain	0.021	0.024	0.030
A-2. N	onmetal			
a.	Lucite	0.008	0.009	0.010
р.	Glass	0.009	0.010	9.013
હ	Cement			
	1. Neat, surface	0.010	0.011	0.013
	2. Mortar	0.011	0.013	0.015
ď.	Concrete		_	
	1. Culvert, straight and free of debris	0.010	0.011	0.013
	2. Culvert with bends, connections,	0.011	0.013	0.014
	and some debris			
	3. Finished	0.011	0.012	0.014
	4. Sewer with manholes, inlet, etc.,	0.013	0.015	0.017
	straight			
	5. Unfinished, steel form	0.012	0.013	0.014
	6. Unfinished, smooth wood form	0.012	0.014	0.016
	7. Unfinished, rough wood form	0.015	0.017	0.020
ۍ ۲	Wood			
	1. Stave	0.010	0.012	0.014
	2. Laminated, treated	0.015	0.017	0.020
*	Clay			
	1. Common drainage tile	0.011	0.013	0.017
	2. Vitrified sewer	0.011	0.014	0.017
	3. Vitrified sewer with manholes, inlet,	0.013	0.015	0.017
	etc.			
	4. Vitrified subdrain with open joint	0.014	0.016	0.018
g.	Brickwork			
	1. Glazed	0.011	0.013	0.015
	2. Lined with cement mortar	0.012	0.015	0.017
Ъ.	Sanitary sewers coated with sewage	0.012	0.013	0.016
	slimes, with bends and connections			
· • •	Paved invert, sewer, smooth bottom	0.016	0.019	0.020
<i>.</i> ,	Rubble masonry, cemented	0.018	0.025	0.030

This table reprinted from OPEN CHANNEL HYDRAULICS by Ven Te Chow, Copyright 1959 by McGraw-Hill, with the permission of the publisher.

VALUES OF THE ROUGHNESS COEFFICIENT n

\equiv HydroCAD Technical Reference \equiv

(contin
5
COEFFICIENT
ROUGHNESS
THE
0Å
VALUES

VALUES OF THE ROUGHNESS COEFFICIENT n (continued)

ued)

		N		Time of abound and description	Virian	Normal	
Aype of channel and description		TAULIER		TAPE OF CHANNEL AND DESCRIPTION		TRITION	muman
C. EXCAVATED OR DREDGED				b. Mountain streams, no vegetation in			
a. Earth. straight and uniform				channel, banks usually steep, trees			
1. Clean, recently completed	0.016	0.018	0.020	and brush along banks submerged at			
2. Clean, after weathering	0.018	0.022	0.025	high stages			
3. Gravel. uniform section. clean	0.022	0.025	0.030	1. Bottom: gravels, cobbles, and few	0.030	0.040	0.050
4. With short grass, few weeds	0.022	0.027	0.033	boulders			
b. Farth. winding and sluggish				2. Bottom: cobbles with large boulders	0.040	0.050	020.0
1. No vecetation	0.023	0.025	0.030	D-2. Flood plains			
2. Gross some woods	0.025	0.030	0.033	a. Pasture, no hrush			
2. Danes woods or existin plants in	0.020	0.035	0.040	1. Short grass	0.095	0 030	0.035
o. Deuse weeds of aquance planes in door chemical	0.00	0.000	010.0	2. High orace	0.030	0.035	0.050
deep cubuness A Teath hottom and mikhla sidae	0,028	0.020	0.025	b Cultivated areas		n	0.000
	0.040	0.000	0.000		000 0	0.00	010 0
5. Stony bottom and weedy banks	0.025	0.035	0.040	1. NO CTOP	0.020	0.030	0.040
o. Cobble bottom and clean sides	0.030	0.040	0.00	Z. MILLUTE TOW CPOPS	0.020	0.030	CFU.U
c. Dragline-excavated or dredged				5. Mature neig crops	0.030	0.040	0.000
1. No vegetation	0.025	0.028	0.033	c. Brush			
2. Light brush on banks	0.035	0.050	0.060	1. Scattered brush, heavy weeds	0.035	0.050	0.070
d. Rock cuts				2. Light brush and trees, in winter	0.035	0.050	0.060
1. Smooth and uniform	0.025	0.035	0.040	3. Light brush and trees, in summer	0.040	0.060	0.080
9 Iswad and irramilar	0.035	0.040	0.050	4. Medium to dense brush in winter	0.045	0.070	0 110
Charles and mighting	0.000	010.0	000.0	K Modium to dones builds in music	010		0 100
c. Unanneis not maintained, weeds and				J. Theulum W deuse of usin, in summer	0.000	A.100	0.100
brush uncut				a. Trees			
1. Dense weeds, high as flow depth	0.050	0.080	0.120	1. Dense willows, summer, straight	0.110	0.150	0.200
2. Clean bottom, brush on sides	0.040	0.050	0.080	2. Cleared land with tree stumps, no	0.030	0.040	0.050
3. Same, highest stage of flow	0.045	0.070	0.110	sprouts			
4. Dense brush, high stage	0.080	0.100	0.140	3. Same as above, but with heavy	0.050	0.060	0.080
D. NATURAL STREAMS				growth of sprouts			
D-1. Minor streams (top width at flood stage				4. Heavy stand of timber, a few down	0.080	0.100	0.120
<100 ft)				trees. little undergrowth. flood stage			
a. Streams on plain				below branches			
1. Clean. straight. full stage. no rifts or	0.025	0.030	0.033	5. Same as above, but with flood stage	0.100	0.120	0.160
deep pools				reaching branches			
2. Same as above, but more stones and	0.030	0.035	0.040	D-3. Major streams (top width at flood stage			
weeds				>100 ft). The <i>n</i> value is less than that			
3. Clean, winding, some pools and	0.033	0.040	0.045	for minor streams of similar description.			
shoals				because banks offer less effective resistance.			
4. Same as above, but some weeds and	0.035	0.045	0.050	a. Regular section with no boulders or	0.025		0.060
stones				brush			
5. Same as above, lower stages, more	0.040	0.048	0.055	b. Irregular and rough section	0.035		0.100
ineffective slopes and sections							
6. Same as 4, but more stones	0.045	0.050	0.060				
7. Sluggish reaches, weedy, deep pools	0.050	0.070	C 080				
8. Very weedy reaches, deep pools, or	0.075	0.100	0.150				
floodways with heavy stand of tim-							
ber and underbrush							

This table reprinted from OPEN CHANNEL HYDRAULICS by Ven Te Chow, Copyright 1959 by McGraw-Hill, with the permission of the publisher.

