TRAFFIC IMPACT STUDY
 PROPOSED MIXED-USE DEVELOPMENT
 CALEF HIGHWAY (NH ROUTE 125)
 BARRINGTON, NEW HAMPSHIRE

Prepared for:
HARBOR STREET LIMITED PARTNERSHIP
Stratham, New Hampshire

April 2019

Prepared by:
VANASSE \& ASSOCIATES, INC.
35 New England Business Center Drive
Suite 140
Andover, MA 01810
(978) 474-8800

Web: www.rdva.com

Dear Reviewer:

This letter shall certify that this Traffic Impact Study has been prepared under my direct supervision and responsible charge. I am a Registered Professional Engineer (P.E.) in the State of New Hampshire (NH P.E. No. 9822) and hold Certification as a Professional Traffic Operations Engineer (PTOE) from the Transportation Professional Certification Board, Inc. (TPCB), an affiliate of the Institute of Transportation Engineers (ITE) (PTOE Certificate No. 993). I am also a Fellow of the Institute of Transportation Engineers (FITE).

Sincerely,
VANASSE \& ASSOCIATES, INC.

refry S. Dirk P.E., PTOE, FITE
Principal

CONTENTS

EXECUTIVE SUMMARY 1
Recommendations 2
INTRODUCTION 5
Project Description 5
Study Methodology 6
EXISTING CONDITIONS 7
Geometry 7
Existing Traffic Volumes 8
Spot Speed Measurements 10
Motor Vehicle Crash Data 10
FUTURE CONDITIONS 12
Future Traffic Growth 12
Project-Generated Traffic 13
Trip Distribution and Assignment 16
Future Traffic Volumes - Build Condition 16
TRAFFIC OPERATIONS ANALYSIS 18
Methodology 18
Analysis Results 21
SIGHT DISTANCE EVALUATION 27
TURN LANE WARRANTS ANALYSIS 29
CONCLUSIONS AND RECOMMENDATIONS 30
Conclusions 30
Recommendations 31

FIGURES

No.	Title
1	Site Location Map
2	Existing Intersection Lane Use, Travel Lane Width and Pedestrian Facilities
3	2019 Existing Peak-Hour Traffic Volumes Peak-Month Conditions
4	2020 No-Build Peak-Hour Traffic Volumes Peak-Month Conditions
5	2030 No-Build Peak-Hour Traffic Volumes Peak-Month Conditions
6	Trip Distribution Map Residential Component
7	Trip Distribution Map Commercial Component
8	Project Generated Peak-Hour Traffic Volumes
9	2020 Opening-Year Build Peak-Hour Traffic Volumes Peak-Month Conditions
10	2030 Build Peak-Hour Traffic Volumes Peak-Month Conditions
11	Conceptual Improvement Plan

TABLES

No.	Title
1	2019 Existing Peak-Month Traffic Volumes
2	Study Area Intersection Description
3	Vehicle Travel Speed Measurements
4	Trip-Generation Summary
5	Peak-Hour Traffic-Volume Increases
6	Level-of-Service Criteria for Signalized Intersections
7	Level-of-Service Criteria for Unsignalized Intersections
8	Signalized Intersection Level-of-Service and Vehicle Queue Summary
9	Unsignalized Intersection Level-of-Service and Vehicle Queue Summary
10	Sight Distance Measurements

EXECUTIVE SUMMARY

Vanasse \& Associates, Inc. (VAI) has conducted a Traffic Impact Study (TIS) in order to determine the potential impacts on the transportation infrastructure associated with the proposed construction of a mixed-use development to be located along the east side of NH Route 125 (Calef Highway) and south of Scruton Pond Road in Barrington, New Hampshire (hereafter referred to as the "Project"). This study was prepared in consultation with the Town of Barrington, the New Hampshire Department of Transportation (NHDOT) and the Strafford Regional Planning Commission (SRPC); was performed in general accordance with the NHDOT guidelines for the preparation of Traffic Impact Studies (TISs) and the standards of the Traffic Engineering and Transportation Planning Professions for the preparation of such reports; and is responsive to the scoping determination issued by issued by NHDOT for the Project.

Based on the analyses presented herein, we have concluded the following with respect to the Project:

1. Using trip-generation statistics published by the Institute of Transportation Engineers (ITE) ${ }^{1}$ and with adjustment to account for pass-by trips, the Project is expected to generate approximately 1,732 new vehicle trips on an average weekday and 1,064 new vehicle trips on a Saturday (both two-way volumes over the operational day of the Project), with approximately 179 new vehicle trips expected during the weekday morning peak-hour, 219 new vehicle trips expected during the weekday evening peak-hour, and 160 new vehicle trips expected during the Saturday midday peak-hour;
2. In general, the Project will not have a significant impact (increase) on motorist delays or vehicle queuing over Existing or anticipated future conditions without the Project (NoBuild conditions); however, it was noted that one or more movements at the intersection of NH Route 125 at NH Route 9 (Franklin Pierce Highway/Littleworth Road) are currently operating at or over capacity (defined as a level-of-service (LOS) of "E" or "F", respectively) independent of the Project;
3. Similar to other unsignalized intersections along the NH Route 125 corridor, motorists exiting the Project site are expected to experience delays during the peak traffic volume periods, with residual vehicle queues of up to six (6) vehicles predicted which can be

[^0]contained within the Project site without impeding access or circulation, or the movement of vehicles, pedestrians and bicyclists along NH Route 125;
4. Lines of sight at the Project site roadway intersections with NH Route 125 were found to exceed or could be made to exceed the required minimum distance for the intersections to function in a safe manner; and
5. A review of the criteria for the installation of auxiliary turn lanes at the Project site roadway intersections with NH Route 125 indicates that the addition of both a left-turn lane and a right-turn deceleration lane are justified based on the applicable criteria.

In consideration of the above, we have concluded that the Project can be accommodated within the confines of the existing transportation infrastructure in a safe and efficient manner with implementation of the recommendations that follow.

RECOMMENDATIONS

A series of recommendations have been developed that are designed to provide safe and efficient access to the Project site and address any deficiencies identified at off-site locations evaluated in conjunction with this study. The following improvements have been recommended as a part of this evaluation and, where applicable, will be completed in conjunction with the Project subject to receipt of all necessary rights, permits and approvals.

Project Access

Access to the Project will be provided by way of two (2) new roadways that will intersect the east side of NH Route 125 as follows: the north roadway will be situated opposite the driveway to 246-248 Calef Highway (Casella Sales \& Marketing Inc. and 603 Self-Storage); the south roadway will be located approximately 2,175 feet south of Scruton Pond Road. An access easement will also be established to allow for a future connection between the Project site and property to the north of Old Green Hill Road. The following recommendations are offered with respect to the design and operation of the Project site access and internal circulation, many of which are reflected on the Site Plans:
> The Project site roadways and internal circulating roads should be 24 -feet in width and designed to accommodate the turning and maneuvering requirements of the largest anticipated responding emergency vehicle as defined by the Barrington Fire Department.
> Vehicles exiting the Project site should be placed under STOP-sign control with a marked STOP-line provided.
> Let-turn lanes should be provided on NH Route 125 approaching both the north and south Project site roadways, with the turn lane accommodations at the north Project site roadway to include a left-turn lane in both the north and southbound directions to facilitate access to the driveway serving the driveway to 246-248 Calef Highway. The existing shoulder width along NH Route 125 (nine (9) to 10 feet) combined with properly designed corner radii for the Project site roadways will accommodate vehicles decelerating to enter the Project site without impeding the flow of traffic along NH Route 125. As such, separate right-turn deceleration lanes are not recommended at this time.
> Where perpendicular parking is proposed, the drive aisle behind the parking should be a minimum of 23 -feet in order to facilitate parking maneuvers.
> All signs and pavement markings to be installed within the Project site should conform to the applicable standards of the Manual on Uniform Traffic Control Devices (MUTCD). ${ }^{2}$
> A sidewalk should be provided along at least one side of the Project site roadways and along circulating roads within the Project site.
> Americans with Disabilities Act (ADA) compliant wheelchair ramps should be provided at all pedestrian crossings internal to the Project site.
> The embankment situated along the east side of NH Route 125 and north of the north Project site roadway should be regraded in order to provide the recommended minimum line of sight to and from the north along NH Route 125.
> Signs and landscaping to be installed as a part of the Project within intersection sight triangle areas should be designed and maintained so as not to restrict lines of sight.
> Snow windrows within sight triangle areas shall be promptly removed where such accumulations would impede sight lines.
> Bicycle parking should be provided at appropriate locations within the Project site to serve the municipal, retail and bank uses.

Off-Site

NH Route 125/Scruton Pond Road

The intersection of NH Route 125 at Scruton Pond Road has been identified by the Town as a priority location for a Road Safety Audit (RSA) in order to identify potential safety-related improvements at the intersection. In order to advance this effort, the Project proponent will facilitate the completion of a RSA in order to identify improvements for this intersection.

NH Route 125/NH Route 9

One or more movements at the intersection of NH Route 125 at NH Route 9 were identified to be operating at or over capacity during the weekday and Saturday peak hours independent of the Project, with Project-related impacts defined as a predicted increase in motorist delay that resulted in a corresponding increase in vehicle queuing of up to five (5) vehicles. In an effort to reduce overall motorist delay and vehicle queuing at the intersection, the Project proponent will design and implement an optimal traffic signal timing and phasing plan subject to receipt of all necessary rights, permits and approvals.

Transportation Demand Management Measures

Public transportation services are not currently provided in the vicinity of the Project site. In an effort to encourage the use of alternative modes of transportation to single-occupant vehicles, the following Transportation Demand Management (TDM) measures will be implemented as a part of the Project:

[^1]> Information regarding public transportation services, maps, schedules and fare information will be posted in a central location and/or otherwise made available to residents and employees;
> Tenants of the commercial components of the Project will be encouraged to offer specific amenities to discourage off-site trips, including providing a break-room equipped with a microwave and refrigerator; offering direct deposit of paychecks; coordinating with a drycleaning service for on-site pick-up and delivery; allowing telecommuting or flexible work schedules; and other such measures to reduce overall traffic volumes and travel during peak traffic volume periods;
> Pedestrian and bicycle accommodations will be incorporated into the Project including sidewalks and bicycle parking in appropriate locations; and
$>$ To the extent that public transportation services are provided along NH Route 125 in the future, an area should be reserved for a bus stop to be established.

With implementation of the above recommendations, safe and efficient vehicular, pedestrian and bicycle access will be provided to the Project site and the Project can be accommodated within the confines of the existing and improved transportation system.

INTRODUCTION

Vanasse \& Associates, Inc. (VAI) has conducted a Traffic Impact Study (TIS) in order to determine the potential impacts on the transportation infrastructure associated with the proposed construction of a mixed-use development to be located along the east side of NH Route 125 (Calef Highway) and south of Scruton Pond Road in Barrington, New Hampshire (hereafter referred to as the "Project"). This study evaluates the following specific areas as they relate to the Project: i) access requirements; ii) potential off-site improvements; and iii) safety considerations; and identifies and analyzes existing traffic conditions and future traffic conditions, both with and without the Project, along NH Route 25 and at the following intersections defined in consultation with NHDOT: NH Route 125 at Greenhill Road and Tolend Road; NH Route 125 at Scruton Pond Road; and NH Route 125 at Franklin Pierce Highway and Littleworth Road (NH Route 9).

PROJECT DESCRIPTION

The Project will entail the phased construction of a mixed-use development that will include: 55 single-family homes; $53,200 \pm$ square feet (sf) of commercial space that may include retail and office space, a bank with a drive-through teller facility, contractor's storage and warehouse space; and donation of a parcel of land to the Town of Barrington for a municipal use. The Project site is located on two parcels of land situated along the east side of NH Route 125 and south of Scruton Pond Road (Town of Barrington Tax Map 223, Lots 24 and 26), and contains areas of open and wooded space and low-lying wetland areas. Figure 1 depicts the Project site location in relation to the existing roadway network.

Access to the Project will be provided by way of two (2) new roadways that will intersect the east side of NH Route 125 as follows: the north roadway will be situated opposite the driveway to 246-248 Calef Highway (Casella Sales \& Marketing Inc. and 603 Self-Storage); the south roadway will be located approximately 2,175 feet south of Scruton Pond Road. An access easement will also be established to allow for a future connection between the Project site and property to the north of Old Green Hill Road.

On-site parking will be provided for the individual land uses in accordance with the requirements of the Town of Barrington Zoning Ordinance.

STUDY METHODOLOGY

This study was prepared in consultation with the Town of Barrington, the New Hampshire Department of Transportation (NHDOT) and the Strafford Regional Planning Commission (SRPC); was performed in general accordance with: i) the NHDOT guidelines for the preparation of Traffic Impact Studies (TISs); ii) the standards of the Traffic Engineering and Transportation Planning Professions for the preparation of such reports; and iii) the scoping determination issued by NHDOT for the Project; and was conducted in three distinct stages.

The first stage of the study involved an assessment of existing conditions in the study area and included an inventory of roadway geometrics, pedestrian and bicycle facilities and public transportation services; observations of traffic flow; and the collection of daily and peak-period traffic counts.

In the second stage of the study, future conditions on the transportation system were projected and analyzed. Specific travel demand forecasts for the Project were assessed along with future demands on the transportation system that are expected due to growth independent of the Project. In accordance with NHDOT guidelines for the preparation of TISs and the scoping determination issued by NHDOT for the Project, four (4) future conditions were evaluated: 1) 2020 No-Build conditions without the Project; 2) 2020 Opening-Year Build conditions with the Project; 3) 2030 No-Build conditions without the Project; and 4) 2030 Build conditions (ten-year projection from opening-year) with the Project. The analyses conducted in stage two of the study identify existing or projected future roadway capacity and traffic safety issues.

The third stage of the study presents and evaluates measures to address roadway and intersection capacity issues and safety concerns, if any, identified in stages one and two of the study.

EXISTING CONDITIONS

A comprehensive field inventory of existing conditions on the study area roadways was conducted in March 2019. The field investigation consisted of an inventory of existing roadway geometrics; pedestrian and bicycle facilities; traffic volumes; and operating characteristics; as well as posted speed limits and land use information within the study area. The study area that was evaluated for the Project was defined as a part of the scoping determination issued by NHDOT for the preparation of this study and included NH Route 25 and the following intersections: NH Route 125 at Greenhill Road and Tolend Road; NH Route 125 at Scruton Pond Road; and NH Route 125 at Franklin Pierce Highway (NH Route 9).

The following describes the study area roadway and intersections.

GEOMETRY

Roadway

NH Route 125 (Calef Highway)

NH Route 125 (Calef Highway) is a two-lane arterial roadway (Tier 2, Class II) under NHDOT jurisdiction that traverses the study area in a general north-south direction and provides access to the City of Rochester and NH Route 16 to the north of the study area and to US Route 4 to the south. Within the study area, NH Route 125 provides two 12 to 13 -foot wide travel lanes separated by a double-yellow centerline with 2 to 10 -foot wide marked shoulders and additional travel lanes provided at major intersections. Sidewalks are not provided along NH Route 125 within the study area. Illumination is provided intermittently by street lights mounted on wood or steel poles. The posted speed limit along NH Route 125 varies from 35 to 50 miles per hour (mph). Land use along NH Route 125 within the study area consists of residential, commercial and municipal properties, and areas of open and wooded space.

Intersections

Table 1 and Figure 2 summarize lane use, traffic control, and pedestrian and bicycle accommodations at the study area intersections as observed in March 2019.

Table 1 STUDY AREA INTERSECTION DESCRIPTION

Intersection	Traffic Control Type ${ }^{\text {a }}$	No. of Travel Lanes Provided	Shoulder Provided? (Yes/No/Width)	Pedestrian Accommodations? (Yes/No/Description)	Bicycle Accommodations? (Yes/No/Description)
NH Rte. 125/ Greenhill Rd./ Tolend Rd.	TS	1 left-turn lane, 1 through lane and 1 right-turn lane on NH Rte. 125 approaches; 1 general-purpose travel lane on Greenhill Rd. and Tolend Rd.	Yes; 2-4-feet on all approaches	No	Yes; Shared traveledway ${ }^{\text {b }}$
NH Rte. 125/ Scruton Pond Rd.	S	1 general purpose travel lane on all approaches	Yes; 1-foot on Scruton Pond Rd. and 8 to 10 -feet on NH Rte. 125	No	Yes; Shared traveledway on NH Rte. 125
NH Rte. 125/ NH Rte. 9	TS	1 left-turn lane, 1 through lane and 1 right-turn lane on NH Rte. 125 northbound approach; 1 left-turn lane, 1 through lane and 1 through/right-turn lane on NH Rte. 125 southbound approach; 1 left-turn lane, 1 through lane and 1 rightturn lane on NH Rte. 9 approaches	Yes; 5 to 6-feet on NH Rte. 125 and 2 to 10 feet on NH Rte. 9	No	Yes; Shared traveledway

${ }^{\text {a }}$ TS $=$ traffic signal control; $\mathrm{S}=$ STOP-sign control; $\mathrm{Y}=$ YIELD-sign control; $\mathrm{R}=$ rotary/roundabout control; NC = no control present. ${ }^{\mathrm{b}}$ Combined shoulder and travel lane width equal to or exceed 14 feet.