 Ξ HydroCAD Technical Reference Ξ

Appendix C: Manning's Number Table (continued)

163

Appendix D1: Broad-Crested Weir Coefficients for Sharp-Edged Crests

The following table lists *English* weir coefficients for broad crested weirs with a sharp-edged crest of various breadths. These coefficients are automatically entered into the lookup table for a broad crested weir whenever a crest breadth is entered as described on page 89. If breadth falls between two listed values, interpolated coefficients are automatically used. Breadths outside the listed range will use the first or last coefficient values without extrapolation. Values are automatically converted to the current input units as described on page 43.

				We	eir Bi	readtł	∩—— (fi	-)			
Head	0.50	0.75	1.00	1.50	2.00	2.50	3.00	4.00	5.00	10.0	15.0
 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 3.5 4.0 4.5	2.80 2.92 3.08 3.30 3.32 3.32 3.32 3.32 3.32 3.32 3.32	2.75 2.80 2.89 3.04 3.14 3.20 3.26 3.29 3.32 3.31 3.32 3.32 3.32 3.32 3.32 3.32	2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.30 3.31 3.32 3.32 3.32 3.32	2.62 2.64 2.64 2.68 2.75 2.86 2.92 3.07 3.07 3.03 3.28 3.32 3.32 3.32 3.32	2.50 2.54 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32 3.32 3.32	2.30 2.48 2.60 2.60 2.60 2.64 2.65 2.68 2.75 2.74 2.76 2.89 3.05 3.19 3.32 3.32	2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.72 2.81 2.92 2.97 3.07 3.32	2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66 2.66 2.72 2.73 2.76 2.79 2.88	2.34 2.50 2.70 2.68 2.68 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65	 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.64	 2.68 2.70 2.70 2.64 2.63 2.64 2.63 2.63 2.63 2.63 2.63 2.63 2.63 2.63
5.0 5.5	3.32 3.32	3.32 3.32	3.32 3.32	3.32 3.32	3.32 3.32	3.32 3.32	3.32 3.32	3.07 3.32	2.79 2.88	2.64 2.64	2.63 2.63

This table was derived from information in HANDBOOK OF HYDRAULICS by Brater and King, 1976.

 Ξ HydroCAD Technical Reference Ξ

Appendix D2: Broad-Crested Weir Coefficients for Assorted Profiles

Coefficients for the following weirs may be entered automatically by specifying the appropriate Profile ID number on the HydroCAD weir screen.

Note: This table contains *metric* weir coefficients. To obtain English coefficients **multiply the** values in this table by 1.811 as described on page 43.

"All dimensions are in meters. Tabulated values represent metric weir coefficients.

Reprinted from PRACTICAL HYDRAULICS by Andrew L. Simon, Copyright 1981 by John Wiley & Sons with the permission of the publisher.

 Ξ HydroCAD Technical Reference $oxed{\equiv}$

The following table lists entrance loss coefficients for concrete, corrugated metal, and box culverts. These values are automatically provided by HydroCAD when the corresponding entrance description is selected for a given culvert.

Although comparable data is not available for corrugated plastic pipe, it is believed to be similar to corrugated metal, and the same entries are listed for "CPP" in the internal lookup table.

Type of Structure and Design of Entrance	Coefficient, k _e
Pipe, Concrete	
Projecting from fill, groove end	0.2
Projecting from fill, sq. cut end	0.5
Headwall or headwall and wingwalls	
Groove end of pipe	0.2
Square-edge	0.5
Rounded (radius = 1/12D)	0.1
Mitered to conform to fill slope	0.7
End-Section conforming to fill slope*	0.5
Pine or Pine-Arch Corrugated Metal	
Projecting from fill (no headwall)	0.9
Headwall or headwall end wingwalls	0.0
Square-edge	0.5
Mitered to conform to fill slope	0.7
End-Section conforming to fill slope*	0.5
Box Beinforced Concrete	
Headwall perallel to embankment (no wingwalls)	
Square-odged on 3 odges	05
Bounded on 3 address to radius of 1/12 harrel dimension	0.0
Wingwalls at 30° to 75° to harrel	0.2
Square-edged at crown	04
Crown edge rounded to radius of 1/12 harrel dimension	0.4
Wingwalls at 10° to 30° to barrel	0.6
Square-edged at crown	0.5
Wingwalls parallel (extension of sides)	
Square-edged at crown	0.7

Entrance Loss Coefficients.

*Note: "End Section conforming to fill slope", made of either metal or concrete, are the sections commonly available from manufacturers. From ilmited hydraulic tests they are equivalent in operation to a headwall in both inlet and outlet control. Some end sections, incorporating a closed taper have a superior hydraulic performance.

This table reprinted from the CONCRETE PIPE HANDBOOK, Copyright 1981 by the American Concrete Pipe Association, with the permission of the publisher.

Appendix F: Sheet Flow Roughness Coefficients

HydroCAD provides the following table of roughness coefficients for use with the Sheet Flow procedure (see page 54). This information is taken directly from <u>NEH</u> Table 15-1, with slight abbreviation of the descriptions. If you decide to substitute other roughness coefficients, note that these values are specifically for sheet flow, and are generally larger than the regular Manning's numbers for comparable surfaces.

Surface Description	n
Smooth surfaces	.011
Fallow	.05
Cultivated: Residue<=20%	.06
Cultivated: Residue>20%	.17
Grass: Short	.15
Grass: Dense	.24
Grass: Bermuda	.41
Range	.13
Woods: Light underbrush	.40
Woods: Dense underbrush	.80

Note: These coefficients may also be appropriate when using a reach to model artificially created sheet flow (as from a level spreader) as long as the depth of flow is limited to approximately 1/10 foot.

Appendix G: Velocity Factors

The Shallow Concentrated Flow procedure (a.k.a. Upland Method) uses a velocity factor, K_v , as listed below. The first two surfaces (paved and unpaved) are the basis for <u>TR-55</u> Figure 3-1, and the factors were originally obtained from <u>TR-55</u> Appendix F. The remaining surfaces were taken from <u>NEH-4</u> Figure 15.2, with the factors derived from that chart. Subsequent revisions to <u>NEH</u> Part 630 provide *numerical* K_v values which are in good agreement with the original chart, except for "Grassed Waterways", which appears to have changed from 15.0 to 16.13, making it the same as the TR-55 "Unpaved" condition. For compatibility with previous calculations, the HydroCAD lookup table continues to supply the original K_v values as listed below. If different values are required for any reason, HydroCAD allows direct K_v entry instead of using the lookup table. See page 55 for further details on Shallow Concentrated Flow.

Surface Description	$ m K_{v}$ [ft/sec]	K _v [m/sec]
Paved	20.33	6.2
Unpaved	16.13	4.92
Grassed Waterway	15.0	4.57
Nearly Bare & Untilled	10.0	3.05
Cultivated Straight Rows	9.0	2.74
Short Grass Pasture	7.0	2.13
Woodland	5.0	1.52
Forest w/Heavy Litter	2.5	0.76

Some descriptions have been abbreviated. Velocity factors have the same units as a velocity, and may be converted between English and metric as described on page 43.

HydroCAD®

Stormwater Modeling System

Version 10

Owner's Manual

Copyright $\ensuremath{\mathbb{C}}$ 2011 HydroCAD Software Solutions LLC. All rights reserved.

HydroCAD[®] is a registered trademark of HydroCAD Software Solutions LLC. Other trademarks are the property of their respective owners.

> HydroCAD Software Solutions LLC P.O. Box 477 Chocorua, NH 03817

> > 1-800-927-7246 Tel: (603) 323-8666 Fax: (603) 323-7467

www.hydrocad.net

ISBN 978-0-913633-15-1

DRAINAGE ANALYSIS, EROSION AND SEDIMENT CONTROL, & SITE DEVELOPMENT PLAN NARRATIVE FOR BARRINGTON STORAGE OFFICE

ROUTE 125

MAY 2020 REVISED JULY 2020

RIPRAP SIZING FOR BIO 1 CULVERT OUTLET - 25 YEAR STORM

<u>Apron Length</u>	La =(3.0 * Q / 1.5 * D) + 7 * D		
	Q = Flow D = Inner diameter of Pipe La = Length		
	Q = D = La =	2.25 cfs 1.25 ft 12.4 ft	
<u>Apron Width at End</u>	W = (3 * D) +(0.4 * L)		
	L = Length D = Inner diameter of Pipe W = Width		
	L = D = W =	12.4 ft 1.25 ft 8.7 ft	
<u>Apron Width at Culvert</u>	W = 3 * D		
	D = Inner diameter of Pipe W = Width		
	D = W =	1.25 ft 3.8 ft	
<u>Riprap Diameter</u>	D50 = (.02 * Q ^(1.3)) / (TW *D)		
	Q = Flow TW = Tailwater Elevation D = Inner diameter of Pipe D50 = Riprap Diameter		
	Q =	2.25 cfs	
	1 vv = D =	0.3 π 1.25 ft	
	D50 =	1.84 in	
	Use 3" for D50)	

DRAINAGE ANALYSIS, EROSION AND SEDIMENT CONTROL, & SITE DEVELOPMENT PLAN NARRATIVE FOR

BARRINGTON STORAGE OFFICE

ROUTE 125 MAY 2020 REVISED JULY 2020

RIPRAP SIZING FOR FES-2 - 25 YEAR STORM

<u>Apron Length</u>	La =(3.0 * Q / 1.5 * D) + 7 * D		
	Q = Flow D = Inner diameter of Pipe La = Length		
	Q = D = La =	16.96 cfs 2.50 ft 31.1 ft	
<u>Apron Width at End</u>	W = (3 * D) +(0.4 * L)		
	L = Length D = Inner diameter of Pipe W = Width		
	L = D = W =	31.1 ft 2.50 ft 19.9 ft	
<u>Apron Width at Culvert</u>	W = 3 * D		
	D = Inner diameter of Pipe W = Width		
	D = W =	2.50 ft 7.5 ft	
<u>Riprap Diameter</u>	D50 = (.02 * Q ^(1.3)) / (TW *D)		
	Q = Flow TW = Tailwater Elevation D = Inner diameter of Pipe D50 = Riprap Diameter		
	Q = TW = D =	16.96 cfs 0.72 ft 2.50 ft	
	D50 =	5.29 in	
	Use 6" for D5	0	

DRAINAGE ANALYSIS, EROSION AND SEDIMENT CONTROL, & SITE DEVELOPMENT PLAN NARRATIVE FOR

BARRINGTON STORAGE OFFICE

ROUTE 125 MAY 2020 REVISED JULY 2020

RIPRAP SIZING FOR FES-3 - 25 YEAR STORM

<u>Apron Length</u>	La =(3.0 * Q /	/ 1.5 * D) + 7 * D	
	Q = Flow D = Inner diameter of Pipe La = Length		
	Q = D = La =	7.17 cfs 1.50 ft 20.1 ft	
<u>Apron Width at End</u>	W = (3 * D) +(0.4 * L)		
	L = Length D = Inner diameter of Pipe W = Width		
	L = D = W =	20.1 ft 1.50 ft 12.5 ft	
<u>Apron Width at Culvert</u>	W = 3 * D		
	D = Inner diameter of Pipe W = Width		
	D = W =	1.50 ft 4.5 ft	
<u>Riprap Diameter</u>	D50 = (.02 * Q ^(1.3)) / (TW *D)		
	Q = Flow TW = Tailwater Elevation D = Inner diameter of Pipe D50 = Riprap Diameter		
	Q = TW = D = D50 =	7.17 cfs 0.85 ft 1.50 ft 2.44 in	
	Use 3" for D50	0	
SOIL REPORT

October 14, 2019

Estes Route 125 Barrington NH Map 220 Lots 54-7-1 & 51-7-2

Location: East side of Route 125 approximately 0.2 miles south of the Rochester city line, .35 miles south of the Isinglass River crossing.

Purpose: The high intensity soil map was prepared for a proposed contractor park with on-site wells and on-site subsurface wastewater disposal.

Landscape: Generally gently sloping north to south with steeper slopes along a stream at the southern property lines.

Wetlands: There are four wetlands on the property. All are palustrine forested wetlands.

- An isolated wetland in the NW corner adjacent to the proposed roadway.
- A wetland just off the property approximately midway along the northerly property line. The buffer along this wetland encroaches on the subject lot.
- A large wetland in the SW corner that drains to the unnamed stream.
- A narrow wetland at the base of steeper slopes along the stream running west to east along the southerly property lines.