EXISTING TRAFFIC VOLUMES

In order to determine existing traffic-volume demands and flow patterns within the study area, automatic traffic recorder (ATR) counts, manual turning movement counts (TMCs) and vehicle classification counts were completed in March 2019. The ATR counts were conducted on NH Route 125 south of Scruton Pond Road over a continuous 72 -hour period from March $7^{\text {th }}$ (Thursday) through $9^{\text {th }}$ (Saturday) in order to record weekday daily and Saturday traffic conditions along this roadway over an extended period, with weekday morning (7:00 to 9:00 AM) and evening (4:00 to 6:00 PM) peak period manual TMCs performed at the study intersections on March 7, 2019 (Thursday), and during the Saturday midday peak period (11:00 AM to 2:00 PM) on March 9, 2019 in accordance with the scoping determination issued by NHDOT for the preparation of this study. These time periods were selected for analysis purposes as they are representative of the peak traffic volume hours for both the Project and the adjacent roadway network.

Legend:

(S) Signalized Intersection
(1) Unsignalized Intersection
= - Unpaved Gravel Roadway
$x x^{-}-\quad$ Lane Use and Travel Lane
Width

Seasonal Adjustments

In order to evaluate the potential for seasonal fluctuation of traffic volumes within the study area, 2018 peak-hour and average daily traffic count data were reviewed for NHDOT count station No. 02389090 , which is located on Spaulding Turnpike (NH Route 16), south of NH Route 125 (Exit 12), in Rochester. Based on a review of this data, it was determined that traffic volumes for the month of March are approximately 33 percent below peak-month conditions and, therefore, the raw traffic count data that forms the basis of this assessment was adjusted upward accordingly to represent peak-month conditions.

The 2019 Existing weekday morning, weekday evening and Saturday midday peak-month, peakhour traffic volumes are depicted on Figure 3 and are summarized in Table 1. Note that the peakhour traffic volumes referenced in Table 1 were obtained from the TMCs and are reflected on the aforementioned figure.

Table 1
2019 EXISTING PEAK-MONTH TRAFFIC VOLUMES

Location/Peak Hour									

${ }^{a}$ Average weekday traffic in vehicles per day.
${ }^{\mathrm{b}}$ Vehicles.
${ }^{\mathrm{c}}$ Vehicles per hour.
${ }^{\text {d Percent }}$ of daily traffic occurring during the peak hour.
${ }^{\text {e }}$ Percent traveling in peak direction.
$\mathrm{NB}=$ northbound; $\mathrm{SB}=$ southbound.

As can be seen in Table 2, NH Route 125 in the vicinity of the Project site was found to accommodate approximately 20,230 vehicles on an average weekday and 17,050 vehicles on a Saturday (two-way, 24 -hour volumes), with approximately 1,720 vehicles per hour (vph) during the weekday morning peak-hour, $1,733 \mathrm{vph}$ during the weekday evening peak-hour and $1,415 \mathrm{vph}$ during the Saturday midday peak-hour.

PEDESTRIAN AND BICYCLE FACILITIES

A comprehensive field inventory of pedestrian and bicycle facilities within the study area was undertaken in March 2019. The field inventory consisted of a review of the location of sidewalks and pedestrian crossing locations along the study roadway and at the study intersection, as well as the location of existing and planned future bicycle facilities. Sidewalks and formal bicycle facilities are not currently provided within the study area. That being said, the study area roadways generally provide sufficient width (combined travel lane and shoulder) to support bicycle travel in a shared traveled-way condition ${ }^{3}$ and NH Route 125 is designated as a bike route.

[^2]WEEKDAY MORNING PEAK HOUR (7:00-8:00 AM)

WEEKDAY EVENING PEAK HOUR

 (4:00-5:00 PM)SATURDAY MIDDAY PEAK HOUR (11:00 AM - 12:00 PM)

Not To Scale

Vanasse \& Associates, Inc.
Iransportation Engineers \& Planners

Figure 3

2019 Existing

Peak Month
Peak Hour Traffic Volumes

PUBLIC TRANSPORTATION

Regularly scheduled public transportation services are not currently provided within the study area. The closest public transportation options are available in the Cities of Dover and Rochester, where bus services are provided by the Cooperative Alliance For Seacoast Transportation (COAST). Regional bus services are available at the Portsmouth Transportation Center and air transportation is available at the Portsmouth International Airport.

SPOT SPEED MEASUREMENTS

Vehicle travel speed measurements were performed on NH Route 125 in the vicinity of the Project site over a continuous 72 -hour period (Thursday through Saturday) in conjunction with the ATR counts. Table 3 summarizes the results of the vehicle travel speed measurements.

Table 3
VEHICLE TRAVEL SPEED MEASUREMENTS

	NH Route 125	
	Northbound	Southbound
Mean Travel Speed (mph)	55	53
$85^{\text {th }}$ Percentile Speed (mph)	59	58
Posted Speed Limit (mph)	50	50

$\mathrm{mph}=$ miles per hour.

As can be seen in Table 3, the mean vehicle travel speed along NH Route 125 in the vicinity of the Project site was found to be approximately 55 mph in the northbound direction and 53 mph southbound. The average measured $85^{\text {th }}$ percentile vehicle travel speed, or the speed at which 85 percent of the observed vehicles traveled at or below, was found to be approximately 59 mph northbound and 58 mph southbound, which is 8 to 9 mph above the posted speed limit in the vicinity of the Project site (50 mph). The $85^{\text {th }}$ percentile speed is used as the basis of engineering design and in the evaluation of sight distances, and is often used in establishing posted speed limits.

MOTOR VEHICLE CRASH DATA

A town-wide assessment of motor vehicle crashes was completed by the Barrington Police Department in 2018 in order to prioritize funding for Road Safety Audits (RSAs). This assessment identified that three roadways accounted for 62 percent of the total number of motor vehicle crashes that were reported within the Town: NH Route 125, NH Route 9 and Washington Street (NH Route 202). For the 10-year period 2008 through 2017, NH Route 125 was reported to have experienced an average of approximately 42 crashes per year, with 76 crashes reported to have occurred at the NH Route $125 / \mathrm{NH}$ Route 9 intersection and 13 crashes reported at the NH Route 125/Scruton Pond Road intersection (one of which resulted in a fatality). The NH Route 125 /Greenhill Road/Tolend Road intersection was not directly included in the
assessment; however, a 2012 Conference Report prepared by NHDOT in reference to the then planned (and subsequently completed) installation of a traffic control signal and associated intersection geometric improvements was included in the attachments. At that time, a total of 21 motor vehicle crashes were reported at the NH Route 125/Greenhill Road/Tolend Road intersection, one of which resulted in a fatality. A review of NHDOT crash mapping for the period 2002 through 2016 indicates that 35 crashes were reported at or in the vicinity of the NH Route 125/Greenhill Road/Tolend Road intersection.

The crash assessment concluded that while the NH Route $125 / \mathrm{NH}$ Route 9 intersection experienced the highest number of motor vehicle crashes, the improvements that have been completed at the intersection have reduced the severity of the crashes. A similar conclusion was inferred for the NH Route 125/Greenhill Road/Tolend Road intersection, as this intersection was also the subject of recently completed improvements. The NH Route $125 /$ Scruton Pond Road intersection was specifically identified by the Police Department as a priority location for a RSA, with identified concerns relating to approach speeds and the horizontal and vertical alignment of NH Route 125 approaching the intersection. Specific recommendations to advance safety-related improvements at this intersection have been identified and are detailed in the Recommendations section of this assessment.

FUTURE CONDITIONS

Traffic volumes in the study area were projected to the years 2020 and 2030, which reflect the anticipated opening-year of the Project and a ten-year planning horizon from opening-year, respectively, consistent with NHDOT traffic study guidelines and the scoping determination issued by NHDOT for the preparation of this study. The future condition traffic-volume projections incorporate identified specific development projects by others, as well as general background traffic growth as a result of development external to the study area and presently unforeseen projects. Anticipated Project-generated traffic volumes superimposed upon the 2020 and 2030 No-Build traffic volumes reflect the Build conditions with the Project.

FUTURE TRAFFIC GROWTH

Future traffic growth is a function of the expected land development in the immediate area and the surrounding region. Several methods can be used to estimate this growth. A procedure frequently employed estimates an annual percentage increase in traffic growth and applies that percentage to all traffic volumes under study. The drawback to such a procedure is that some turning volumes may actually grow at either a higher or a lower rate at particular intersections.

An alternative procedure identifies the location and type of planned development, estimates the traffic to be generated, and assigns it to the area roadway network. This procedure produces a more realistic estimate of growth for local traffic. However, the drawback of this procedure is that the potential growth in population and development external to the study area would not be accounted for in the traffic projections.

To provide a conservative analysis framework, both procedures were used, the salient components of which are described below.

Specific Development By Others

The Town of Barrington Land Use Department and NHDOT were contacted in order to determine if there were any projects planned within the study area that would have an impact on future traffic volumes at the study intersections. Based on these discussions, the following project was identified for review in conjunction with this assessment:
>Convenience Store/Gas Station, 491 Calef Highway, Barrington, New Hampshire. This project is currently under construction and includes a $5,000 \pm$ sf convenience store and an associated gasoline fueling facility.

Traffic volumes associated with the aforementioned specific development project by others were obtained from the Traffic Impact and Site Access Study that was prepared by Pernaw \& Company, Inc. in support of the project and using trip-generation information available from the Institute of Transportation Engineers (ITE) ${ }^{4}$ for the appropriate land use, and were assigned onto the study area roadway network based on existing traffic patterns where no other information was available. No other developments were identified at this time that are expected to result in an increase in traffic within the study area beyond the general background traffic growth rate.

General Background Traffic Growth

A review of historic traffic growth information compiled by NHDOT for the Town of Barrington was undertaken in order to determine general traffic growth trends. Based on a review of this data and consistent with the scoping determination issued by NHDOT for the preparation of this study, a 1.0 percent per year compounded annual background traffic growth rate was used in order to account for future traffic growth and presently unforeseen development within the study area.

Roadway Improvement Projects

The Town of Barrington and NHDOT were contacted in order to determine if there were any planned roadway improvement projects expected to be completed within the study area. Based on these discussions, no roadway improvement projects aside from routine maintenance activities were identified to be planned within the study area at this time.

No-Build Traffic Volumes

The 2020 and 2030 No-Build peak-month peak-hour traffic volumes were developed by applying the 1.0 percent per year compounded annual background traffic growth rate to the 2019 Existing peak-month peak-hour traffic volumes and then adding the traffic associated with the identified specific development project by others. The resulting 2020 No-Build weekday morning, weekday evening and Saturday midday peak-month peak-hour traffic volumes are shown on Figure 4, with the corresponding 2030 No-Build peak-month peak-hour traffic volumes shown on Figure 5.

PROJECT-GENERATED TRAFFIC

Design year (2020 and 2030) Build traffic volumes for the study area roadways were determined by estimating Project-generated traffic volumes and assigning these volumes on the study roadways. The following sections describe the procedures used to develop the Build condition traffic volume networks.

The Project will entail the phased construction of a mixed-use development that will include: 55 single-family homes; $53,200 \pm$ sf of commercial space that may include retail and office space, a bank with a drive-through teller facility, contractor's storage and warehouse space; and donation of a parcel of land to the Town of Barrington for a municipal use. In order to develop the traffic

[^3]WEEKDAY MORNING PEAK HOUR (7:00-8:00 AM)

WEEKDAY EVENING PEAK HOUR

(4:00-5:00 PM)

(11:00 AM - 12:00 PM)

Note: Imbalances exist due to numerous curb cuts and side streets that are not shown.

Not To Scale

Vanasse \& Associates, Inc.
Transportation Engineers \& Planners

Figure 4

2020 No-Build
Peak Month
Peak Hour Traffic Volumes

WEEKDAY MORNING PEAK HOUR (7:00-8:00 AM)

WEEKDAY EVENING PEAK HOUR
(4:00-5:00 PM)
SATURDAY MIDDAY PEAK HOUR (11:00 AM - 12:00 PM)

Note: Imbalances exist due to numerous curb cuts and side streets that are not shown.

Not To Scale

Vanasse \& Associates, Inc.
Transportation Engineers \& Planners

Figure 5

2030 No-Build
Peak Month
Peak Hour Traffic Volumes
characteristics of the Project, trip-generation statistics published by the ITE ${ }^{5}$ for similar land uses as those proposed were used. ITE Land Use Codes (LUCs) 150, Warehousing; 180, Specialty Trade Contractor; 210, Single-Family Detached Housing; 710, General Office; 730, Government Office Building; 820, Shopping Center; and 912, Drive-In Bank; were used to establish the base trip-generation calculations for the Project.

Internal Trips

It is expected that a portion of the residents, employees and customers of the Project may visit one or more of the uses that are proposed within the development, such as a resident that visits the municipal building, shops at the retail store or patronizes the bank. Such trips remain "internal" to the Project site and do not constitute additional traffic "external" to the site. This interaction between uses is not accounted for when the traffic volume projections are completed on an individual land use basis. Given that the exact uses other than the municipal building are not yet defined, an internal trip credit (reduction) was not applied to the base trip-generation calculations for the Project.

Pass-By Trips

Not all of the trips expected to be generated by the retail and bank components of the Project will be new trips on the roadway network. A significant portion of these trips will consist of pass-by trips or vehicles already traveling along NH Route 125 for other purposes that will patronize the Project in conjunction with their trip and then continue on to their original destination. These trips are not new trips on the roadway network as a result of the Project. Statistics published by the ITE ${ }^{6}$ indicate that on average, up to 34 percent of the trips generated by retail uses and 38 percent of the trips generated by a bank with drive-through window may consist of pass-by trips. As such and pursuant to scoping determination issued by NHDOT for the preparation of this study, a pass-by trip rate of up to 34 percent was applied to the trip-generation calculations for the retail component of the Project and pass-by trip rate of up to 38 percent was applied to the bank component.

Table 4 summarizes the anticipated traffic characteristics of the Project using the above methodology.

[^4]Table 4
TRIP GENERATION SUMMARY

Time Period/Direction			(C) $\begin{array}{l}\text { Municipal } \\ \text { Building } \\ (10,000 \text { sf) }\end{array}$	$\begin{gathered} \text { (D) } \\ \begin{array}{c} \text { (Darehouse } \\ (8,000 \\ \text { sf })^{d} \end{array} \\ \hline \end{gathered}$	(E) Contractor/Trade Storage Building (14,000 sf)	$\begin{gathered} \text { (F) } \\ \text { Retail Space } \\ (8,000 \text { sf) } \\ \hline \end{gathered}$	$\begin{gathered} \text { (G) } \\ \text { Bank } \\ (3,200 \mathrm{sf})^{\mathrm{g}} \end{gathered}$	$\begin{gathered} (\mathrm{H}=\mathrm{A}+\mathrm{B}+\mathrm{C}+ \\ \mathrm{D}+\mathrm{E}+\mathrm{E}+\mathrm{F}+\mathrm{G}) \\ \text { Total } \\ \text { Trips } \\ \hline \end{gathered}$	$\begin{gathered} \text { (I) } \\ \begin{array}{c} \text { Pass-By } \\ \text { Trips } \\ \hline \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & (\mathrm{J}=\mathrm{H}-\mathrm{I}) \\ & \text { New Trips } \end{aligned}$
Average Weekday Daily										
Entering	300	112	113	29	72	151	191	968	102	866
Exiting	300	112	$\frac{113}{26}$	$\underline{29}$	72	151	191	968	102	866
Total	600	224	226	58	144	302	382	1,936	204	1,732
Weekday Morning Peak Hour										
Entering	11	20	25	20	17	5	17	115	4	111
Exiting	33	3	8	6	6	3	13	72	4	68
Total	44	23	33	26	23	8	30	187	8	179
Weekday Evening Peak Hour										
Entering	36	4	4	8	9	14	32	107	16	91
Exiting	$\frac{21}{57}$	$\frac{21}{25}$	$\frac{13}{17}$	21	19	16	$\frac{33}{6}$	144	16	128
Total	57	25	17	29	28	30	65	251	32	219
Saturday										
Entering	280	22	0	1	6	185	139	633	101	532
Exiting	280	$\underline{22}$	$\underline{0}$	$\frac{1}{2}$	6	$\frac{185}{370}$	$\frac{139}{}$	633	$\frac{101}{}$	532
Total	560	44	0	2	12	370	278	1,266	202	1,064
Saturday Midday Peak Hour										
Entering	35	6	0	0	2	19	43	105	21	84
Exiting	$\frac{29}{64}$	$\frac{5}{11}$	$\underline{0}$	$\underline{0}$	5	17	41	97	21	76
Total	64	11	0	0	7	36	84	202	42	160

Based on ITE LUC 210, Single-Family Detached
Based on ITE LUC 710, General Office Building.
Based on ITE LUC 730, Goverrment Office Building. Closed on Saturday
'Based on ITE LUC 150, Warehousing.
'Based on ITE LUC 180, Specialty Trade Contractor. Saturday trip projections were developed using a proportionate ratio of the Saturday trip rate to the average weekday trip rate and the weekday evening peak-hour trip Based on ITE LUC 820, Shopping Center.
Based on ITE LUC 912, Drive-in Bank.
A Pass-by trip rate was applied to the traffic volumes associated with the retail and bank uses as follows: Retail- average weekday daily - 30 percent; weekday morning peak-hour -0 percent; weekday evening peak-hour -
34 percent; Saturday and Saturday midday peak-hour -26 percent; Bank- average weekday daily -30 percent; weekday morning peak-hour -29 percent; weekday evening peak-hour -35 percent; Saturday and Saturday midday peak-hour- 38 percent.