Wetlands were identified in accordance with the 1987 <u>US Army Corps of Engineers Wetland</u> <u>Delineation Manual</u> and the 2012 <u>Regional Supplement to the Corps of Engineers Wetland</u> <u>Delineation Manual: Northcentral and Northeast Region, Version 2.0.</u> Hydric soils were identified by <u>Field Indicators for Identifying Hydric Soils in New England</u>, version 4, May 2017. A routine determination, as described in the manual, was followed. The wetland boundary was flagged in pink and numbered for location by Tritech Engineering, Dover NH

Soils: Soils consist of moderately well drained and somewhat poorly drained silty marine sediments and similar soils with a sandy overwash. Slopes are generally less than 8% except along the stream. Similar but poorly drained soils occupy the wetlands.

Methodology: The soil map was prepared in accordance with the <u>Site Specific Soil Mapping</u> <u>Standards for NH and VT, Special Publication No. 3 – Version 5.0</u>, December 2017 by the Society of Soil Scientists of Northern New England and standards established by the National Cooperative Soil Survey. The soil survey was prepared by Michael Mariano, NH Certified Soil Scientist #076.

A plan provided by Tritech Engineering, Dover NH at $1^{"} = 60$ with 2' contours was used as a base map. Existing monumentation, located test pits, and topographic features were used as

Highland Soil Services 75 Prospect St., Somersworth NH 03878 control. Pits were dug by an excavator to classify soils at the series level. Pits were located by Tritech Engineering.

Soil boundaries were observed throughout their length and their placement corresponds to changes in soil properties or landform. The identification of soils is based on the NH Numerical Legend, which classifies soil at the series level.

Map unit purity:

- Map units contain 75 percent or more of pedons that fit within the range of the taxon that provides the name for the map unit, or are in similar taxa.
- No one dissimilar soil is greater than the named taxa
- The total amount of dissimilar inclusions do not exceed 25%.
- No singular dissimilar soil will make up more than 10% of the mapping unit
- Limiting inclusions do not exceed 15% of the map unit.

Drainage Classes:

Very Poorly Drained: There are small inclusions of very poorly drained soils in the wetlands but they are not of sufficient area or occurrence to warrant a separate mapping unit.

Poorly Drained: Poorly drained soils occupy the areas delineated as wetlands. In these soils, water is removed so slowly that the soil is wet at shallow depths periodically during the growing season or remains wet for long periods. The occurrence of free water is shallow or very shallow and common or persistent.

33 Scitico: These soils are found in the wetlands.

Somewhat Poorly Drained: Water is removed slowly enough to keep the soil wet for significant periods of time, but not the entire year. A seasonal high water table ranges from 7-14 inches in depth from October to May, but may recede to over 30 inches in depth during the summer. These soils may be classified as hydric soils in depressions.

953 Boxford: These soils occupy uplands just above poorly drained soils.

Moderately Well Drained: Water is removed from the soil somewhat slowly. There is a seasonal high water table at 15-40 inches from November through May. The 323 soils contain a hardpan in the subsoil. There are few limitations that can't be overcome.

38 Eldridge, 32 Boxford: These are the dominant soils on the landscape and occupy most of the nearly level uplands

Well Drained: There are no well drained soils in large enough units to be separated. Small spots of well drained Eldridge, deep phase in the NE corner are treated as inclusions in the moderately well drained mapping unit

Excessively Drained: There are no excessively drained soils on the property

Highland Soil Services 75 Prospect St., Somersworth NH 03878

Slope Classes:

- A 0-3%
- B 3-8%
- C 8-15%
- D 15-25%

Soil Map Legend

- 32 Boxford
- 33 Scitico
- 38 Eldridge
- 953 Boxford somewhat poorly drained

This map product is within the technical standards of the National Cooperative Soil Survey and produced in accordance with the Society of Soil Scientists of Northern New England Publication <u>Site Specific Soil Mapping Standards for NH and VT, Special Publication No. 3 –</u> <u>Version 5.0</u>. It was produced by a professional soil scientist, and is not a product of the USDA Natural Resources Conservation Service. There is a map that accompanies this report.

Boxford Silt Loam

0 to 8 Percent Slopes

Mapping Symbol: 32, moderately well drained 953, somewhat poorly drained

Setting

Parent Material:	Silty marine sediments		
Landform:	Convex plains, broad drainageways		
Position on Landscape:	First terrace above the stream		
Slope Range:	0-8 percent		
Composition and Soil Characteristics			
Drainage Class:	Moderately well drained; seasonal high water table at 15 to 40 inches. ORsomewhat poorly drained with seasonal high water table at 7 to 14 inches		
Hydrologic Group:	C/D		
Surface Runoff	Rapid		
Permeability	Slow. Very slow in subsoil		
Depth to Bedrock	> 40 inches		
Hydric conditions	Possible in somewhat poorly drained areas		
Inclusions within Mapping Unit			
Similar: Contrasting:	Scitico silt loam – poorly drained Swanton – sandy over silty		
	Use and Management		

Well suited to moderately well suited for proposed project..

Eldridge Sandy Loam

3 to 25 percent slopes

Mapping Symbol: 38

Setting

Parent Material:	Glacial outwash over silty marine sediments	
Landform:	Outwash plains	
Position on Landscape:	Broad terraces above lowlands	
Slope Range:	3 to 25 percent	
Composition and Soil Characteristics		
Drainage Class:	Moderately well drained; seasonal high water table at 15 to 40 inches	
Hydrologic Group:	C	
Surface Runoff	Moderate	
Permeability	Moderate – slow in silty subsoil	
Depth to Bedrock	> 40 inches	
Hydric conditions	No	
Inclusions Within Mapping Unit		
Similar: Contrasting:	Eldridge deep phase - >40" to silt loam subsoil Swanton – somewhat poorly drained. Boxford– silty throughout	

Use and Management

This soil is well suited to development. A seasonal high water table is the limiting factor. Subsurface wastewater disposal is permitted.

Scitico Silt Loam

0-3 Percent Slopes

Map Symbol: 33, poorly drained

<u>Setting</u>

Parent Material:	Silty marine sediments			
Landform:	Lowlands			
Position on Landscape:	Depressions, drainageways, wetlands			
Slope Range:	0 to 8 percent			
<u>Cor</u>	Composition and Soil Characteristics			
Drainage Class:	Poorly drained; seasonal high water table at 0 to 7 inches.			
Hydrologic Group:	D			
Surface Runoff	Slow			
Permeability	Slow. Very slow in subsoil			
Depth to Bedrock	> 40 inches			
Hydric conditions	Yes			
Inclusions within Mapping Unit				
Similar: Contrasting:	Boxford - somewhat poorly drained Swanton, poorly drained			

Use and Management

This soil is poorly suited to development. Areas mapped as Scitico are classified as wetlands and permitting is required for any activity in those wetlands. Wetness is the limiting factor with a water table at or near the surface during most months of the year. Subsurface wastewater disposal is not permitted.

Estes Route 125 Barrington NH August 12, 2019 Pits dug on July 30,2019

Test Pit 1

00 - 07"	Dark brown (10YR4/3) fine sandy loam; weak fine granular structure; moist, friable.
07 – 14"	Dark yellowish brown (10YR4/6) sandy loam; moderate medium granular structure; moist friable.
14 – 30"	Olive gray (2.5Y5/2) silt loam; many redox depletions and concentrations; moderate medium blocky structure; moist, firm.
30 – 54"	Olive gray (5Y5/3) silty clay loam; many redox depletions and concentrations; strong medium blocky structure; moist, very firm.

Series: Eldridge Estimated SHWT at 14" – redox features Restrictive layer at 30" Water observed at 50"

Test Pit 2

00 - 04"	Dark brown (10YR3/4) fine sandy loam; weak fine granular structure; moist, friable.
04 – 18"	Yellowish brown (10YR5/6) fine sandy loam; moderate medium granular structure; moist friable.
18 – 34"	Yellowish brown (10YR5/6) sandy loam; common redox concentrations in 7.5YR5/8 and 2.5YR4/6 and few depletions in 10YR6/1); moderate medium granular structure; moist, friable.
34 – 48"	Yellowish brown (10YR5/6) loamy fine sand with redox features as in above horizon; massive structure; moist, friable.
48 - 60"	Olive gray (2.5Y5/2) silty clay loam; many redox features in 10YR6/1 and 7.5YR5/8; strong medium blocky structure' moist, very firm.
Series: Eldridge	

Series: Eldridge Estimated SHWT at 18" – redox features Restrictive layer at 48"

Estes Route 125 Barrington NH August 12, 2019 Pits dug on July 30,2019

Test Pit 3

00 - 08"	Dark brown (10YR4/3) fine sandy loam; weak fine granular structure; moist, friable.
----------	---

- 08 13" Light olive brown (2.5Y5/4) silt loam; moderate medium granular structure; moist friable.
- 13 29" Light olive brown (2.5Y5/4) silt loam; common redox features in 10YR6/1 and 7.5YR5/8; moderate medium blocky structure; moist, firm.
- 29 54" Olive gray (5Y5/2) silty clay loam; many redox depletions and concentrations; strong medium blocky structure; moist, very firm.

Series: Boxford Estimated SHWT at 13" – redox features Restrictive layer at 29"

Test Pit 4

00 - 04" Dark brown (10YR3/4) fine sandy loam; weak fine granular structure; moist, friable.
04 - 10" Strong brown (7.5YR5/8) sandy loam; moderate medium granular structure; moist friable.
10 - 20" Brown (10YR4/4) sandy loam; moderate medium granular structure; moist, friable
20 - 27" Light olive brown (2.5Y5/4) sandy loam; many redox depletions in 10YR6/1and concentrations in 7.5YR5/8; moderate medium granular structure; moist, friable
27 - 54" Olive gray (5Y5/2) silty clay loam; many redox depletions and concentrations; strong medium blocky structure; moist, very firm.

Series: Eldridge Estimated SHWT at 20" – redox features Restrictive layer at 27"

Estes Route 125 Barrington NH August 12, 2019 Pits dug on July 30,2019

Test Pit 5

00 - 05"	Dark brown (10YR3/4) fine sandy loam; weak fine granular structure; moist, friable.
05 – 20"	Strong brown (7.5YR5/8) sandy loam; moderate medium granular structure; moist friable.
20 – 24"	Light olive brown (2.5Y5/4) silt loam; few redox features in 10YR6/1 and 7.5YR5/8; moderate medium granular structure; moist, friable
24 – 48"	Olive gray (5Y5/2) silty clay loam; many redox depletions and concentrations; strong medium blocky structure; moist, very firm.

Series: Eldridge Estimated SHWT at 20" – redox features Restrictive layer at 27"

Test Pit 6

00 – 04"	Dark brown (10YR3/4) fine sandy loam; weak fine granular structure; moist, friable.
04 – 10"	Strong brown (7.5YR5/8) sandy loam; moderate medium granular structure; moist friable.
10 – 20"	Light olive brown (2.5Y5/4) silt loam; few redox features in 10YR6/1 and 7.5YR5/8; moderate medium granular structure; moist, friable
20 – 27"	Light olive brown (2.5Y5/4) sandy loam; many redox depletions and concentrations; moderate medium granular structure; moist, friable.
27 – 48"	Olive gray (5Y5/2) silty clay loam; many redox depletions and concentrations; strong medium blocky structure; moist, very firm.

Series: Eldridge Estimated SHWT at 20" – redox features Restrictive layer at 27"

Estes Route 125 Barrington NH August 12, 2019 Pits dug on July 30,2019

Test Pit 7

00 – 05"	Dark brown (10YR4/3) silt loam; weak fine granular structure; moist, friable.
05 – 19"	Yellowish brown (10YR5/6) silt loam; moderate medium granular structure; moist friable.
19 – 26"	Light olive brown (2.5Y5/4) silt loam; many redox features in 10YR6/1 and 7.5YR5/8; moderate medium granular structure; moist, friable
26-48"	Olive gray (5Y5/2) silty clay loam; many redox depletions and concentrations; strong medium blocky structure; moist, very firm.

Series: Boxford Estimated SHWT at 19" – redox features Restrictive layer at 26"

Test Pit 8

00 – 03"	Dark brown (10YR4/3) silt loam; weak fine granular structure; moist, friable.
03 – 10"	Light olive brown (2.5Y5/4) silt loam; massive structure; moist friable.
10 – 15"	Light olive brown (2.5Y5/4) silt loam; few redox features in 10YR6/1 and 7.5YR5/8; moderate medium blocky structure; moist, firm.
15 – 36"	Olive gray (5Y5/3) silty clay loam; many redox depletions and concentrations; strong medium blocky structure; moist, very firm.