Project-Generated Traffic Summary

As can be seen in Table 4, using the aforementioned methodology and after applying reductions to account for pass-by trips, the Project is expected to generate approximately 1,732 new vehicle trips on an average weekday and 1,064 new vehicle trips on a Saturday (both two-way volumes over the operational day of the Project), with approximately 179 new vehicle trips (111 vehicles entering and 68 exiting) expected during the weekday morning peak-hour, 219 new vehicle trips (91 vehicles entering and 128 exiting) expected during the weekday evening peak-hour, and 160 new vehicle trips (84 vehicles entering and 76 exiting) expected during the Saturday midday peak-hour.

TRIP DISTRIBUTION AND ASSIGNMENT

Separate trip-distribution patterns were developed for the residential and commercial components of the Project given the differing nature and purpose of the trips associated with these uses. For the residential component of the Project, the directional distribution was determined based on a review of Journey-to-Work data obtained from the U.S. Census for persons residing in the Town of Barrington and then refined based on a review of existing traffic patterns within the study area during the peak periods. For the commercial component of the Project, the directional distribution was determined based on a review of existing traffic patterns within the study area. The general trip distribution for the commercial and residential components for the Project are graphically depicted on Figures 6 and 7, respectively. Traffic volumes expected to be generated by the Project were assigned onto the study area roadway network as shown on Figure 8.

FUTURE TRAFFIC VOLUMES - BUILD CONDITION

The 2020 Opening-Year and 2030 Build condition traffic-volumes were developed by adding Project-generated traffic to the corresponding 2020 and 2030 No-Build peak-month peak-hour traffic-volumes. The resulting 2020 Opening-Year Build condition weekday morning, weekday evening and Saturday midday peak-month peak-hour traffic volumes are graphically depicted on Figure 9, with the corresponding 2030 Build condition peak-month peak-hour traffic volumes depicted on Figure 10.

A summary of peak-hour projected traffic-volume increases outside of the study area that is the subject of this assessment is shown in Table 5. These volumes are based on the expected increases from the Project.

WEEKDAY MORNING PEAK HOUR (7:00-8:00 AM)

WEEKDAY EVENING PEAK HOUR
(4:00-5:00 PM)
SATURDAY MIDDAY PEAK HOUR
(11:00-12:00 PM)

\quad| SITE
 In 105
 Out 97
 Total $\frac{902}{202}$ |
| :--- |

| SIE |
| ---: | ---: |
| ln 105
 Out 97
 Total 202 |

SIE	
In	105
Out	97
Total	202

Note: Imbalances exist due to numerous curb cuts and side streets that are not shown.

WEEKDAY MORNING PEAK HOUR (7:00-8:00 AM)

SITE

Not To Scale

Vanasse \& Associates, Inc.
Transportation Engineers \& Planners

WEEKDAY EVENING PEAK HOUR
(4:00-5:00 PM)
SATURDAY MIDDAY PEAK HOUR (11:00-12:00 PM)

Note: Imbalances exist due to numerous curb cuts and side streets that are not shown.

Figure 10

2030 Opening-Year Build Peak Hour Traffic Volumes Peak Month Conditions

Table 5
PEAK-HOUR TRAFFIC-VOLUME INCREASES

Location/Peak Hour	2019 Existing	$\begin{gathered} 2020 / 2030 \\ \text { No-Build } \end{gathered}$	$\begin{gathered} 2020 / 2030 \\ \text { Build } \\ \hline \end{gathered}$	Traffic Volume Increase Over No-Build $(2020 / 2030)$	Percent Increase Over No-Build (2020/2030)
NH Route 125, north of Greenhill Road/					
Tolend Road:					
Weekday Morning	1,591	1,605/1,801	1,676/1,872	71	4.4/3.9
Weekday Evening	1,674	1,711/1,890	1,796/1,975	85	5.0/4.5
Saturday Midday	1,348	1,376/1,519	1,430/1,573	54	3.9/3.6
NH Route 125, south of NH Route 9:					
Weekday Morning	1,933	1,978/2,181	2,028/2,231	50	2.5/2.3
Weekday Evening	2,042	2,085/2,400	2,146/2,461	61	2.9/2.5
Saturday Midday	1,566	1,597/1,762	1,642/1,807	45	2.8/2.6
Tolend Road, east of NH Route 125:					
Weekday Morning	136	136/152	146/162	10	7.4/6.6
Weekday Evening	183	184/206	195/217	11	6.0/5.3
Saturday Midday	137	137/152	148/163	11	8.0/7.2
Greenhill Road, west of NH Route 125:					
Weekday Morning	224	227/252	236/261	9	4.0/3.6
Weekday Evening	249	253/282	265/294	12	4.7/4.3
Saturday Midday	198	202/222	208/228	6	3.0/2.7
NH Route 9, east of NH Route 125:					
Weekday Morning	1,344	1,382/1,523	1,397/1,538	15	1.1/1.0
Weekday Evening	1,203	1,236/1,408	1,253/1,425	17	12.2/11.3
Saturday Midday	904	926/1,023	941/1,038	15	1.6/1.5
NH Route 9, west of NH Route 125:					
Weekday Morning	1,121	1,070/1,179	1,091/1,200	21	2.0/1.8
Weekday Evening	1,108	1,136/1,251	1,165/1,280	29	2.6/2.3
Saturday Midday	951	972/1,073	997/1,098	25	2.6/2.3
Scruton Pond Road, west of NH Route 125:					
Weekday Morning	115	115/129	118/132	3	2.6/2.3
Weekday Evening	116	116/130	120/134	4	3.4/3.1
Saturday Midday	133	134/148	138/152	4	3.0/2.7

As shown in Table 5, Project-related traffic-volume increases outside of the study area relative to 2020 and 2030 No-Build conditions are anticipated to range from 1.0 to 12.2 percent during the peak periods, with vehicle increases shown to range from 3 to 85 vehicles. When dispersed over the peak-hour, such increases would not result in a significant impact (increase) on motorist delays or vehicle queuing outside of the immediate study area that is the subject of this assessment.

TRAFFIC OPERATIONS ANALYSIS

Measuring existing and future traffic volumes quantifies traffic flow within the study area. To assess quality of flow, roadway capacity and vehicle queue analyses were conducted under Existing, No-Build and Build traffic volume conditions. Capacity analyses provide an indication of how well the roadway facilities serve the traffic demands placed upon them, with vehicle queue analyses providing a secondary measure of the operational characteristics of an intersection or section of roadway under study.

METHODOLOGY

Levels of Service

A primary result of capacity analyses is the assignment of level of service to traffic facilities under various traffic-flow conditions. ${ }^{7}$ The concept of level of service is defined as a qualitative measure describing operational conditions within a traffic stream and their perception by motorists and/or passengers. A level-of-service definition provides an index to quality of traffic flow in terms of such factors as speed, travel time, freedom to maneuver, traffic interruptions, comfort, convenience, and safety.

Six levels of service are defined for each type of facility. They are given letter designations from A to F , with level-of-service (LOS) A representing the best operating conditions and LOS F representing congested or constrained operating conditions.

Since the level of service of a traffic facility is a function of the traffic flows placed upon it, such a facility may operate at a wide range of levels of service, depending on the time of day, day of week, or period of year.

[^5]
Signalized Intersections

The six levels of service for signalized intersections may be described as follows:

- LOS A describes operations with very low control delay; most vehicles do not stop at all.
- LOS B describes operations with relatively low control delay. However, more vehicles stop than LOS A.
- LOS C describes operations with higher control delays. Individual cycle failures may begin to appear. The number of vehicles stopping is significant at this level, although many still pass through the intersection without stopping.
- LOS D describes operations with control delay in the range where the influence of congestion becomes more noticeable. Many vehicles stop and individual cycle failures are noticeable.
- LOS E describes operations with high control delay values. Individual cycle failures are frequent occurrences.
- LOS F describes operations with high control delay values that often occur with oversaturation. Poor progression and long cycle lengths may also be major contributing causes to such delay levels.

Levels of service for signalized intersections are calculated using the operational analysis methodology of the 2000 Highway Capacity Manual and implemented as a part of the Synchro ${ }^{\circledR} 10$ software. This method assesses the effects of signal type, timing, phasing, and progression; vehicle mix; and geometrics on delay. Level-of-service designations are based on the criterion of control or signal delay per vehicle. Control or signal delay is a measure of driver discomfort, frustration, and fuel consumption, and includes initial deceleration delay approaching the traffic signal, queue move-up time, stopped delay and final acceleration delay. Table 6 summarizes the relationship between level of service and control delay. The tabulated control delay criterion may be applied in assigning level-of-service designations to individual lane groups, to individual intersection approaches, or to entire intersections.

Table 6
LEVEL-OF-SERVICE CRITERIA FOR SIGNALIZED INTERSECTIONS ${ }^{\text {a }}$

	Control (Signal) Delay Per Vehicle (Seconds)
A	≤ 10.0
B	10.1 to 20.0
C	20.1 to 35.0
D	35.1 to 55.0
E	55.1 to 80.0
F	>80.0

${ }^{\text {a Source: }}$ Highway Capacity Manual, Transportation Research Board;
Washington, DC; 2000; page 16-2.

Unsignalized Intersections

The six levels of service for unsignalized intersections may be described as follows:

- $\operatorname{LOS} A$ represents a condition with little or no control delay to minor street traffic.
- LOS B represents a condition with short control delays to minor street traffic.
- LOS C represents a condition with average control delays to minor street traffic.
- LOS D represents a condition with long control delays to minor street traffic.
- LOS E represents operating conditions at or near capacity level, with very long control delays to minor street traffic.
- LOS F represents a condition where minor street demand volume exceeds capacity of an approach lane, with extreme control delays resulting.

The levels of service of unsignalized intersections are determined by application of a procedure described in the 2010 Highway Capacity Manual. ${ }^{8}$ Level of service is measured in terms of average control delay. Mathematically, control delay is a function of the capacity and degree of saturation of the lane group and/or approach under study and is a quantification of motorist delay associated with traffic control devices such as traffic signals and STOP signs. Control delay includes the effects of initial deceleration delay approaching a STOP sign, stopped delay, queue move-up time, and final acceleration delay from a stopped condition. Definitions for level of service at unsignalized intersections are also given in the 2010 Highway Capacity Manual. Table 7 summarizes the relationship between level of service and average control delay for two way stop controlled and all-way stop controlled intersections.

[^6]Table 7
LEVEL-OF-SERVICE CRITERIA FOR
UNSIGNALIZED INTERSECTIONS ${ }^{\text {a }}$

Level-Of-Service by Volume-to-Capacity Ratio		Average Control Delay (Seconds Per Vehicle)
$\mathrm{V} / \mathrm{c} \leq 1.0$	$\mathrm{v} / \mathrm{c}>1.0$	
B	F	≤ 10.0
B	F	10.1 to 15.0
D	F	15.1 to 25.0
E	F	25.1 to 35.0
F	F	35.1 to 50.0
	F	>50.0

${ }^{\text {a Source: Highway Capacity Manual; Transportation Research Board; Washington, DC; 2010; }}$ page 19-2.

Vehicle Queue Analysis

Vehicle queue analyses are a direct measurement of an intersection's ability to process vehicles under various traffic control and volume scenarios and lane use arrangements. The vehicle queue analysis was performed using the Synchro® intersection capacity analysis software which is based upon the methodology and procedures presented in the 2010 Highway Capacity Manual. The Synchro ${ }^{\circledR}$ vehicle queue analysis methodology is a simulation based model which reports the number of vehicles that experience a delay of six seconds or more at an intersection. For signalized intersections, Synchro ${ }^{\circledR}$ reports both the average ($50^{\text {th }}$ percentile) the $95^{\text {th }}$ percentile vehicle queue. For unsignalized intersections, Synchro ${ }^{\circledR}$ reports the $95^{\text {th }}$ percentile vehicle queue. Vehicle queue lengths are a function of the capacity of the movement under study and the volume of traffic being processed by the intersection during the analysis period. The $95^{\text {th }}$ percentile vehicle queue is the vehicle queue length that will be exceeded only 5 percent of the time, or approximately three minutes out of sixty minutes during the peak one hour of the day (during the remaining fifty-seven minutes, the vehicle queue length will be less than the $95^{\text {th }}$ percentile queue length).

ANALYSIS RESULTS

Level-of-service and vehicle queue analyses were conducted for 2019 Existing, 2020 and 2030 NoBuild, and 2020 Opening-Year and 2030 Build peak-month conditions for the study area intersections. The results of the intersection capacity and vehicle queue analyses are summarized in Tables 8 and 9 , with detailed analysis results presented in the Appendix.

The following is a summary of the level-of-service and vehicle queue analysis results. For context, we note that an LOS of " D " or better is generally defined as "acceptable" operating conditions.

Signalized Intersections

NH Route 125 at Greenhill Road and Tolend Road

Under 2019 Existing and 2020 No-Build peak-month conditions, this signalized intersection was shown to operate at an overall LOS B during the weekday morning, weekday evening, and Saturday
midday peak hours. Under 2030 No-Build peak-month conditions, overall operating conditions were shown to degrade from LOS B to LOS C during the weekday morning and evening peak hours as a result of traffic volume increases independent of the Project, and to remain operating at LOS B during the Saturday midday peak-hour.

Under 2020 Opening-Year Build peak-month conditions with the addition of Project-related traffic, overall operating conditions were shown to degrade from LOS B to LOS C during the weekday morning and evening peak-hours as a result of an increase in overall average motorist delay of up to 4.4 seconds, and to remain at operating at an overall LOS B during the Saturday midday peakhour, with no movement reported to be operating below LOS D (as previously mentioned, generally defined as the limit of acceptable traffic operations). Under 2030 Build peak-month conditions with the addition of project-related traffic, overall operating conditions were shown to degrade from LOS C to LOS D during the weekday morning peak-hour as a result of an increase in average motorist delay of 8.2 seconds, and to remain operating at LOS C during the weekday evening peakhour and at LOS B during the Saturday midday peak-hour. One movement (through movements along NH Route 125 southbound) was shown to operate below LOS D during the weekday morning peak-hour as a result of the addition of Project-related traffic. Vehicle queues at the intersection were shown to range from 0 to 38 vehicles during the peak periods. The Project was shown to result in a predicted increase in vehicle queuing at the intersection of up to 3 vehicles.

NH Route 125 at Greenhill Road and Tolend Road

Under 2019 Existing, 2020 No-Build and 2030 No-Build peak-month conditions, this signalized intersection was shown to operate at an overall LOS F during the weekday morning and evening peak hours, and at LOS D during the Saturday midday peak-hour. Under 2020 Opening-Year Build peak-month conditions with the addition of project-related traffic, overall operating conditions were shown to remain at LOS F during the weekday morning and evening peak hours, and at LOS D during the Saturday midday peak-hour (no change over No-Build conditions). Under 2030 Build peak-month conditions with the addition of project related traffic, overall operating conditions were shown to remain at LOS F during the weekday morning and evening peak hours, and to degrade from LOS D to LOS E during the Saturday midday peak-hour as a result of a predicted increase in overall average motorist delay of 5.0 seconds. Vehicle queues at the intersection were shown to range from 0 to 87 vehicles during the peak periods. The Project was shown to result in a predicted increase in vehicle queuing at the intersection of up to 5 vehicles.

Unsignalized Intersections

NH Route 125 at Scruton Pond Road

Under 2019 Existing, 2020 No-Build, 2020 Opening-Year Build, 2030 No-Build and 2030 Build peak-month conditions, the critical movements at this unsignalized intersection (all movements from Scrunton Pond Road) were shown to operate at LOS F during the weekday morning, weekday evening and Saturday midday peak hours as a result of the relatively large volume of conflicting traffic on NH Route 125 during the peak hours independent of the Project. Vehicle queues on the Scruton Pond Road approach were shown to range from 3 to 13 vehicles during the peak periods. The project was shown to result in a predicted increase in vehicle queuing at the intersection of up to two (2) vehicles.

NH Route 125 at the North Project Site Roadway

Under 2020 Opening-Year Build and 2030 Build peak-month conditions, the critical movements at this unsignalized intersection (all movements exiting the Project site) were shown to operate at LOS F during the weekday morning and evening peak hours, and at LOS E during the Saturday midday peak-hour. Vehicle queues exiting the Project site were shown to range from 1 to 5 vehicles during the peak periods, with negligible vehicle queuing predicted along NH Route 125.

NH Route 125 at the South Project Site Roadway

Under 2020 Opening-Year Build peak-month conditions, the critical movements at this unsignalized intersection (all movements exiting the Project site) were shown to operate at LOS F during the weekday morning and evening peak hours, and at LOS E during the Saturday midday peak hour. Under 2030 Build peak-month conditions, the critical movement were shown to remain operating at LOS F during the weekday morning and evening peak hours, and to degrade to LOS F during the Saturday midday peak hour. Vehicle queues exiting the Project site were shown to range from 2 to 6 vehicles during the peak periods, with negligible vehicle queuing predicted along NH Route 125.

Signalized Intersection/ Peak Hour/Movement	2019 Existing				2020 No-Build				2020 Opening Year Build				2030 No-Build				2030 Build			
	V/C ${ }^{\text {a }}$	Delay ${ }^{\text {b }}$	LOS $^{\text {c }}$	$\begin{gathered} \hline \begin{array}{c} \text { Queue }{ }^{\mathrm{d}} \\ 50^{\mathrm{th}} / 95^{\mathrm{th}} \end{array} \end{gathered}$	V/C	Delay	LOS	$\begin{gathered} \hline \begin{array}{c} \text { Queue } \\ 50^{1 /} \\ \hline 155^{\text {h }} \end{array} \\ \hline \end{gathered}$	V/C	Delay	LOS	$\begin{gathered} \text { Queue } \\ 50^{\text {th }} / 95^{\mathrm{hb}} \end{gathered}$	V/C	Delay	LOS	$\begin{gathered} \hline \text { Queue } \\ 50^{\text {th }} / 95^{\text {th }} \\ \hline \end{gathered}$	V/C	Delay	LOS	$\begin{gathered} \text { Queue } \\ 50^{\text {th }} / 95^{\text {th }} \\ \hline \end{gathered}$
NH Route 125 at Greenhill Road and Tolend Road																				
Greenhill Road EB LT/TH/RT	0.52	32.3	C	2/5	0.52	32.2	C	2/5	0.53	32.3	C	2/5	0.59	33.0	,	2/6 ${ }^{\text {f }}$	0.60	33.5	C	2/6 ${ }^{\text {f }}$
Tolend Road WB LT/TH/RT	0.35	31.5	c	1/2	0.35	31.4	c	1/2	0.45	32.9	c	1/2	0.41	31.1	c	1/2	0.52	33.5	c	$1 / 3^{\text {f }}$
NH Route 125 NB LT	0.10	10.9	B	0/1	0.11	12.0	B	0/1	0.13	14.6	B	0/1	0.13	16.6	B	0/1	0.14	16.6	B	0/1
NH Route 125 NB TH	0.50	6.8	A	4/11	0.50	6.8	A	4/10	0.52	7.0	A	4/11	0.60	8.9	A	5/13	0.62	9.2	A	5/14
NH Route 125 NB RT	0.02	4.4	A	0/0	0.02	4.4	A	0/0	0.03	4.5	A	0/0	0.03	5.0	A	$0 / 0$	0.03	5.1	A	0/0
NH Route 125 SB LT	0.03	4.2	A	0/1	0.03	4.2	A	0/1	0.04	4.3	A	0/1	0.04	4.8	A	0/1	0.05	4.9	A	0/1
NH Route 125 SB TH	0.89	20.2	c	$10 / 30^{r}$	0.91	22.7	c	$10 / 31^{\text {f }}$	0.96	30.8	c	$11 / 34^{\text {f }}$	1.02	46.4	D	13/36 ${ }^{\text {r }}$	1.07	61.9	E	15/38 ${ }^{\text {r }}$
NH Route 125 SB RT	0.00	4.8	A	0/0	0.00	4.8	A	0/0	0.00	4.8	A	0/0	0.00	5.0	A	0/0	0.00	5.0	A	0/0
Weekday Evening:																				
Greenhill Road EB LT/TH/RT	0.18	28.0	${ }^{\text {c }}$	$1 / 2$	0.18	28.9	${ }^{\text {c }}$	$1 / 2$	0.18	29.0	C	$1 / 2$	0.20	28.9	C	$1 / 2$	0.21	29.5	C	1/2
Tolend Road WB LT/TH/RT	0.55	32.1	c	$2 / 4$	0.58	33.8	c	$2 / 4$	0.62	35.8	D	3/4	0.66	37.1	D	3/5	0.72	42.5	D	$3 / 5^{\text {r }}$
NH Route 125 NB LT	0.29	6.5	A	1/1	0.30	6.8	A	1/1	0.33	7.3	A	1/1	0.38	9.7	A	1/1	0.42	11.2	B	1/2
NH Route 125 NB TH	0.88	18.8	B	$9 / 30^{\text {f }}$	0.89	19.5	B	10/31 ${ }^{\text {f }}$	0.94	26.0	C	11/33 ${ }^{\text {r }}$	0.98	35.7	D	12/36 ${ }^{\text {r }}$	1.03	46.8	D	14/38 ${ }^{\text {r }}$
NH Route 125 NB RT	0.02	5.1	A	$0 / 0$	0.02	5.0	A	0/0	0.02	5.1	A	0/0	0.02	5.1	A	0/0	0.02	5.1	A	0/0
NH Route 125 SB LT	0.13	11.2	B	0/1	0.13	11.8	B	0/1	0.14	14.6	B	0/1	0.15	16.2	B	0/1	0.16	16.7	B	0/1
NH Route 125 SB TH	0.67	12.0	B	9/14	0.67	12.1	B	10/15	0.69	12.6	B	10/15	0.77	16.2	B	12/17	0.80	17.3	B	13/19
NH Route 125 SB RT	0.02	6.5	A	$0 / 0$	0.02	6.3	A	00	0.02	6.5	${ }^{\text {A }}$	00	0.02	7.1	${ }^{\text {A }}$	$0 / 0$	0.02	7.1	${ }^{\text {A }}$	$0 / 0$
Saturday Midday:																				
Greenhill Road EB LT/TH/RT	0.20	28.0	C	1/3	0.20	28.3	C	1/3	0.20	29.1	C	1/3	0.22	30.2	C	1/3	0.22	30.7	C	1/3
Tolend Road WB LT/TH/RT	0.33	29.1	c	1/3	0.33	29.4	c	1/3	0.41	31.1	c	1/3	0.43	32.3	c	1/3	0.51	33.9	c	2/3
NH Route 125 NB LT	0.19	6.4	A	1/1	0.20	6.9	A	1/1	0.22	7.7	A	1/1	0.25	9.2	A	1/1	0.28	10.6	в	1/1
NH Route 125 NB TH	0.55	6.9	A	4/12	0.56	7.1	A	4/12	0.57	7.3	A	4/13	0.60	7.6	A	5/14	0.62	8.0	A	5/15
NH Route 125 NB RT	0.02	4.2	A	$0 / 0$	0.02	4.2	A	0/0	0.02	4.2	A	0/0	0.02	4.1	A	0/0	0.02	4.2	A	
NH Route 125 SB LT	0.05	4.4	A	0/1	0.05	4.4	A	0/1	0.05	4.6	A	0/1	0.06	4.7	A	0/1	0.07	5.0	A	0/1
NH Route 125 SB TH	0.73	11.9	в	11/14	0.74	12.4	в	11/14	0.76	13.1	B	13/16	0.80	14.3	B	14/18	0.82	15.5	B	16/19
NH Route 125 SB RT	0.01	5.4	A	0/0	0.01	5.4	A	$0 / 0$	0.01	5.4	A	$0 / 0$	0.01	5.3	${ }^{\text {A }}$	0/0	0.01	5.3	${ }^{\text {A }}$	$0 / 0$
Overall	-	11.4	B	--	0.62	11.7	B	--	0.65	12.3	B	--	0.68	13.1	B	--	0.72	14.0	B	--

Signalized Intersection/ Peak Hour/Movement	2019 Existing				2020 No-Build				2020 Opening Year Build				2030 No-Build				2030 Build			
	V/C ${ }^{\text {a }}$	Delay ${ }^{\text {b }}$	$\underline{\text { LOS }}$	$\begin{gathered} \hline \text { Queue }{ }^{\mathrm{d}} \\ 50^{\mathrm{th}} / 95^{\mathrm{hb}} \\ \hline \end{gathered}$	V/C	Delay	LOS	$\begin{gathered} \text { Queue } \\ 50^{\text {th }} / 95^{\text {th }} \\ \hline \end{gathered}$	V/C	Delay	LOS	$\begin{gathered} \text { Queue } \\ 50^{\mathrm{th}} / 95^{\text {th }} \\ \hline \end{gathered}$	V/C	$\underline{\text { Delay }}$	LOS	$\begin{gathered} \text { Queue } \\ 50^{\text {th }} / 95^{\text {th }} \\ \hline \end{gathered}$	V/C	$\underline{\text { Delay }}$	LOS	$\begin{gathered} \text { Queue } \\ 50^{\text {th }} / 95^{\text {th }} \\ \hline \end{gathered}$
NH Route 125 at NH Route 9																				
NH Route 135 NB LT	0.47	70.4	E	3/5	0.47	72.4	E	3/5	0.47	72.7	E	3/5	0.50	73.9	E	3/5	0.50	74.0	E	3/5
NH Route 135 NB TH	1.27	>80.0	F	$27^{7 / 38^{8}}$	1.40	>80.0	F	$32^{\circ} / 41^{\text {f }}$	1.49	>80.0	F	$35^{\text {c/4 }} 44^{\text {f }}$	1.56	>80.0	F	$36^{6} / 46^{6}$	1.66	>80.0	F	399\%49
NH Route 135 NB RT	0.38	51.2	D	4/8	0.36	52.8	D	4/8	0.36	53.0	D	4/8	0.43	55.4	E	5/9	0.44	55.6	E	5/9
NH Route 135 SB LT	0.72	70.2	E	8/11	0.82	77.9	E	10/15 ${ }^{\text {f }}$	0.84	79.2	E	11/16 ${ }^{\text {f }}$	0.87	>80.0	F	11/17 ${ }^{\text {f }}$	0.88	>80.0	F	12/118
NH Route 135 SB TH/RT	0.93	64.8	E	$21 / 28$	0.93	64.1	E	23/30 ${ }^{\text {r }}$	0.95	68.3	E	$24 / 32^{\text {r }}$	1.03	>80.0	F	$28^{\circ} / 36^{\text {r }}$	1.05	>80.0		$29^{9} / 37^{7}$
NH Route 9 SEb LT	0.46	67.9	E	3/5	0.61	70.2	E	5/8	0.63	70.7	E	$6 / 8$	0.63	72.2	E	6/8	0.65	72.4	E	6/8
NH Route 9 SEB TH	1.08	>80.0	F	30\%/40	1.07	>80.0	F	$30^{\circ} / 37^{7}$	1.07	>80.0	,	$30 \% 37^{\text {f }}$	1.20	>80.0	F	$36^{6 / 43^{\text {f }}}$	1.21	>80.0	F	$36^{6} / 43^{\text {f }}$
NH Route 9 SEB RT	0.24	38.0	D	3/5	0.23	39.7	D	3/5	0.23	39.9	D	3/5	0.28	41.8	D	3/6	0.28	41.9	D	3/6
NH Route 9 NWB LT	0.85	78.6	E	11/11	0.85	>80.0	F	11/11	0.85	>80.0	F	11/11	0.90	>80.0	F	12/12	0.91	>80.0	F	12/12
NH Route 9 NWB TH	0.29	28.8	c	6/7	0.31	33.9	c	6/7	0.32	34.8	c	$6 / 7$	0.34	35.2	D	7/8	0.35	36.1	D	$7 / 8$
NH Route 9 NWB RT	0.08	26.0	c	0/1	0.14	31.5	C	1/2	0.16	32.4	c	1/2	0.17	32.5	c	2/2	0.18	33.5	c	2/2
Overall	1.02	>80.0	F	--	1.05	>80.0	F	--	1.08	>80.0	F	--	1.16	>80.0	F	--	1.19	>80.0	F	--
Weekday Evening:																				
NH Route 135 NB LT	0.66	53.3	D	$7 / 11$	0.66	54.7	E	$7 / 11$	0.67	55.7	E	$7 / 11$	0.72	61.1	,	$8 / 13$	0.72	61.9	E	$8 / 13$
NH Route 135 NB TH	1.67	>80.0	F	$51^{1 / 67^{7}}$	1.78	>80.0	F	$54^{6 / 73^{\text {f }}}$	1.87	>80.0	F	$57^{7} / 77^{\text {P }}$	2.04	>80.0	F	$64^{1 / 82^{\text {r }}}$	2.15	>80.0	F	$67^{\circ} / 87^{\text {f }}$
NH Route 135 NB RT	0.09	31.0	C	1/3	0.09	32.3	C	1/3	0.09	33.4	C	1/3	0.35	38.9	D	4/8	0.36	40.3	D	4/8
NH Route 135 SB LT	0.45	54.7	D	3/6	0.52	55.1	E	$4 / 7$	0.54	56.1	E	4/7	0.56	60.0	E	4/7	0.58	61.1	E	5/8
NH Route 135 SB TH/RT	0.72	47.2	D	11/15	0.78	49.5	D	12/118 ${ }^{\text {f }}$	0.84	54.4	D	$13 / 21^{\text {f }}$	0.91	64.8	E	14/22 ${ }^{\text {f }}$	0.98	>80.0	F	16/25 ${ }^{\text {f }}$
NH Route 9 SEB LT	0.45	54.6	D	3/6	0.51	55.1	E	4/7	0.55	56.1	E	5/8	0.55	59.9	E	4/7	0.58	60.9	E	5/8
NH Route 9 SEB TH	0.39	40.9	D	5/9	0.37	41.0	D	5/9	0.36	40.9	D	5/9	0.39	42.1	D	6/10	0.38	41.9	D	$6 / 10$
NH Route 9 SEB RT	0.07	37.3	D	0/2	0.07	37.5	D	0/2	0.07	37.4	D	0/2	0.09	38.4	D	0/3	0.09	38.2	D	0/2
NH Route 9 NWB LT	0.74	54.2	D	9/15	0.74	55.6	E	9/15	0.75	57.1	E	9/15	0.80	63.4	E	10/17 ${ }^{\text {r }}$	0.81	64.7	E	10/17 ${ }^{\text {f }}$
NH Route 9 NWB TH	0.81	46.0	D	16/26 ${ }^{\text {f }}$	0.82	48.5	D	16/26 ${ }^{\text {f }}$	0.83	50.3	D	16/26 ${ }^{\text {f }}$	0.85	52.0	D	18/30 $0^{\text {f }}$	0.86	53.9	D	19/31 $1^{\text {f }}$
NH Route 9 NWB RT	0.12	28.8	c	1/3	0.20	31.1	c	$2 / 5$	0.22	32.2	c	2/5	0.11	30.1	c	1/3	0.12	31.0	c	1/3
Saturday Midday:																				
NH Route 135 NB LT	0.47	43.3	D	3/6	0.46	43.8	D	3/6	0.46	44.2	D	3/6	0.50	46.5	F	4/7	0.51	47.0	D	4/7
NH Route 135 NB TH	0.85	45.1	D	12/28 ${ }^{\text {f }}$	0.89	51.2	D	13/29 ${ }^{\text {f }}$	0.94	60.4	E	$14 / 32^{\text {f }}$	1.03	>80.0	F	$18^{0} / 37^{\text {f }}$	1.09	>80.0	F	20 ${ }^{\text {c/39 }}$
NH Route 135 NB RT	0.08	26.0	C	0/2	0.08	26.4	C	0/2	0.08	26.8	c	0/2	0.10	29.4	c	1/3	0.10	29.9	C	1/3
NH Route 135 SB LT	0.50	42.9	D	4/6	0.55	43.4	D	4/7	0.57	43.7	D	4/7	0.58	46.3	D	5/8	0.60	${ }_{5}^{46.7}$	D	5/8
NH Route 135 SB TH/RT	0.78	36.4	D	11/17 ${ }^{\text {f }}$	0.80	36.4	D	12/17	0.83	38.2	D	13/19 ${ }^{\text {f }}$	0.92	49.1	D	15/24 ${ }^{\text {f }}$	0.95	53.7	D	16/25 ${ }^{\text {f }}$
NH Route 9 SEB LT	0.48	43.0	D	3/7	0.53	43.2	D	4/8	0.56	43.6	D	4/8	0.57	46.3	D	5/9	0.59	46.7	D	5/10
NH Route 9 SEB TH	0.65	40.5	D	7/12	0.65	41.4	D	7/12	0.65	41.7	D	$7 / 12$	0.67	43.4	D	$8 / 14$	0.67	43.8	D	$8 / 14$
NH Route 9 SEB RT	0.25	33.9	c	2/4	0.24	34.7	c	2/4	0.24	35.0	D	2/4	0.28	35.9	D	$2 / 5$	0.28	36.3	D	2/5
NH Route 9 NWB LT	0.55	42.7	D	4/8	0.54	43.2	D	4/8	0.54	43.6	D	4/8	0.58	46.2	D	5/9	0.58	46.8	D	5/9
NH Route 9 NWB TH	0.49	35.1	D	5/9	0.53	37.9	D	5/10	0.55	39.2	D	5/10	0.55	39.0	D	6/11	0.57	40.7	D	$6 / 11$
NH Route 9 NWB RT	0.07	30.7	C	0/2	0.14	33.6	C	1/3	0.17	34.7	C	1/3	0.17	34.3	C	1/4	0.20	35.7	${ }^{\text {D }}$	1/4
Overall	0.67	38.7	D	--	0.69	40.3	D	--	0.72	42.9	D	--	0.75	51.8	D	--	0.78	56.8	E	--

$\overline{\text { avolume-to-capacity ratio. }}$
Conl(siz) delay per vehicle in seconds
Level-of-Service.
Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles
$95^{\text {th }}$ percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
$\mathrm{NB}=$ northbound; $\mathrm{SB}=$ southbound; $\mathrm{EB}=$ eastbound; $\mathrm{WB}=$ westbound; $\mathrm{SEB}=$ south-eastbound; $\mathrm{NWB}=$ north-westbound; $\mathrm{LT}=$ left-turning movements; $\mathrm{TH}=$ through movements; $\mathrm{RT}=$ right-turning movements.