Series: Boxford Estimated SHWT at 13" – redox features Restrictive layer at 29"

Estes Route 125 Barrington NH August 12, 2019 Pits dug on July 30,2019

Test Pit 9

00 – 06"	Dark brown (10YR4/3) fine sandy loam; weak fine granular structure; moist, friable.
06 – 16"	Strong brown (7.5YR5/8) sandy loam; moderate medium granular structure; moist friable.
16 – 25"	Brown (10YR4/4) sandy loam; weak medium granular structure; moist, friable
25 - 30"	Light olive brown (2.5Y5/4) sandy loam; few redox depletions and concentrations; moderate medium granular structure; moist, friable.
30 - 48"	Olive gray (5Y5/2) silty clay loam; many redox depletions and concentrations; strong medium blocky structure; moist, very firm.

Series: Eldridge Estimated SHWT at 25" – redox features Restrictive layer at 30"

Test Pit 10

- 00 04" Dark brown (10YR3/4) fine sandy loam; weak fine granular structure; moist, friable.
- 04 14" Light olive brown (2.5Y5/4) silt loam; moderate medium granular structure; moist friable.
- 14 19" Light olive brown (2.5Y5/4) silt loam; few redox features in 10YR6/1 and 7.5YR5/8; moderate medium granular structure; moist, friable
- 19 48" Olive gray (5Y5/2) silty clay loam; many redox depletions and concentrations; strong medium blocky structure; moist, very firm.

Series: Boxford Estimated SHWT at 14" – redox features Restrictive layer at 19"

Estes Route 125 Barrington NH August 12, 2019 Pits dug on July 30,2019

Test Pit 11

00 – 06"	Dark brown (10YR3/4) very fine sandy loam; weak fine granular structure; moist, friable.
06 – 18"	Light olive brown (2.5Y5/4) silt loam; massive structure; moist friable.
18 – 27"	Light olive brown (2.5Y5/4) silt loam; few redox features in 10YR6/1; massive structure; moist, friable
27 – 48"	Olive gray (5Y5/2) silty clay loam; many redox depletions and concentrations; strong medium blocky structure; moist, very firm.

Series: Boxford Estimated SHWT at 18" – redox features Restrictive layer at 27"

Test Pit 12

00 – 04"	Dark brown (10YR3/4) very fine sandy loam; weak fine granular structure; moist, friable.
04 – 18"	Yellowish brown (10YR6/6) silt loam; massive structure; moist friable.
18 – 24"	Yellowish brown (10YR5/6) silt loam; few redox features in 10YR6/1; massive structure; moist, friable
24 - 60"	Olive gray (5Y5/2) silty clay loam; many redox depletions and concentrations; strong medium blocky structure; moist, very firm.
Series: Boxford	

Estimated SHWT at 18" – redox features Restrictive layer at 24"

Estes Route 125 Barrington NH August 12, 2019 Pits dug on July 30,2019

Test Pit 13

00 - 05"	Dark brown (10YR3/4) fine sandy loam; weak fine granular structure; moist, friable.
05 – 10"	Strong brown (7.5YR5/8) fine sandy loam; weak fine granular structure; moist, friable.
10 – 21"	Yellowish brown (10YR5/6) fine sandy loam; moderate medium granular structure; moist friable
21 – 38"	Light olive brown (2.5Y5/4) silt loam; few redox features in 10YR6/1 and 10YR5/6; massive structure; moist, friable
38 - 60"	Olive gray (5Y5/2) silty clay loam; many redox depletions and concentrations; strong medium blocky structure; moist, very firm.
Series: Boyford	

Series: Boxford Estimated SHWT at 21" – redox features Restrictive layer at 38"

Test Pit 14

Contra Don Cont	
19 – 60"	Olive gray (5Y5/2) silty clay loam; many redox depletions and concentrations; strong medium blocky structure; moist, very firm.
14 – 19"	Light olive brown (2.5Y5/4) silt loam; common redox features in 10YR6/1; massive structure; moist, friable
03 – 14"	Light olive brown (2.5Y5/4) silt loam; massive structure; moist friable.
00 – 03"	Dark brown (10YR3/4) very fine sandy loam; weak fine granular structure; moist, friable.

Series: Boxford Estimated SHWT at 14" – redox features Restrictive layer at 19"

Estes Route 125 Barrington NH August 12, 2019 Pits dug on July 30,2019

Test Pit 15

00 - 05"	Dark brown (10YR3/4) silt loam; weak fine granular structure; moist, friable.
05 – 18"	Light olive brown (2.5Y5/4) silt loam; massive structure; moist friable.
18 – 23"	Light olive brown (2.5Y5/4) silt loam; few redox features in 10YR6/1; massive structure; moist, friable
23 - 60"	Olive gray (5Y5/2) silty clay loam; many redox depletions and concentrations; strong medium blocky structure; moist, very firm.

Series: Boxford Estimated SHWT at 18" – redox features Restrictive layer at 23"

Test Pit 16

00 – 06"	Dark brown (10YR3/4) very fine sandy loam; weak fine granular structure; moist, friable.
06 – 18"	Yellowish brown (10YR5/6) silt loam; weak fine granular structure; moist friable.
18 – 24"	Yellowish brown (10YR5/6) silt loam; few redox features in 10YR6/1; massive structure; moist, friable
24 – 48"	Olive gray (5Y5/3) silty clay loam; many redox depletions and concentrations; strong medium blocky structure; moist, very firm.
Series: Boxford	

Estimated SHWT at 18" – redox features Restrictive layer at 24"

Estes Route 125 Barrington NH August 12, 2019 Pits dug on July 30,2019

Test Pit 17

00 – 06"	Dark brown (10YR4/3) fine sandy loam; weak fine granular structure; moist, friable.
06 – 24"	Yellowish brown (10YR5/6) fine sandy loam; weak medium granular structure; moist friable.
24 – 28"	Brown (10YR4/6) fine sandy loam; weak medium granular structure; moist, friable
28 – 34"	Light olive brown (2.5Y5/4) silt loam; few redox depletions and concentrations; moderate medium granular structure; moist, friable.
34 - 60"	Olive gray (5Y5/2) silty clay loam; many redox depletions and concentrations; strong medium blocky structure; moist, very firm.
о. [.] т.	