UNSIGNALIZED INTERSECTION LEVEL-OF-SERVICE AND VEHICLE QUEUE SUMMARY

	2019 Existing				2020 No-Build				2020 Opening-Year Build				2030 No-Build				2030 Build			
Unsignalized Intersection/Peak Hour/Movement	$\underline{\text { Demand }}$	Delay ${ }^{\text {b }}$	LOS $^{\text {c }}$	$\begin{gathered} \text { Queue } \mathrm{a}^{\mathrm{a}} \\ 95^{\mathrm{h}} \end{gathered}$	Demand	Delay	$\underline{L O S}$	$\begin{gathered} \text { Queue } \\ \hline 95 \mathrm{bb} \end{gathered}$	Demand	$\xrightarrow{\text { Delay }}$	LOS	$\begin{gathered} \text { Queue } \\ 95^{\mathrm{h}} \\ \hline \end{gathered}$	Demand	Delay	LOS	$\begin{gathered} \text { Queue } \\ \hline 95 \mathrm{bl} \end{gathered}$	Demand	Delay	LOS	$\begin{gathered} \text { Queue } \\ \hline 95 \mathrm{bl} \\ \hline \end{gathered}$
NH Route 125 at Scrunton Pond Road Weekday Morning:																				
Scrunton Pond Road EB LT/RT	98	>50.0	F	8	98	>50.0	F	8	99	>50.0	F	9	110	>50.0	F	11	111	>50.0	F	13
NH Route 125 NB LT/TH	580	0.1	A	0	598	0.1	A	0	629	0.1	A	0	659	0.1	A	0	690	0.1	A	0
NH Route 125 SB TH/RT	1,115	0.0	A	0	1,140	0.0	A	0	1,201	0.0	A	0	1,258	0.0	A	0	1,319	0.0	A	0
Weekday Evening:																				
Scrunton Pond Road EB LT/RT	33	>50.0	F	3	33	>50.0	F	3	35	>50.0	F	4	37	>50.0	F	5	39	>50.0	F	6
NH Route 125 NB LT/TH	1,106	0.1	A	0	1,130	0.1	A	0	1,199	0.1	A	0	1,247	0.1	A	0	1,216	0.2	A	0
Saturday Midday:																				
Scrunton Pond Road EB LT/RT	71	>50.0	F	5	72	>50.0	F	5	74	>50.0	F	6	79	>50.0	F	7	81	>50.0	F	8
NH Route 125 NB LT/TH	671	0.3	A	0	686	0.3	A	0	722	0.3	A	0	756	0.3	A	0	792	0.3	A	0
NH Route 125 SB TH/RT	772	0.0	A	0	788	0.0	A	0	825	0.0	A	0	870	0.0	A	0	907	0.0	A	0
NH Route 125 at North Project Site Driveway Weekday Morning:																				
North Project Site Driveway WB LT/RT	--	--	--	--	--	--	-	--	29	>50.0	F	2	--	--	-	--	29	>50.0	F	2
NH Route 125 NB TH/RT	--	--	--	--	--	--	--	--	${ }_{6} 63$	0.0	A	0	--	--	--	--	698	0.0	A	0
NH Route 125 SB LT/TH	--	--	--	--	--	--	--	--	1,229	0.2	A	0	--	--	--	--	1,351	0.2	A	0
Weekday Evening:																				
North Project Site Driveway WB LT/RT	--	--	--	--	--	--	--	--	${ }_{6}$	>50.0	F	4	--	--	--	--	66	>50.0	F	5
NH Route 125 NB TH/RT	--	--	--	--	--	--	--	--	1,183	0.0	A	0	--	--	--	--	1,200	0.0	A	0
NH Route 125 SB LT/TH	--	--	--	--	--	--	--	--	689	0.4	A	0	--	--	--	--	755	0.4	A	0
Saturday Midday:																				
North Project Site Driveway WB LT/RT	--	--	--	--	--	--	--	--	41	35.4	E	1	--	--	--	-	41	45.6	E	2
NH Route 125 NB TH/RT	--	--	--	--	--	--	--	--	722	0.0	A	0	--	--	--	--	788	0.0	A	0
NH Route 125 SB LT/TH	--	--	--	--	--	--	--	--	799	0.3	A	0	--	--	--	--	878	0.3	,	0
NH Route 125 at South Project Site Driveway Weekday Morning:																				
South Project Site Driveway WB LT/RT	--	--	--	--	--	--	--	--	43	>50.0	F	3	--	--	--	--	43	>50.0	F	4
NH Route 125 NB TH/RT	--	--	--	--	--	--	--	--	647	0.0	A	0	--	--	--	--	708	0.0	A	0
NH Route 125 SB LT/TH	--	--	--	--	--	--	--	--	1,211	0.2	A	0	--	--	--	--	1,333	0.2	A	0
Weekday Evening:																				
South Project Site Driveway WB LT/RT	--	--	--	--	--	--	--	--	78	>50.0	F	6	--	--	--	--	78	>50.0	F	6
NH Route 125 NB TH/RT	--	--	--	--	--	--	--	--	1,178	0.0	A	0	--	--	--	--	1,195	0.0	A	0
NH Route 125 SB LT/TH	--	--	--	--	--	--	--	--	694	0.5	A	0	--	--	--	--	760	0.4	A	0
Saturday Midday:																				
South Project Site Driveway WB LT/RT	--	--	--	--	--	--	--	--	56	44.9	E	2	--	--	-	-	56	>50.0	,	3
NH Route 125 NB TH/RT	--	--	--	--	--	--	--	--	${ }_{795} 71$	0.0	A	${ }^{0}$	--	--	--	--	881	${ }_{0}^{0.0}$	A	${ }_{0}$
NH Route 125 SB LT/TH	--	--	--	--	--	--	--	--	795	0.3	A	0	--	--	--	--	874	0.3	A	0

${ }^{\text {and Demand in vehicles per hour. }}{ }^{\text {andverage control delay per vehicle (in seconds). }}$

Cueue length in vehicles.
$\mathrm{NB}=$ northbound; $\mathrm{SB}=$ southbound; $\mathrm{EB}=$ eastbound; $\mathrm{WB}=$ westbound; $\mathrm{LT}=$ left-turning movements; $\mathrm{TH}=$ through movement; $\mathrm{RT}=$ right-turning movements.

SIGHT DISTANCE EVALUATION

Sight distance measurements were performed at the Project site roadway intersections with NH Route 125 in accordance with American Association of State Highway and Transportation Officials (AASHTO) ${ }^{9}$ standards. Both stopping sight distance (SSD) and intersection sight distance (ISD) measurements were performed. In brief, SSD is the distance required by a vehicle traveling at the design speed of a roadway, on wet pavement, to stop prior to striking an object in its travel path. ISD or corner sight distance (CSD) is the sight distance required by a driver entering or crossing an intersecting roadway to perceive an on-coming vehicle and safely complete a turning or crossing maneuver with on-coming traffic. In accordance with AASHTO standards, if the measured ISD is at least equal to the required SSD value for the appropriate design speed, the intersection can operate in a safe manner. Table 10 presents the measured SSD and ISD at the subject intersections.

[^7]Table 10

SIGHT DISTANCE MEASUREMENTS ${ }^{\text {a }}$

Intersection/Sight Distance Measurement	Feet		
	Required Minimum (SSD)	ISD ${ }^{\text {b }}$	Measured
NH Route 125 at the North Project Site Roadway			
Stopping Sight Distance:			
NH Route 125 approaching from the north	570	--	562/600+ ${ }^{\text {c }}$
NH Route 125 approaching from the south	570	--	$650+$
Intersection Sight Distance:			
Looking to the north from the Project site roadway	570	665	509/600+ ${ }^{\text {c }}$
Looking to the south from the Project site roadway	570	575	$650+$
NH Route 125 at the North Project Site Roadway			
Stopping Sight Distance:			
NH Route 125 approaching from the north	570	--	600+
NH Route 125 approaching from the south	570	--	595
Intersection Sight Distance:			
Looking to the north from the Project site roadway	570	665	600+
Looking to the south from the Project site roadway	570	575	$600+$

[^8]As can be seen in Table 10, the available lines of sight at the Project site roadway intersections with NH Route 125 were found to exceed or could be made to exceed the recommended minimum requirements (SSD) to function in a safe manner based on a 60 mph approach speed along NH Route 125 , which is slightly above the measured $85^{\text {th }}$ percentile vehicle travel speed (58 59 mph) and 10 mph above the posted speed limit (50 mph).

TURN LANE WARRANTS ANALYSIS

An auxiliary turn lane warrants analysis was conducted for the NH Route 125 approaches to the Project site roadways in accordance with the methodology and procedures outlined in NCHRP Report 457^{10} published by National Cooperative Highway Research Program (NCHRP).

Left-Turn Lane

Determination of the need for a left-turn lane of adequate storage length is a function of the volume of left-turning vehicles at the intersection under study and the magnitude of opposing or conflicting traffic volumes along the roadway. Based on a review of this criteria under 2020 Opening Year and 2030 Build conditions, provision of a left-turn lane on the NH Route 125 southbound approach to the north and south Project site roadways appears to be warranted. The detailed analysis of the left-turn lane criteria is presented in the Appendix.

Right-Turn Lane

Consideration of the need for a right-turn lane is a function of the volume of right-turning vehicles at the intersection and the total volume of traffic on the same approach (advancing volume). Based on a review of this criteria under 2020 Opening Year and 2030 Build conditions, provision of a right-turn lane on the NH Route 125 northbound approach to the north and south Project site roadways appears to be warranted. The detailed analysis of the right-turn lane criteria is presented in the Appendix.

A review of the motor vehicle crash history at the nearby intersection of NH Route 125 at Scrunton Pond Road as documented by the Barrington Police Department in the town-wide safety assessment indicated the presence of safety deficiencies along the NH Route 125 corridor due in part to the high travel speeds along the roadway. As such and based on the results of the auxiliary turn lane warrants analysis, it is recommended that left-turn lanes be provided on the NH Route 125 approaches to the Project site roadways. The existing shoulder width along NH Route 125 (nine (9) to 10 feet) combined with properly designed corner radii for the Project site roadways will accommodate vehicles decelerating to enter the Project site without impeding the flow of traffic along NH Route 125. As such, separate right-turn deceleration lanes are not recommended at this time.

[^9]
CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

VAI has completed a detailed assessment of the potential impacts on the transportation infrastructure associated with the proposed construction of a mixed-use development to be located along the east side of NH Route 125 (Calef Highway) and south of Scruton Pond Road in Barrington, New Hampshire. This study was prepared in consultation with the Town of Barrington, NHDOT and the SRPC, and is responsive to the scoping determination issued by NHDOT for the preparation of this study. The following specific areas have been evaluated as they relate to the Project: i) access requirements; ii) potential off-site improvements; and iii) safety considerations; under existing and future conditions, both with and without the Project.

As a result of this assessment, we have concluded the following with respect to the Project:

1. Using trip-generation statistics published by the ITE ${ }^{11}$ and with adjustment to account for pass-by trips, the Project is expected to generate approximately 1,732 new vehicle trips on an average weekday and 1,064 new vehicle trips on a Saturday (both two-way volumes over the operational day of the Project), with approximately 179 new vehicle trips expected during the weekday morning peak-hour, 219 new vehicle trips expected during the weekday evening peak-hour, and 160 new vehicle trips expected during the Saturday midday peak-hour;
2. In general, the Project will not have a significant impact (increase) on motorist delays or vehicle queuing over Existing or anticipated future conditions without the Project (NoBuild conditions); however, it was noted that one or more movements at the intersection of NH Route 125 at NH Route 9 are currently operating at or over capacity (defined as a LOS of "E" or "F", respectively) independent of the Project;
3. Similar to other unsignalized intersections along the NH Route 125 corridor, motorists exiting the Project site are expected to experience delays during the peak traffic volume periods, with residual vehicle queues of up to six (6) vehicles predicted which can be contained within the Project site without impeding access or circulation, or the movement of vehicles, pedestrians and bicyclists along NH Route 125;

[^10]4. Lines of sight at the Project site roadway intersections with NH Route 125 were found to exceed or could be made to exceed the required minimum distance for the intersections to function in a safe manner; and
5. A review of the criteria for the installation of auxiliary turn lanes at the Project site roadway intersections with NH Route 125 indicates that the addition of both a left-turn lane and a right-turn deceleration lane are justified based on the applicable criteria.

In consideration of the above, we have concluded that the Project can be accommodated within the confines of the existing transportation infrastructure in a safe and efficient manner with implementation of the recommendations that follow.

RECOMMENDATIONS

A series of recommendations have been developed that are designed to provide safe and efficient access to the Project site and address any deficiencies identified at off-site locations evaluated in conjunction with this study. The following improvements have been recommended as a part of this evaluation and, where applicable, will be completed in conjunction with the Project subject to receipt of all necessary rights, permits and approvals.

Project Access

Access to the Project will be provided by way of two (2) new roadways that will intersect the east side of NH Route 125 as follows: the north roadway will be situated opposite the driveway to 246-248 Calef Highway (Casella Sales \& Marketing Inc. and 603 Self-Storage); the south roadway will be located approximately 2,175 feet south of Scruton Pond Road. An access easement will also be established to allow for a future connection between the Project site and property to the north of Old Green Hill Road. The following recommendations are offered with respect to the design and operation of the Project site access and internal circulation, many of which are reflected on the Site Plans:
> The Project site roadways and internal circulating roads should be 24 -feet in width and designed to accommodate the turning and maneuvering requirements of the largest anticipated responding emergency vehicle as defined by the Barrington Fire Department.
> Vehicles exiting the Project site should be placed under STOP-sign control with a marked STOP-line provided.
> Let-turn lanes should be provided on NH Route 125 approaching both the north and south Project site roadways, with the turn lane accommodations at the north Project site roadway to include a left-turn lane in both the north and southbound directions to facilitate access to the driveway serving the driveway to 246-248 Calef Highway. The existing shoulder width along NH Route 125 (nine (9) to 10 feet) combined with properly designed corner radii for the Project site roadways will accommodate vehicles decelerating to enter the Project site without impeding the flow of traffic along NH Route 125. As such, separate right-turn deceleration lanes are not recommended at this time.
> Where perpendicular parking is proposed, the drive aisle behind the parking should be a minimum of 23 -feet in order to facilitate parking maneuvers.
$>$ All signs and pavement markings to be installed within the Project site should conform to the applicable standards of the Manual on Uniform Traffic Control Devices (MUTCD). ${ }^{12}$
$>$ A sidewalk should be provided along at least one side of the Project site roadways and along circulating roads within the Project site.
$>$ Americans with Disabilities Act (ADA) compliant wheelchair ramps should be provided at all pedestrian crossings internal to the Project site.
$>$ The embankment situated along the east side of NH Route 125 and north of the north Project site roadway should be regraded in order to provide the recommended minimum line of sight to and from the north along NH Route 125.
$>$ Signs and landscaping to be installed as a part of the Project within intersection sight triangle areas should be designed and maintained so as not to restrict lines of sight.
$>$ Snow windrows within sight triangle areas shall be promptly removed where such accumulations would impede sight lines.
$>$ Bicycle parking should be provided at appropriate locations within the Project site to serve the municipal, retail and bank uses.

Off-Site

NH Route 125/Scruton Pond Road

The intersection of NH Route 125 at Scruton Pond Road has been identified by the Town as a priority location for a RSA in order to identify potential safety-related improvements at the intersection. In order to advance this effort, the Project proponent will facilitate the completion of a RSA in order to identify improvements for this intersection.

NH Route 125/NH Route 9

One or more movements at the intersection of NH Route 125 at NH Route 9 were identified to be operating at or over capacity during the weekday and Saturday peak hours independent of the Project, with Project-related impacts defined as a predicted increase in motorist delay that resulted in a corresponding increase in vehicle queuing of up to five (5) vehicles. In an effort to reduce overall motorist delay and vehicle queuing at the intersection, the Project proponent will design and implement an optimal traffic signal timing and phasing plan subject to receipt of all necessary rights, permits and approvals.

Transportation Demand Management Measures

Public transportation services are not currently provided in the vicinity of the Project site. In an effort to encourage the use of alternative modes of transportation to single-occupant vehicles, the following Transportation Demand Management (TDM) measures will be implemented as a part of the Project:

[^11]> Information regarding public transportation services, maps, schedules and fare information will be posted in a central location and/or otherwise made available to residents and employees;
> Tenants of the commercial components of the Project will be encouraged to offer specific amenities to discourage off-site trips, including providing a break-room equipped with a microwave and refrigerator; offering direct deposit of paychecks; coordinating with a drycleaning service for on-site pick-up and delivery; allowing telecommuting or flexible work schedules; and other such measures to reduce overall traffic volumes and travel during peak traffic volume periods;
> Pedestrian and bicycle accommodations will be incorporated into the Project including sidewalks and bicycle parking in appropriate locations; and
$>$ To the extent that public transportation services are provided along NH Route 125 in the future, an area should be reserved for a bus stop to be established.

With implementation of the above recommendations, safe and efficient vehicular, pedestrian and bicycle access will be provided to the Project site and the Project can be accommodated within the confines of the existing and improved transportation system.

APPENDIX

PROJECT SITE PLAN
AUTOMATIC TRAFFIC RECORDER COUNT DATA
MANUAL TURNING MOVEMENT COUNT DATA
SEASONAL ADJUSTMENT DATA
VEHICLE TRAVEL SPEED DATA
BARRINGTON POLICE DEPARTMENT SAFETY ASSESSMENT
BACKGROUND DEVELOPMENT TRAFFIC-VOLUME NETWORKS
TRIP-GENERATION CALCULATIONS
JOURNEY TO WORK TRIP DISTRIBUTION
CAPACITY ANALYSIS WORKSHEETS
TURN LANE WARRANTS ANALYSIS

Start	3/7/2019	SB		Hour Totals		NB		Hour Totals		Combined Totals	
Time	Thu	Morning	Afternoon								
12:00		7	84			8	85				
12:15		2	87			10	101				
12:30		3	92			18	96				
12:45		4	90	16	353	7	96	43	378	59	731
01:00		1	117			9	110				
01:15		3	85			6	110				
01:30		5	108			1	123				
01:45		2	117	11	427	6	124	22	467	33	894
02:00		3	118			5	100				
02:15		5	119			1	128				
02:30		2	100			5	124				
02:45		4	127	14	464	3	172	14	524	28	988
03:00		9	113			3	171				
03:15		11	113			4	161				
03:30		10	139			13	201				
03:45		16	130	46	495	9	172	29	705	75	1200
04:00		19	138			16	217				
04:15		35	125			11	201				
04:30		34	126			7	189				
04:45		48	129	136	518	15	212	49	819	185	1337
05:00		61	104			16	227				
05:15		93	119			24	208				
05:30		98	96			22	180				
05:45		112	94	364	413	39	180	101	795	465	1208
06:00		139	100			41	133				
06:15		164	78			88	157				
06:30		198	87			95	113				
06:45		236	83	737	348	97	116	321	519	1058	867
07:00		199	43			86	90				
07:15		257	52			123	70				
07:30		209	38			112	60				
07:45		208	36	873	169	122	69	443	289	1316	458
08:00		163	43			105	46				
08:15		150	54			95	56				
08:30		128	30			116	53				
08:45		121	28	562	155	110	70	426	225	988	380
09:00		110	39			111	51				
09:15		88	24			94	58				
09:30		122	27			85	36				
09:45		105	17	425	107	91	33	381	178	806	285
10:00		74	28			90	33				
10:15		94	22			84	37				
10:30		90	19			96	24				
10:45		96	24	354	93	93	25	363	119	717	212
11:00		93	11			90	36				
11:15		106	12			107	16				
11:30		88	8			108	21				
11:45		96	5	383	36	109	14	414	87	797	123
Total		3921	3578			2606	5105			6527	8683
Percent		52.3\%	47.7\%			33.8\%	66.2\%			42.9\%	57.1\%

Location : South of Scruton Pond Road
City/State: Barrington, NH

Start	3/8/2019	SB		Hour Totals		NB		Hour Totals		Combined Totals	
Time	Fri	Morning	Afternoon								
12:00		5	84			9	121				
12:15		10	100			11	115				
12:30		3	121			21	127				
12:45		3	115	21	420	7	120	48	483	69	903
01:00		1	97			8	140				
01:15		4	101			7	146				
01:30		5	138			7	163				
01:45		3	120	13	456	7	128	29	577	42	1033
02:00		5	127			3	129				
02:15		3	115			2	158				
02:30		4	142			6	171				
02:45		8	121	20	505	5	163	16	621	36	1126
03:00		12	128			9	204				
03:15		12	126			3	198				
03:30		17	143			12	205				
03:45		18	128	59	525	9	189	33	796	92	1321
04:00		20	149			20	201				
04:15		27	146			13	228				
04:30		28	123			7	205				
04:45		36	101	111	519	16	205	56	839	167	1358
05:00		61	116			6	211				
05:15		79	120			29	206				
05:30		98	117			33	188				
05:45		104	95	342	448	39	180	107	785	449	1233
06:00		111	87			59	162				
06:15		176	87			59	156				
06:30		207	93			98	124				
06:45		189	79	683	346	103	111	319	553	1002	899
07:00		219	56			79	112				
07:15		214	57			109	80				
07:30		199	43			136	78				
07:45		232	53	864	209	139	61	463	331	1327	540
08:00		160	37			101	71				
08:15		157	36			114	58				
08:30		146	30			111	54				
08:45		125	35	588	138	129	57	455	240	1043	378
09:00		120	33			98	62				
09:15		134	40			91	61				
09:30		90	25			101	46				
09:45		102	20	446	118	97	47	387	216	833	334
10:00		98	28			87	37				
10:15		89	39			106	35				
10:30		96	28			105	26				
10:45		97	20	380	115	104	42	402	140	782	255
11:00		107	15			108	39				
11:15		86	15			114	28				
11:30		101	17			103	39				
11:45		138	5	432	52	114	11	439	117	871	169
Total		3959	3851			2754	5698			6713	9549
Percent		50.7\%	49.3\%			32.6\%	67.4\%			41.3\%	58.7\%

Start	3/9/2019	SB		Hour Totals		NB		Hour Totals		Combined Totals	
Time	Sat	Morning	Afternoon								
12:00		10	128			15	114				
12:15		9	137			17	125				
12:30		3	115			20	137				
12:45		10	118	32	498	11	143	63	519	95	1017
01:00		7	104			10	137				
01:15		5	112			6	122				
01:30		1	124			5	125				
01:45		5	118	18	458	6	131	27	515	45	973
02:00		3	104			5	113				
02:15		5	114			9	122				
02:30		10	96			3	104				
02:45		2	125	20	439	8	105	25	444	45	883
03:00		0	119			3	145				
03:15		8	92			5	142				
03:30		7	124			5	110				
03:45		11	124	26	459	9	132	22	529	48	988
04:00		7	121			5	117				
04:15		12	131			7	103				
04:30		18	118			2	152				
04:45		19	119	56	489	8	104	22	476	78	965
05:00		21	103			6	112				
05:15		20	94			8	132				
05:30		27	114			14	125				
05:45		32	102	100	413	23	140	51	509	151	922
06:00		44	62			26	100				
06:15		44	104			30	92				
06:30		51	100			33	121				
06:45		58	92	197	358	34	93	123	406	320	764
07:00		39	70			47	82				
07:15		62	63			41	64				
07:30		72	35			55	62				
07:45		83	67	256	235	76	60	219	268	475	503
08:00		78	43			77	40				
08:15		73	46			59	46				
08:30		101	40			79	40				
08:45		94	32	346	161	87	54	302	180	648	341
09:00		106	37			86	53				
09:15		115	39			102	66				
09:30		90	30			117	58				
09:45		121	26	432	132	110	47	415	224	847	356
10:00		108	29			91	36				
10:15		96	20			101	36				
10:30		126	22			116	27				
10:45		124	24	454	95	130	29	438	128	892	223
11:00		104	21			144	18				
11:15		129	21			136	28				
11:30		177	16			113	31				
11:45		141	14	551	72	127	18	520	95	1071	167
Total		2488	3809			2227	4293			4715	8102
Percent		39.5\%	60.5\%			34.2\%	65.8\%			36.8\%	63.2\%
Grand Total		10368	11238			7587	15096			17955	26334
Percent		48.0\%	52.0\%			33.4\%	66.6\%			40.5\%	59.5\%
ADT		T 14,763		T 14,763							

Location: Route 125
Location: South of Scruton Pond Road
City/State: Barrington, NH

MANUAL TURNING MOVEMENT COUNT DATA.

Accurate Counts 978-664-2565													
N/S Street : Route 125 ENW Street: Route 9 City/State : Barrington, NH Weather : Clear												File Site Star Page	$\begin{aligned} & : 81880001 \\ & : 81880001 \\ & : 3 / 7 / 2019 \\ & : 1 \end{aligned}$
Groups Printed-Cars - Trucks													
	Route 125 From North			Route 9 From East			Route 125 From South			Route 9 From West			
Start Time	Left	Thru	Right	Left		Right	Left	Thru	Right	Left	Thru	Right	Int. Total
07:00 AM	50	151	10	21	15	13	10	73	39	5	99	25	511
07:15 AM	24	165	8	48	43	23	7	89	50	15	119	21	612
07:30 AM	34	176	9	36	30	16	8	91	27	15	109	51	602
07:45 AM	28	166	10	30	19	8	15	93	31	12	98	30	540
Total	136	658	37	135	107	60	40	346	147	47	425	127	2265
08:00 AM	24	136	8	32	34	12	9	76	33	18	63	53	498
08:15 AM	17	113	9	29	25	15	31	84	31	6	49	62	471
08:30 AM	19	103	10	22	20	23	10	80	31	14	58	34	424
08:45 AM	21	92	13	17	23	14	16	79	20	11	48	25	379
Total	81	444	40	100	102	64	66	319	115	49	218	174	1772
Grand Total	217	1102	77	235	209	124	106	665	262	96	643	301	4037
Apprch \%	15.5	78.9	5.5	41.4	36.8	21.8	10.3	64.4	25.4	9.2	61.8	28.9	
Total \%	5.4	27.3	1.9	5.8	5.2	3.1	2.6	16.5	6.5	2.4	15.9	7.5	
Cars	205	1061	69	228	204	100	103	642	257	94	632	287	3882
\% Cars	94.5	96.3	89.6	97	97.6	80.6	97.2	96.5	98.1	97.9	98.3	95.3	96.2
Trucks	12	41	8	7	5	24	3	23	5	2	11	14	155
\% Trucks	5.5	3.7	10.4	3	2.4	19.4	2.8	3.5	1.9	2.1	1.7	4.7	3.8

File Name: $: 81880001$
Site Code : 81880001
Start Date : $3 / 7 / 2019$
Page No : 2

	Route 125 From North				Route 9 From East				Route 125 From South				Route 9 From West				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 07:00 AM																	
07:00 AM	50	151	10	211	21	15	13	49	10	73	39	122	5	99	25	129	511
07:15 AM	24	165	8	197	48	43	23	114	7	89	50	146	15	119	21	155	612
07:30 AM	34	176	9	219	36	30	16	82	8	91	27	126	15	109	51	175	602
07:45 AM	28	166	10	204	30	19	8	57	15	93	31	139	12	98	30	140	540
Total Volume	136	658	37	831	135	107	60	302	40	346	147	533	47	425	127	599	2265
\% App. Total	16.4	79.2	4.5		44.7	35.4	19.9		7.5	64.9	27.6		7.8	71	21.2		
PHF	. 680	. 935	. 925	. 949	. 703	. 622	. 652	. 662	. 667	. 930	. 735	. 913	. 783	. 893	. 623	. 856	. 925
Cars	129	635	31	795	131	103	52	286	37	330	145	512	46	419	126	591	2184
\% Cars	94.9	96.5	83.8	95.7	97.0	96.3	86.7	94.7	92.5	95.4	98.6	96.1	97.9	98.6	99.2	98.7	96.4
Trucks	7	23	6	36	4	4	8	16	3	16	2	21	1	6	1	8	81
\% Trucks	5.1	3.5	16.2	4.3	3.0	3.7	13.3	5.3	7.5	4.6	1.4	3.9	2.1	1.4	0.8	1.3	3.6

10008818 $\varepsilon: ~ o N ~ ә 6 e_{c}$

Accurate Counts 978-664-2565													
N/S Street : Route 125 E/W Street: Route 9 City/State: Barrington, NH Weather : Clear												File Site Sta Pag	$\begin{aligned} & : 81880001 \\ & : 81880001 \\ & : 3 / 7 / 2019 \\ & : 5 \end{aligned}$
Groups Printed-Cars													
	Route 125 From North Left Thru			Route 9 From East			Route 125 From South			Route 9 From West			
Start Time			Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
07:00 AM	47	147	7	21	15	12	10	71	38	4	96	25	493
07:15 AM	23	158	8	45	40	21	6	84	50	15	117	21	588
07:30 AM	33	169	7	35	29	12	7	85	27	15	109	51	579
07:45 AM	26	161	9	30	19	7	14	90	30	12	97	29	524
Total	129	635	31	131	103	52	37	330	145	46	419	126	2184
08:00 AM	21	127	7	32	33	11	9	75	31	18	61	51	476
08:15 AM	16	108	8	28	25	11	31	82	31	6	47	56	449
08:30 AM	18	103	10	22	20	16	10	76	31	14	57	30	407
08:45 AM	21	88	13	15	23	10	16	79	19	10	48	24	366
Total	76	426	38	97	101	48	66	312	112	48	213	161	1698
Grand Total	205	1061	69	228	204	100	103	642	257	94	632	287	3882
Apprch \%	15.4	79.5	5.2	42.9	38.3	18.8	10.3	64.1	25.6	9.3	62.4	28.3	
Total \%	5.3	27.3	1.8	5.9	5.3	2.6	2.7	16.5	6.6	2.4	16.3	7.4	

Accurate Counts 978-664-2565													
N/S Street : Route 125 EN Street: Route 9 City/State : Barrington, NH Weather : Clear												File Site Start Page	$\begin{aligned} & : 81880001 \\ & : 81880001 \\ & : 3 / 7 / 2019 \\ & 9 \end{aligned}$
Groups Printed- Trucks													
	Route 125 From North			Route 9 From East			Route 125 From South			Route 9 From West			
Start Time	Left	Thru	Right	Int. Total									
07:00 AM	3	4	3	0	0	1	0	2	1	1	3	0	18
07:15 AM	1	7	0	3	3	2	1	5	0	0	2	0	24
07:30 AM	1	7	2	1	1	4	1	6	0	0	0	0	23
07:45 AM	2	5	1	0	0	1	1	3	1	0	1	1	16
Total	7	23	6	4	4	8	3	16	2	1	6	1	81
08:00 AM	3	9	1	0	1	1	0	1	2	0	2	2	22
08:15 AM	1	5	1	1	0	4	0	2	0	0	2	6	22
08:30 AM	1	0	0	0	0	7	0	4	0	0	1	4	17
08:45 AM	0	4	0	2	0	4	0	0	1	1	0	1	13
Total	5	18	2	3	1	16	0	7	3	1	5	13	74
Grand Total	12	41	8	7	5	24	3	23	5	2	11	14	155
Apprch \%	19.7	67.2	13.1	19.4	13.9	66.7	9.7	74.2	16.1	7.4	40.7	51.9	
Total \%	7.7	26.5	5.2	4.5	3.2	15.5	1.9	14.8	3.2	1.3	7.1	9	

	Route 125 From North				Route 9 From East				Route 125 From South				Route 9 From West				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 07:00 AM																	
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% App. Total	0	0	0		0	0	0		0	0	0		0	0	0		
PHF	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000

$6 L 0212$

1000881 | G1 |
| :---: |
| ε |
| 8 |

File Name

Accurate Counts 978-664-2565													
N/S Street : Route 125 ENW Street: Route 9 City/State : Barrington, NH Weather : Clear												File Site Star Sag	81880001 81880001 3/7/2019 : 1
Groups Printed-Cars - Trucks													
	Route 125 From North			Route 9 From East			Route 125 From South			Route 9 From West			
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thus	Right	Int. Total
04:00 PM	24	92	22	30	71	35	32	167	21	9	35	32	570
04:15 PM	19	105	13	35	80	29	30	139	31	20	30	21	552
04:30 PM	14	98	16	42	80	22	25	152	23	18	28	20	538
04:45 PM	15	99	20	54	92	28	36	182	20	19	31	13	609
Total	72	394	71	161	323	114	123	640	95	66	124	86	2269
05:00 PM	12	86	19	41	89	28	57	175	17	12	30	20	586
05:15 PM	20	80	18	54	92	18	28	170	20	12	35	24	571
05:30 PM	21	72	9	37	65	22	33	139	20	10	41	16	485
05:45 PM	13	68	10	28	67	18	27	129	22	7	38	16	443
Total	66	306	56	160	313	86	145	613	79	41	144	76	2085
Grand Total	138	700	127	321	636	200	268	1253	174	107	268	162	4354
Apprch \%	14.3	72.5	13.2	27.7	55	17.3	15.8	73.9	10.3	19.9	49.9	30.2	
Total \%	3.2	16.1	2.9	7.4	14.6	4.6	6.2	28.8	4	2.5	6.2	3.7	
Cars	136	686	127	320	633	199	267	1243	174	106	268	158	4317
\% Cars	98.6	98	100	99.7	99.5	99.5	99.6	99.2	100	99.1	100	97.5	99.2
Trucks	2	14	0	1	3	1	1	10	0	1	0	4	37
\% Trucks	1.4	2	0	0.3	0.5	0.5	0.4	0.8	0	0.9	0	2.5	0.8

	Route 125 From North				Route 9 From East				Route 125 From South				Route 9 From West				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 04:30 PM																	
04:30 PM	14	98	16	128	42	80	22	144	25	152	23	200	18	28	20	66	538
04:45 PM	15	99	20	134	54	92	28	174	36	182	20	238	19	31	13	63	609
05:00 PM	12	86	19	117	41	89	28	158	57	175	17	249	12	30	20	62	586
05:15 PM	20	80	18	118	54	92	18	164	28	170	20	218	12	35	24	71	571
Total Volume	61	363	73	497	191	353	96	640	146	679	80	905	61	124	77	262	2304
\% App. Total	12.3	73	14.7		29.8	55.2	15		16.1	75	8.8		23.3	47.3	29.4		
PHF	. 763	. 917	. 913	. 927	. 884	. 959	. 857	. 920	. 640	. 933	. 870	. 909	. 803	. 886	. 802	. 923	. 946
Cars	61	360	73	494	190	352	95	637	146	677	80	903	61	124	77	262	2296
\% Cars	100	99.2	100	99.4	99.5	99.7	99.0	99.5	100	99.7	100	99.8	100	100	100	100	99.7
Trucks	0	3	0	3	1	1	1	3	0	2	0	2	0	0	0	0	8
\% Trucks	0	0.8	0	0.6	0.5	0.3	1.0	0.5	0	0.3	0	0.2	0	0	0	0	0.3