Series: Eldridge Estimated SHWT at 26" – redox features Restrictive layer at 34"

Test Pit 18

00 – 06"	Dark brown (10YR4/3) fine sandy loam; weak fine granular structure; moist, friable.
06 – 11"	Yellowish brown (10YR5/6) fine sandy loam; moderate medium granular structure; moist friable.
11 – 24"	Light olive brown (2.5Y5/4) fine sandy loam; moderate medium granular structure; moist, friable
24 – 45"	Yellowish brown (10YR5/6) loamy sand; weak medium granular structure; moist, friable.
45 – 52"	Yellowish brown (10YR5/6) loamy fine sand; few redox depletions in 10YR6/1; massive structure; moist, friable.
52 - 60"	Olive gray (2.5Y5/2) and yellowish brown (10YR5/6) silty clay loam; many redox depletions and concentrations; strong medium blocky structure; moist, very firm.

Series: Eldridge, well drained, deep phase Estimated SHWT at 45" – redox features Restrictive layer at 52"

Estes Route 125 Barrington NH August 12, 2019 Pits dug on July 30,2019

<u>**Test Pit 19**</u> north side of garage Original A horizon removed

- 00 19" Yellowish brown (10YR5/6) gravelly sand fill; single grain; dry, loose.
- 19–29" Light gray (10YR7/1) sand; few black concretion; single grain; moist, loose.
- 29 40" Yellowish brown (10YR5/6) and strong brown (7.5YR5/8) sand; many redow depletions in 10YR6/1; single grain' moist, loose

Series: Fill over sandy till Estimated SHWT at 19" – Mn concretions

Restrictive layer: none to 40"

BARRINGTON STORAGE-OFFICE

Stormwater Management, Maintenance & Inspection Plan

Route #125 Barrington, New Hampshire

MAY 2020

Prepared for:	Mill Fall Realty, LLC P.O. Box 627 Center Ossipee, New Hampshire 03814-0627
Prepared by:	Tritech Engineering Corporation 755 Central Avenue Dover, New Hampshire 03820

Introduction

Tritech Engineering Corporation has prepared the following Stormwater Management System Inspection & Maintenance Plan for Barrington Storage-Office, located at Route 125, Barrington, New Hampshire. The intent of this plan is to provide Barrington Storage-Office with a list of procedures that document the inspection and maintenance requirements of the Stormwater Management System for this development.

The following inspection and maintenance program is necessary in order to keep the Stormwater Management System functioning properly. By following the enclosed procedures, Barrington Storage-Office, will be able to maintain the functional design of the Stormwater Management System and maximize its ability to remove sediment and other contaminants from site generated stormwater runoff.

Stormwater Management System Components

The Barrington Storage-Office Stormwater Management System is designed to mitigate both the quantity and quality of site-generated stormwater runoff. As a result, its design includes the following elements:

Non-Structural BMP's

Non-Structural best management practices (BMP's) are designed to minimize and/or remove contaminants before they enter the stormwater collection system. Several of these BMP's have been incorporated into the Stormwater Management System including pavement sweeping, reduced use of road salt, and litter/trash removal. These types of BMP's are a highly effective initial treatment measure for reducing stormwater pollutant loading.

Closed Drainage Collection and Piping System

The closed drainage system is designed to collect and convey stormwater runoff from the paved areas and infiltrate stormwater back into the water table. Stormwater is collected in a catch basin located with a deep sump to provide storage areas for sediment and control sediment outflow.

Deep Sump Hooded Catch Basins

Catch Basins located in the parking area collect and convey stormwater runoff from the paved areas. Catch basins are designed with deep sumps to provide storage areas for sediment and control sediment outflow. Hooded sumps remove oil, grease, and floatable debris from stormwater runoff.

Bio Retention Pond

A Bio Retention Pond collect stormwater from ground runoff, as well as roadway runoff after pretreatment in Deep Sump Hooded Catch Basins, and allow contaminants and sedimentation to be contained. Bio Retention Ponds allow rainwater to be infiltrated and recharge groundwater on the side, and treated excess water is allowed to exit pond through rectangular weir spillway.

Inspection & Maintenance Plan

By implementing the following procedures, Barrington Storage-Office will be able to maintain the functional design of the Stormwater Management System and maximize the system's ability to remove sediment and other contaminants from site generated stormwater runoff.

Pavement Sweeping:	Sweep Pavement Area at least three times per year or more as necessary. Spring pavement sweeping shall be performed as early as possible.
Litter/Trash Removal:	Routinely inspect all dumpster locations for spillage and clean as necessary.
Deicing Agents:	Use sand as the primary agent for parking lot safety during ice and snow conditions. Minimize the use of road salt (sodium chloride) during the winter. Use de-icing or anti-caking agents, added to enhance performance and application characteristics of sand mixtures, only as necessary and at minimum application rates.
Closed Drainage	Inspect all catch basins monthly for floatable objects and remove as required.
Infiltration Piping:	Inspect infiltration piping once every year and remove accumulated sediment or replace as designed in place.
Infiltration Area:	Systems should be inspected at least twice annually, and following any rainfall event exceeding 2.5 inches in a 24 hour period, with maintenance or rehabilitation conducted as warranted by such inspection.
Bioretention Basins and Forebays:	Inspect detention basins twice annually for floatables and remove as required. Inspect forebays, detention basins, outlet structure, and outlet weir twice annually and remove accumulated sand and sediment.
Invasive Species:	During maintenance and inspection activities, check for the presence of invasive species and dispose of in accordance with the procedures contained herein.

Disposal Methods for Non-Native Invasive Plants

This table provides information concerning the disposal of removed invasive plant material. If the infestation is treated with herbicide and left in place, these guidelines don't apply. Don't bring invasives to a local transfer station, unless there is a designated area for their disposal, or they have been rendered non-viable. This listing includes wetland and upland plants from the New Hampshire Prohibited Invasive Species List. The disposal of aquatic plants is not addressed.