L00088เ8: əpoう ə!! 6เOZILIE: әjea みets Page No : 3

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at

Accurate Counts 978-664-2565													
N/S Street : Route 125 EN Street: Route 9 City/State : Barrington, NH Weather : Clear												File Site Star Pag	$\begin{aligned} & : 81880001 \\ & : 81880001 \\ & : 37 / 2019 \\ & : 5 \end{aligned}$
Groups Printed-Cars													
	Route 125 From North			Route 9 From East			Route 125 From South			Route 9 From West			
Start Time	Left	Thru	Right	Int. Total									
04:00 PM	23	87	22	30	69	35	32	166	21	9	35	28	557
04:15 PM	19	102	13	35	80	29	29	134	31	20	30	21	543
04:30 PM	14	97	16	41	80	21	25	150	23	18	28	20	533
04:45 PM	15	98	20	54	91	28	36	182	20	19	31	13	607
Total	71	384	71	160	320	113	122	632	95	66	124	82	2240
05:00 PM	12	85	19	41	89	28	57	175	17	12	30	20	585
05:15 PM	20	80	18	54	92	18	28	170	20	12	35	24	571
05:30 PM	20	70	9	37	65	22	33	138	20	9	41	16	480
05:45 PM	13	67	10	28	67	18	27	128	22	7	38	16	441
Total	65	302	56	160	313	86	145	611	79	40	144	76	2077
Grand Total	136	686	127	320	633	199	267	1243	174	106	268	158	4317
Apprch \%	14.3	72.3	13.4	27.8	54.9	17.3	15.9	73.8	10.3	19.9	50.4	29.7	
Total \%	3.2	15.9	2.9	7.4	14.7	4.6	6.2	28.8	4	2.5	6.2	3.7	

Accurate Counts 978-664-2565													
N/S Street : Route 125 E/W Street: Route 9 City/State : Barrington, NH Weather : Clear												File Site Star Page	$\begin{aligned} & : 81880001 \\ & : 81880001 \\ & : 3 / 7 / 2019 \\ & : 9 \end{aligned}$
Groups Printed-Trucks													
	Route 125 From North			Route 9 From East			Route 125 From South			Route 9 From West			
Start Time	Left	Thru	Right	Int. Total									
04:00 PM	1	5	0	0	2	0	0	1	0	0	0	4	13
04:15 PM	0	3	0	0	0	0	1	5	0	0	0	0	9
04:30 PM	0	1	0	1	0	1	0	2	0	0	0	0	5
04:45 PM	0	1	0	0	1	0	0	0	0	0	0	0	2
Total	1	10	0	1	3	1	1	8	0	0	0	4	29
05:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
05:30 PM	1	2	0	0	0	0	0	1	0	1	0	0	5
05:45 PM	0	1	0	0	0	0	0	1	0	0	0	0	2
Total	1	4	0	0	0	0	0	2	0	1	0	0	8
Grand Total	2	14	0	1	3	1	1	10	0	1	0	4	37
Apprch \%	12.5	87.5	0	20	60	20	9.1	90.9	0	20	0	80	
Total \%	5.4	37.8	0	2.7	8.1	2.7	2.7	27	0	2.7	0	10.8	

N/S Street : Route ENW Street: Route City/State : Barring Weather : Clear																		$\begin{aligned} & \text { File Name : } 81880001 \\ & \text { Site Code : } 81880001 \\ & \text { Start Date : } 3 / 7 / 2019 \\ & \text { Page No : } 13 \end{aligned}$	
Groups Printed- Bikes Peds																			
		Rout From				Rou From				Rout From	25			Rou					
Start Time	Left	Thru	Right	Peds	Exclu. Total	Inclu. Total	Int. Total												
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch \%	0	0	0		0	0	0		0	0	0		0	0	0				
Total \%																	0	0	

 Page No : 15

Accurate Counts 978-664-2565													
N/S Street : Route 125 E/W Street: Route 9 Clity/State : Barrington, NH Weather : Clear												File Site Sta Pag	818800S1 81880001 3/9/2019 1
Groups Printed- Cars - Trucks													
	Route 125 From North			Route 9 From East			Route 125 From South			Route 9 From West			
Start Time	Left	Thru	Right	Int. Total									
11:00 AM	12	69	20	24	42	14	27	96	16	19	52	14	405
11:15 AM	10	103	15	17	33	18	27	90	20	20	37	28	418
11:30 AM	27	130	34	23	38	17	20	86	28	20	53	36	512
11:45 AM	16	103	20	28	39	26	24	88	23	21	54	27	469
Total	65	405	89	92	152	75	98	360	87	80	196	105	1804
12:00 PM	20	109	18	27	34	16	14	83	13	19	35	32	420
12:15 PM	16	93	22	32	38	18	26	93	16	24	44	23	445
12:30 PM	10	88	18	25	39	26	22	87	22	19	32	26	414
12:45 PM	19	92	23	15	36	17	15	97	14	19	43	33	423
Total	65	382	81	99	147	77	77	360	65	81	154	114	1702
01:00 PM	16	72	15	22	35	18	19	103	27	18	40	22	407
01:15 PM	15	79	15	27	41	23	24	88	16	23	45	26	422
01:30 PM	12	82	17	20	44	19	18	75	17	16	29	23	372
01:45 PM	16	90	15	25	28	20	24	101	8	17	24	27	395
Total	59	323	62	94	148	80	85	367	68	74	138	98	1596
Grand Total	189	1110	232	285	447	232	260	1087	220	235	488	317	5102
Apprch \%	12.3	72.5	15.2	29.6	46.4	24.1	16.6	69.4	14	22.6	46.9	30.5	
Total \%	3.7	21.8	4.5	5.6	8.8	4.5	5.1	21.3	4.3	4.6	9.6	6.2	
Cars	189	1101	232	285	446	232	260	1078	220	235	488	317	5083
\% Cars	100	99.2	100	100	99.8	100	100	99.2	100	100	100	100	99.6
Trucks	0	9	0	0	1	0	0	9	0	0	0	0	19
\% Trucks	0	0.8	0	0	0.2	0	0	0.8	0	0	0	0	0.4

	Route 125 From North				Route 9 From East				Route 125 From South				Route 9 From West				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thrs	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 11:00 AM to 01:45 PM - Peak 1 of 1 ,																	
Peak Hour for Entire Intersection Begins at 11:30 AM																	
11:30 AM	27	130	34	191	23	38	17	78	20	86	28	134	20	53	36	109	512
11:45 AM	16	103	20	139	28	39	26	93	24	88	23	135	21	54	27	102	469
12:00 PM	20	109	18	147	27	34	16	77	14	83	13	110	19	35	32	86	420
12:15 PM	16	93	22	131	32	38	18	88	26	93	16	135	24	44	23	91	445
Total Volume	79	435	94	608	110	149	77	336	84	350	80	514	84	186	118	388	1846
\% App. Total	13	71.5	15.5		32.7	44.3	22.9		16.3	68.1	15.6		21.6	47.9	30.4		
PHF	. 731	. 837	. 691	. 796	. 859	. 955	. 740	. 903	. 808	. 941	. 714	. 952	. 875	. 861	. 819	. 890	. 901
Cars	79	432	94	605	110	148	77	335	84	348	80	512	84	186	118	388	1840
\% Cars	100	99.3	100	99.5	100	99.3	100	99.7	100	99.4	100	99.6	100	100	100	100	99.7
Trucks	0	3	0	3	0	1	0	1	0	2	0	2	0	0	0	0	6
\% Trucks	0	0.7	0	0.5	0	0.7	0	0.3	0	0.6	0	0.4	0	0	0	0	0.3

Peak Hour Analysis From 11:00 AM to 01:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

Accurate Counts 978-664-2565													
N/S Street : Route 125 E/N Street: Route 9 City/State : Barrington, NH Weather : Clear												File Site Start Page	$\begin{aligned} & : 818800 \text { S } 1 \\ & : 8188001 \\ & : 3 / 9 / 2019 \\ & : 5 \end{aligned}$
Groups Printed-Cars													
	Route 125 From North			Route 9 From East Left Thru			Route 125 From South			Route 9 From West			
Start Time	Left	Thru	Right			Right	Left	Thru	Right	Left	Thru	Right	Int. Total
11:00 AM	12	67	20	24	42	14	27	96	16	19	52	14	403
11:15 AM	10	100	15	17	33	18	27	89	20	20	37	28	414
11:30 AM	27	130	34	23	38	17	20	86	28	20	53	36	512
11:45 AM	16	103	20	28	38	26	24	88	23	21	54	27	468
Total	65	400	89	92	151	75	98	359	87	80	196	105	1797
12:00 PM	20	107	18	27	34	16	14	82	13	19	35	32	417
12:15 PM	16	92	22	32	38	18	26	92	16	24	44	23	443
12:30 PM	10	88	18	25	39	26	22	87	22	19	32	26	414
12:45 PM	19	92	23	15	36	17	15	96	14	19	43	33	422
Total	65	379	81	99	147	77	77	357	65	81	154	114	1696
01:00 PM	16	72	15	22	35	18	19	101	27	18	40	22	405
01:15 PM	15	79	15	27	41	23	24	87	16	23	45	26	421
01:30 PM	12	82	17	20	44	19	18	75	17	16	29	23	372
01:45 PM	16	89	15	25	28	20	24	99	8	17	24	27	392
Total	59	322	62	94	148	80	85	362	68	74	138	98	1590
Grand Total	189	1101	232	285	446	232	260	1078	220	235	488	317	5083
Apprch \%	12.4	72.3	15.2	29.6	46.3	24.1	16.7	69.2	14.1	22.6	46.9	30.5	
Total \%	3.7	21.7	4.6	5.6	8.8	4.6	5.1	21.2	4.3	4.6	9.6	6.2	

Groups Printed- Trucks													
	Route 125 From North			Route 9 From East			Route 125 From South			Route 9 From West			
Start Time	Left	Thru	Right	Int. Total									
11:00 AM	0	2	0	0	0	0	0	0	0	0	0	0	2
11:15 AM	0	3	0	0	0	0	0	1	0	0	0	0	4
11:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45 AM	0	0	0	0	1	0	0	0	0	0	0	0	1
Total	0	5	0	0	1	0	0	1	0	0	0	0	7
12:00 PM	0	2	0	0	0	0	0	1	0	0	0	0	3
12:15 PM	0	1	0	0	0	0	0	1	0	0	0	0	2
12:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
12:45 PM	0	0	0	0	0	0	0	1	0	0	0	0	1
Total	0	3	0	0	0	0	0	3	0	0	0	0	6
01:00 PM	0	0	0	0	0	0	0	2	0	0	0	0	2
01:15 PM	0	0	0	0	0	0	0	1	0	0	0	0	1
01:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
01:45 PM	0	1	0	0	0	0	0	2	0	0	0	0	3
Total	0	1	0	0	0	0	0	5	0	0	0	0	6
Grand Total	0	9	0	0	1	0	0	9	0	0	0	0	19
Apprch \%	0	100	0	0	100	0	0	100	0	0	0	0	
Total \%	0	47.4	0	0	5.3	0	0	47.4	0	0	0	0	

N/S Street: Route 125 City/State : Barrington, NH Weather : Clear

 $\stackrel{\leftrightarrow}{2}$

Peak Hour Analysis From 11:00 AM to 01:45 PM - Peak 1 of 1 City/State : Barrington, NH
Weather : Clear

File Name: 81880002

	Route 125 From North				Old Green Hill Rd From East				Roule 125 From South				Scruton Pond Rd From West				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 07:00 AM																	
07:00 AM	0	203	2	205	0	0	0	0	0	92	0	92	8	0	8	16	313
07:15 AM	0	221	2	223	0	0	0	0	1	117	0	118	13	0	9	22	363
07:30 AM	0	211	5	216	0	0	0	0	1	98	0	99	9	0	5	14	329
07:45 AM	0	194	0	194	0	0	0	0	2	124	0	126	14	0	7	21	341
Total Volume	0	829	9	838	0	0	0	0	4	431	0	435	44	0	29	73	1346
\% App. Total	0	98.9	1.1		0	0	0		0.9	99.1	0		60.3	0	39.7		
PHF	. 000	. 938	. 450	. 939	. 000	. 000	. 000	. 000	. 500	. 869	. 000	. 863	. 786	. 000	. 806	. 830	. 927
Cars	0	791	9	800	0	0	0	0	4	404	0	408	44	0	29	73	1281
\% Cars	0	95.4	100	95.5	0	0	0	0	100	93.7	0	93.8	100	0	100	100	95.2
Trucks	0	38	0	38	0	0	0	0	0	27	0	27	0	0	0	0	65
\% Trucks	0	4.6	0	4.5	0	0	0	0	0	6.3	0	6.2	0	0	0	0	4.8

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1

$07: 00 \mathrm{AM}$
8
13
9
14
44

툐 N N N

$07: 15$ AM
1
1
2
1
5

Accurate Counts 978-664-2565													
N/S Street : Route 125 ENW Street: Scruton Pond R City/State : Barrington, NH Weather : Clear												File Site Star Pag	$\begin{aligned} & : 81880002 \\ & : 81880002 \\ & : 3 / 7 / 2019 \\ & : 5 \end{aligned}$
Groups Printed-Cars													
	Route 125 From North			Old Green Hill Rd From East			Route 125 From South			Scruton Pond Rd From West			
Start Time	Left	Thru	Right	Int. Total									
07:00 AM	0	191	2	0	0	0	0	89	0	8	0	8	298
07:15 AM	0	212	2	0	0	0	1	108	0	13	0	9	345
07:30 AM	0	202	5	0	0	0	1	89	0	9	0	5	311
07:45 AM	0	186	0	0	0	0	2	118	0	14	0	7	327
Total	0	791	9	0	0	0	4	404	0	44	0	29	1281
08:00 AM	0	147	4	0	0	0	1	89	0	10	0	4	255
08:15 AM	0	151	1	0	0	0	1	92	0	4	0	5	254
08:30 AM	0	123	7	0	0	0	0	104	0	12	0	2	248
08:45 AM	0	105	7	0	0	0	1	87	0	7	0	2	209
Total	0	526	19	0	0	0	3	372	0	33	0	13	966
Grand Total	0	1317	28	0	0	0	7	776	0	77	0	42	2247
Apprch \%	0	97.9	2.1	0	0	0	0.9	99.1	0	64.7	0	35.3	
Total \%	0	58.6	1.2	0	0	0	0.3	34.5	0	3.4	0	1.9	

N/S Street : Route 125
E/W Street: Scruton Pond Road
City/State : Barrington, NH
Weather : Clear
War :

	Route 125 From North				Old Green Hill Rd From East				Route 125 From South				Scruton Pond Rd From West						
Start Time	Left	Thru	Right	Peds	Exclu. Total	Inclu. Total	Int. Total												
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch \%	0	0	0		0	0	0		0	0	0		0	0	0				
Total \%																	0	0	

File Name ： 81880002
6LOZILIE：シャea みeIS

	Route 125 From North				Old Green Hill Rd From East				Route 125 From South				Scruton Pond Rd From West				
Start Time	Left	Thru	Right	App．Total	Int．Total												
Peak Hour Analysis From 07：00 AM to 08：45 AM－Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 07：00 AM																	
07：00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07：15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07：30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07：45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\％App．Total	0	0	0		0	0	0		0	0	0		0	0	0		
PHF	． 000	． 000	． 000	． 000	． 000	． 000	． 000	． 000	． 000	． 000	． 000	． 000	． 000	． 000	． 000	． 000	． 000

G9Gz-t99-8
squno oqeans.
N/S Street : Route 125 E/W Street: Scruton Pond Road City/State : Barrington, NH
Weather : Clear
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:
---:
+0 mins.
+15 mins.
+30 mins.
+45 mins.
Total Volume

	Route 125 From North				Old Green Hill Rd From East				Route 125 From South				Scruton Pond Rd From West				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 04:30 PM																	
04:30 PM	0	120	18	138	0	0	0	0	4	180	0	184	4	0	1	5	327
04:45 PM	0	122	12	134	0	0	0	0	3	216	0	219	1	0	2	3	356
05:00 PM	0	107	10	117	0	0	0	0	2	225	0	227	9	0	2	11	355
05:15 PM	0	116	10	126	0	0	0	0	4	198	0	202	4	0	2	6	334
Total Volume	0	465	50	515	0	0	0	0	13	819	0	832	18	0	7	25	1372
\% App. Total	0	90.3	9.7		0	0	0		1.6	98.4	0		72	0	28		
PHF	. 000	. 953	. 694	. 933	. 000	. 000	. 000	. 000	. 813	. 910	. 000	. 916	. 500	. 000	. 875	. 568	. 963
Cars	0	459	50	509	0	0	0	0	13	816	0	829	18	0	7	25	1363
\% Cars	0	98.7	100	98.8	0	0	0	0	100	99.6	0	99.6	100	0	100	100	99.3
Trucks	0	6	0	6	0	0	0	0	0	3	0	3	0	0	0	0	9
\% Trucks	0	1.3	0	1.2	0	0	0	0	0	0.4	0	0.4	0	0	0	0	0.7

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	04:00 PM				04:00 PM				04:30 PM				05:00 PM			
+0 mins.	0	144	10	154	0	0	0	0	4	180	0	184	9	0	2	11
+15 mins.	0	119	7	126	0	0	0	0	3	216	0	219	4	0	2	6
+30 mins.	0	120	18	138	0	0	0	0	2	225	0	227	3	0	6	9
+45 mins.	0	122	12	134	0	0	0	0	4	198	0	202	3	0	5	8
Total Volume	0	505	47	552	0	0	0	0	13	819	0	832	19	0	15	34