Woody Plants	Method of Reproducing	Methods of Disposal
Norway maple (Acer platanoides) European barberry (Berberis vulgaris) Japanese barberry (Berberis thunbergii) autumn olive (Elaeagnus umbellata) burning bush (Euonymus alatus) Morrow's honeysuckle	Fruit and Seeds	 Prior to fruit/seed ripening Seedlings and small plants Pull or cut and leave on site with roots exposed. No special care needed. Larger plants Use as firewood. Make a brush pile. Chip. Burn.
(Lonicera morrowii) Tatarian honeysuckle (Lonicera tatarica) showy bush honeysuckle (Lonicera x bella) common buckthorn (Rhamnus cathartica) glossy buckthorn (Frangula alnus)		 After fruit/seed is ripe Don't remove from site. Burn. Make a covered brush pile. Chip once all fruit has dropped from branches. Leave resulting chips on site and monitor.
oriental bittersweet (Celastrus orbiculatus) multiflora rose (Rosa multiflora)	Fruits, Seeds, Plant Fragments	 Prior to fruit/seed ripening Seedlings and small plants Pull or cut and leave on site with roots exposed. No special care needed. Larger plants Make a brush pile. Burn.
		 After fruit/seed is ripe Don't remove from site. Burn. Make a covered brush pile. Chip – only after material has fully dried (1 year) and all fruit has dropped from branches. Leave resulting chips on site and monitor.

Non-Woody Plants	Method of Reproducing	Methods of Disposal
<pre>garlic mustard (Alliaria petiolata) spotted knapweed (Centaurea maculosa) • Sap of related knapweed can cause skin irritation and tumors. Wear gloves when handling. black swallow-wort (Cynanchum nigrum) • May cause skin rash. Wear gloves and long sleeves when handling. pale swallow-wort (Cynanchum rossicum) giant hogweed (Heracleum mantegazzianum) • Can cause major skin rash. Wear gloves and long sleeves when handling. dame's rocket (Hesperis matronalis) perennial pepperweed (Lepidium latifolium) purple loosestrife (Lythrum salicaria) Japanese stilt grass (Microstegium vimineum) mile-a-minute weed (Polygonum perfoliatum)</pre>	Fruits and Seeds	 Prior to flowering Depends on scale of infestation Small infestation Pull or cut plant and leave on site with roots exposed. Large infestation Pull or cut plant and pile. (You can pile onto or cover with plastic sheeting). Monitor. Remove any re-sprouting material. During and following flowering Do nothing until the following year or remove flowering heads and bag and let rot. Small infestation Pull or cut plant and leave on site with roots exposed. Large infestation Pull or cut plant and leave on site with roots exposed. Large infestation Pull or cut plant and pile remaining material. (You can pile onto plastic or cover with plastic sheeting). Monitor. Remove any re-sprouting material. (You can pile onto plastic or cover with plastic sheeting). Monitor. Remove any re-sprouting material.
common reed (Phragmites australis) Japanese knotweed (Polygonum cuspidatum) Bohemian knotweed (Polygonum x bohemicum)	Fruits, Seeds, Plant Fragments Primary means of spread in these species is by plant parts. Although all care should be given to preventing the dispersal of seed during control activities, the presence of seed doesn't materially influence disposal activities.	 Small infestation Bag all plant material and let rot. Never pile and use resulting material as compost. Burn. Large infestation Remove material to unsuitable habitat (dry, hot and sunny or dry and shaded location) and scatter or pile. Monitor and remove any sprouting material. Pile, let dry, and burn.

January 2010

Annual Report: Submit an annual Inspection & Maintenance Report to the City of Barrington's Planning Department by January 1st of each year. The report should include a summary of the system's maintenance requirements and repairs, and copies of the Inspection & Maintenance Log Sheets.

Additionally, Inspection and Maintenance Records must be provided to NHDES upon request.

Inspection & Maintenance Checklist/Log

The following pages contain an Inspection & Maintenance Checklist and blank copy of the Stormwater Management System's Inspection & Maintenance Log. These forms are provided to assist Barrington Storage-Office with the inspection and maintenance of Barrington Storage-Office Stormwater Management System.

Stormwater Management System

Inspection & Maintenance Checklist

Barrington Storage-Office

BMP/System Component	Minimum Inspection Frequency	Minimum Inspection Requirements	Maintenance/Cleanout Threshold
Pavement Sweeping	3 times per year	N/A	N/A
Litter/Trash Removal	Routinely	Inspect outdoor waste receptacles areas for spillage.	Clean as required.
Deicing Agents	N/A	N/A	Use sand as primary agent for parking lot safety during winter.
Closed Drainage System			
Catch Bacine	2 times per year	Check for sediment accumulation in sump and on sock.	≥ 2 ft. sediment depth.
	1 time per month	Check for floatable contaminants.	≥ 3 in. floatable depth.
Drainage Pipes	1 time per 2 years	Check for sediment accumulation/clogging.	≥ 2 in. sediment depth.
Infiltration			
Infiltration Pipes	1 time per year	Check for sediment accumulation/clogging.	≥ 4 in. sediment depth.
Annual Report	1 time per year	Submit Annual Report, including all Inspection & Maintenance Logs, to the Dover Planning Department.	N/A

Stormwater Management System

Inspection & Maintenance Log

Barrington Storage-Office

BMP/System Component	Date Inspected	Inspector	Cleaning/Repair Needed (List Items/Comments)	Date of Cleaning/Repair	Performed By

CERTIFICATE OF UNDERSTANDING

Stormwater Management, Maintenance & Inspection Plan

Project:Barrington Storage-Office
Route # 125
Barrington, New Hampshire
MAY 2020Owner:Mill Falls Realty, LLC
P.O. Box 627
Center Ossipee, New Hampshire 03814-0627Engineer:Tritech Engineering Corporation
755 Central Avenue
Dover, New Hampshire 03820

Project Reference Plans:

Site Development Plans for:

Barrington Storage-Office Route #125 Barrington, New Hampshire Specifically:

T-1, T-2, EX-1, SP-1 through SP-9, La-1, Li-1, & CUP-1.

Project Drainage Analysis References:

Drainage Analysis, Erosion and Sedimentation Control, & Site Development Plan for: Barrington Storage-Office Route #125 Barrington, New Hampshire May 2020

Site Plan Review Approval was granted by the Somersworth Planning Board _____

Conditional Use Permit was granted by the Somersworth Planning Board_____

I, Albert Estes, as President of Mill Falls Realty, LLC, the property owner, am familiar with the references above and understand this Stormwater Management, Maintenance, and Inspection Plan, and my responsibilities identified herein.

Albert Estes, President

Date