Accurate Counts 978-664-2565													
N/S Street : Route 125 E/W Street: Scruton Pond Ro City/State : Barrington, NH Weather : Clear												File Site Star Pag	$\begin{aligned} & : 81880002 \\ & : 81880002 \\ & : 3 / 7 / 2019 \\ & : 5 \end{aligned}$
Groups Printed-Cars													
	Route 125 From North			Old Green Hill Rd From East			Route 125 From South			Scruton Pond Rd From West			
Start Time	Left	Thru	Right	Int. Total									
04:00 PM	0	138	10	0	0	0	5	210	0	1	0	4	368
04:15 PM	0	117	7	0	0	0	2	176	0	1	0	2	305
04:30 PM	0	119	18	0	0	0	4	178	0	4	0	1	324
04:45 PM	0	121	12	0	0	0	3	215	0	1	0	2	354
Total	0	495	47	0	0	0	14	779	0	7	0	9	1351
05:00 PM	0	106	10	0	0	0	2	225	0	9	0	2	354
05:15 PM	0	113	10	0	0	0	4	198	0	4	0	2	331
05:30 PM	0	86	8	0	0	0	6	168	0	3	0	6	277
05:45 PM	0	88	9	0	0	0	4	165	0	3	0	5	274
Total	0	393	37	0	0	0	16	756	0	19	0	15	1236
Grand Total	0	888	84	0	0	0	30	1535	0	26	0	24	2587
Apprch \%	0	91.4	8.6	0	0	0	1.9	98.1	0	52	0	48	
Total \%	0	34.3	3.2	0	0	0	1.2	59.3	0	1	0	0.9	

Accurate Counts 978-664-2565													
N/S Street : Route 125 ENW Street: Scruton Pond R City/State : Barrington, NH Weather : Clear												File Site Star Pag	$\begin{aligned} & : 81880002 \\ & : 81880002 \\ & : 3 / 7 / 2019 \\ & : 9 \end{aligned}$
Groups Printed- Trucks													
	Route 125 From North			Old Green Hill Rd From East			Route 125 From South			Scruton Pond Rd From West			
Start Time	Left	Thru	Right	Int. Total									
04:00 PM	0	6	0	0	0	0	0	1	0	0	0	0	7
04:15 PM	0	2	0	0	0	0	0	5	0	0	0	0	7
04:30 PM	0	1	0	0	0	0	0	2	0	0	0	0	3
04:45 PM	0	1	0	0	0	0	0	1	0	0	0	0	2
Total	0	10	0	0	0	0	0	9	0	0	0	0	19
05:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
05:15 PM	0	3	0	0	0	0	0	0	0	0	0	0	3
05:30 PM	0	2	0	0	0	0	0	2	0	0	0	0	4
05:45 PM	0	0	0	0	0	0	0	1	0	0	0	0	1
Total	0	6	0	0	0	0	0	3	0	0	0	0	9
Grand Total	0	16	0	0	0	0	0	12	0	0	0	0	28
Apprch \%	0	100	0	0	0	0	0	100	0	0	0	0	
Total \%	0	57.1	0	0	0	0	0	42.9	0	0	0	0	

File Name : 81880002
Site Code $: 81880002$
Start Date $: 3 / 712019$

	Route 125 From North				Old Green Hill Rd From East				Route 125 From South				Scruton Pond Rd From West				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 04:00 PM																	
04:00 PM	0	6	0	6	0	0	0	0	0	1	0	1	0	0	0	0	7
04:15 PM	0	2	0	2	0	0	0	0	0	5	0	5	0	0	0	0	7
04:30 PM	0	1	0	1	0	0	0	0	0	2	0	2	0	0	0	0	3
04:45 PM	0	1	0	1	0	0	0	0	0	1	0	1	0	0	0	0	2
Total Volume	0	10	0	10	0	0	0	0	0	9	0	9	0	0	0	0	19
\% App. Total	0	100	0		0	0	0		0	100	0		0	0	0		
PHF	. 000	. 417	. 000	. 417	. 000	. 000	. 000	. 000	. 000	. 450	. 000	. 450	. 000	. 000	. 000	. 000	. 679

File Name : 81880002
6L0ZIL ル: on abed

N/S Street : Route 125 EN Street: Scruton Pond Road
City/State: Barrington, NH
Z00088ட8: əuen ə!ป 6เ0ZILE: әృе口 みels

	Groups Printed-Bikes Peds																		
	Route 125 From North				Old Green Hill Rd From East				Route 125 From South				Scruton Pond Rd From West						
Start Time	Left	Thru	Right	Peds	Exclu. Total	Inclu. Total	Int. Total												
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch \%	0	0	0		0	0	0		0	0	0		0	0	0				
Total \%																	0	0	

File Name: 81880002
Site Code : 81880002
Start Date : $3 / 712019$
Page No : 14

Z00088เ8: әроう ว!! Page No :15

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of ENW Street: Scruton Pond Road
City/State : Barrington, NH
Weather : Clear :

	04:00 PM															
+0 mins.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+15 mins.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+30 mins.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+45 mins.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

N/S Street : Route 125
City/State : Barrington, NH

Groups Printed- Cars - Trucks													
	Route 125 From North			Old Green Hill Rd From East			Route 125 From South			Scruton Pond Rd From West			
Start Time	Left	Thru	Right	Int. Total									
11:00 AM	0	107	12	0	0	0	5	132	0	11	0	5	272
11:15 AM	0	134	6	0	0	0	3	124	0	15	0	3	285
11:30 AM	0	166	4	0	0	0	4	111	0	6	0	1	292
11:45 AM	0	141	10	0	0	0	2	123	0	10	0	2	288
Total	0	548	32	0	0	0	14	490	0	42	0	11	1137
12:00 PM	0	124	10	0	0	0	2	111	0	6	0	4	257
12:15 PM	0	122	6	0	0	0	1	123	0	9	0	6	267
12:30 PM	0	112	7	0	0	0	2	132	0	7	0	4	264
12:45 PM	0	106	10	0	0	0	4	140	0	12	0	3	275
Total	0	464	33	0	0	0	9	506	0	34	0	17	1063
01:00 PM	0	116	8	0	0	0	3	126	0	8	0	5	266
01:15 PM	0	103	11	0	0	0	3	118	0	5	0	2	242
01:30 PM	0	125	4	0	0	0	5	116	0	5	0	3	258
01:45 PM	0	109	8	0	0	0	1	123	0	3	0	2	246
Total	0	453	31	0	0	0	12	483	0	21	0	12	1012
Grand Total	0	1465	96	0	0	0	35	1479	0	97	0	40	3212
Apprch \%	0	93.9	6.1	0	0	0	2.3	97.7	0	70.8	0	29.2	
Total \%	0	45.6	3	0	0	0	1.1	46	0	3	0	1.2	
Cars	0	1456	96	0	0	0	35	1470	0	97	0	40	3194
\% Cars	0	99.4	100	0	0	0	100	99.4	0	100	0	100	99.4
Trucks	0	9	0	0	0	0	0	9	0	0	0	0	18
\% Trucks	0	0.6	0	0	0	0	0	0.6	0	0	0	0	0.6

N/S Street : Route 125 EN Street: Scruton P City/State : Barrington Weather : Clear	Road H															File Nam Site Co Start D Page	$\begin{aligned} & : 818800 \mathrm{~S} 2 \\ & : 81880002 \\ & : 3 / 9 / 2019 \\ & : 2 \end{aligned}$
		$\begin{aligned} & \text { Rou } \\ & \text { Fron } \end{aligned}$					$\begin{aligned} & \text { Hill Ro } \\ & \text { ast } \end{aligned}$							$\begin{aligned} & \text { crutor } \\ & \text { Fror } \end{aligned}$	nd Rd /est		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis F	11:00	to 01:	PM - P	k 1 of 1													
Peak Hour for Entire	sectio	egins a	1:00 AM														
11:00 AM	0	107	12	119	0	0	0	0	5	132	0	137	11	0	5	16	272
11:15 AM	0	134	6	140	0	0	0	0	3	124	0	127	15	0	3	18	285
11:30 AM	0	166	4	170	0	0	0	0	4	111	0	115	6	0	1	7	292
11:45 AM	0	141	10	151	0	0	0	0	2	123	0	125	10	0	2	12	288
Total Volume	0	548	32	580	0	0	0	0	14	490	0	504	42	0	11	53	1137
\% App. Total	0	94.5	5.5		0	0	0		2.8	97.2	0		79.2	0	20.8		
PHF	. 000	. 825	. 667	. 853	. 000	. 000	. 000	. 000	. 700	. 928	. 000	. 920	. 700	. 000	. 550	. 736	. 973
Cars	0	541	32	573	0	0	0	0	14	488	0	502	42	0	11	53	1128
\% Cars	0	98.7	100	98.8	0	0	0	0	100	99.6	0	99.6	100	0	100	100	99.2
Trucks	0	7	0	7	0	0	0	0	0	2	0	2	0	0	0	0	9
\% Trucks	0	1.3	0	1.2	0	0	0	0	0	0.4	0	0.4	0	0	0	0	0.8

Peak Hour Analysis From 11：00 AM to 01：45 PM－Peak 1 of 1

	11：15 AM				11：00 AM				12：15 PM				12：15 PM			
＋0 mins．	0	134	6	140	0	0	0	0	1	123	0	124	9	0	6	15
＋15 mins．	0	166	4	170	0	0	0	0	2	132	0	134	7	0	4	11
＋ 30 mins．	0	141	10	151	0	0	0	0	4	140	0	144	12	0	3	15
＋45 mins．	0	124	10	134	0	0	0	0	3	126	0	129	8	0	5	13
Total Volume	0	565	30	595	0	0	0	0	10	521	0	531	36	0	18	54
\％App．Total	0	95	5		0	0	0		1.9	98.1	0		66.7	0	33.3	
PHF	． 000	． 851	． 750	． 875	． 000	． 000	． 000	． 000	． 625	． 930	． 000	． 922	． 750	． 000	． 750	． 900

－＋응ㅇㅆㄴ액

0	0	0	0	0	0	0

Groups Printed-Cars													
	Route 125 From North			Old Green Hill Rd From East			Route 125 From South			Scruton Pond Rd From West			
Start Time	Left	Thru	Right	Int. Total									
11:00 AM	0	104	12	0	0	0	5	131	0	11	0	5	268
11:15 AM	0	132	6	0	0	0	3	123	0	15	0	3	282
11:30 AM	0	166	4	0	0	0	4	111	0	6	0	1	292
11:45 AM	0	139	10	0	0	0	2	123	0	10	0	2	286
Total	0	541	32	0	0	0	14	488	0	42	0	11	1128
12:00 PM	0	124	10	0	0	0	2	111	0	6	0	4	257
12:15 PM	0	120	6	0	0	0	1	122	0	9	0	6	264
12:30 PM	0	112	7	0	0	0	2	132	0	7	0	4	264
12:45 PM	0	106	10	0	0	0	4	140	0	12	0	3	275
Total	0	462	33	0	0	0	9	505	0	34	0	17	1060
01:00 PM	0	116	8	0	0	0	3	124	0	8	0	5	264
01:15 PM	0	103	11	0	0	0	3	116	0	5	0	2	240
01:30 PM	0	125	4	0	0	0	5	115	0	5	0	3	257
01:45 PM	0	109	8	0	0	0	1	122	0	3	0	2	245
Total	0	453	31	0	0	0	12	477	0	21	0	12	1006
Grand Total	0	1456	96	0	0	0	35	1470	0	97	0	40	3194
Apprch \%	0	93.8	6.2	0	0	0	2.3	97.7	0	70.8	0	29.2	
Total \%	0	45.6	3	0	0	0	1.1	46	0	3	0	1.3	

N/S Street : Route 125 EM Street: Scruton Pond R City/State : Barrington, NH Weather : Clear												File Site Sta Pag		$\begin{aligned} & 81880052 \\ & 81880002 \\ & 3 / 9 / 2019 \\ & 9 \end{aligned}$
						rinted-								
		125 North			$\begin{aligned} & \text { n Hill } \\ & \text { East } \end{aligned}$			125 South			Pond West			
Start Time	Left	Thru	Right		Int. Total									
11:00 AM	0	3	0	0	0	0	0	1	0	0	0	0		4
11:15 AM	0	2	0	0	0	0	0	1	0	0	0	0		3
11:30 AM	0	0	0	0	0	0	0	0	0	0	0	0		0
11:45 AM	0	2	0	0	0	0	0	0	0	0	0	0		2
Total	0	7	0	0	0	0	0	2	0	0	0	0		9
12:00 PM	0	0	0	0	0	0	0	0	0	0	0	0		0
12:15 PM	0	2	0	0	0	0	0	1	0	0	0	0		3
12:30 PM	0	0	0	0	0	0	0	0	0	0	0	0		0
12:45 PM	0	0	0	0	0	0	0	0	0	0	0	0		0
Total	0	2	0	0	0	0	0	1	0	0	0	0		3
01:00 PM	0	0	0	0	0	0	0	2	0	0	0	0		2
01:15 PM	0	0	0	0	0	0	0	2	0	0	0	0		2
01:30 PM	0	0	0	0	0	0	0	1	0	0	0	0		1
01:45 PM	0	0	0	0	0	0	0	1	0	0	0	0		1
Total	0	0	0	0	0	0	0	6	0	0	0	0		6
Grand Total	0	9	0	0	0	0	0	9	0	0	0	0		18
Apprch \%	0	100	0	0	0	0	0	100	0	0	0	0		
Total \%	0	50	0	0	0	0	0	50	0	0	0	0		

Groups Printed－Bikes Peds																	Exclu．Total	Inclu．Total	Int．Total
	Route 125 From North				Old Green Hill Rd From East				Route 125 From South				Scruton Pond Rd From West						
Start Time	Left	Thru	Right	Peds															
11：00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11：15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11：30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11：45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12：00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12：15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12：30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12：45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01：00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01：15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01：30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01：45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch \％	0	0	0		0	0	0		0	0	0		0	0	0				
Total \％																	0	0	

62021
200088
2命
File Name :
Site Code :
Start Date :
Page No :

 N/S Street : Route 125 R Road City/State : Barrington, NH Weather : Clear
N/S Street : Route 125 City/State : Barrington, NH Weather : Clear

[^12]| | Route 125
 From North | | | | Tolend Rd
 From East | | | | Route 125 From South | | | | Greenhill Rd
 From West | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Start Time | Left | Thru | Right | App. Total | Left | Thru | Right | App. Total | Left | Thru | Right | App. Total | Left | Thru | Right | App. Total | Int. Total |
| Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 | | | | | | | | | | | | | | | | | |
| Peak Hour for Entire Intersection Begins at 07:00 AM | | | | | | | | | | | | | | | | | |
| 07:00 AM | 0 | 174 | 2 | 176 | 7 | 1 | 3 | 11 | 1 | 90 | 3 | 94 | 3 | 4 | 25 | 32 | 313 |
| 07:15 AM | 1 | 196 | 1 | 198 | 2 | 4 | 0 | 6 | 7 | 111 | 6 | 124 | 3 | 9 | 29 | 41 | 369 |
| 07:30 AM | 5 | 187 | 0 | 192 | 5 | 1 | 2 | 8 | 5 | 111 | 4 | 120 | 4 | 7 | 19 | 30 | 350 |
| 07:45 AM | 7 | 173 | 1 | 181 | 5 | 0 | 6 | 11 | 2 | 112 | 8 | 122 | 4 | 12 | 24 | 40 | 354 |
| Total Volume | 13 | 730 | 4 | 747 | 19 | 6 | 11 | 36 | 15 | 424 | 21 | 460 | 14 | 32 | 97 | 143 | 1386 |
| \% App. Total | 1.7 | 97.7 | 0.5 | | 52.8 | 16.7 | 30.6 | | 3.3 | 92.2 | 4.6 | | 9.8 | 22.4 | 67.8 | | |
| PHF | . 464 | . 931 | . 500 | . 943 | . 679 | . 375 | . 458 | . 818 | . 536 | . 946 | . 656 | . 927 | . 875 | . 667 | . 836 | . 872 | . 939 |
| Cars | 13 | 689 | 4 | 706 | 19 | 6 | 10 | 35 | 14 | 402 | 16 | 432 | 14 | 32 | 96 | 142 | 1315 |
| \% Cars | 100 | 94.4 | 100 | 94.5 | 100 | 100 | 90.9 | 97.2 | 93.3 | 94.8 | 76.2 | 93.9 | 100 | 100 | 99.0 | 99.3 | 94.9 |
| Trucks | 0 | 41 | 0 | 41 | 0 | 0 | 1 | 1 | 1 | 22 | 5 | 28 | 0 | 0 | 1 | 1 | 71 |
| \% Trucks | 0 | 5.6 | 0 | 5.5 | 0 | 0 | 9.1 | 2.8 | 6.7 | 5.2 | 23.8 | 6.1 | 0 | 0 | 1.0 | 0.7 | 5.1 |

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1

	07:00 AM				07:30 AM				07:15 AM				07:00 AM			
+0 mins.	0	174	2	176	5	1	2	8	7	111	6	124	3	4	25	32
+15 mins.	1	196	1	198	5	0	6	11	5	111	4	120	3	9	29	41
+30 mins.	5	187	0	192	1	2	5	8	2	112	8	122	4	7	19	30
+45 mins.	7	173	1	181	9	3	1	13	4	110	3	117	4	12	24	40
Total Volume	13	730	4	747	20	6	14	40	18	444	21	483	14	32	97	143

Accurate Counts 978-664-2565													
N/S Street : Route 125 ENW Street: Greenhill Rd / To City/State : Barrington, NH Weather : Clear												File Site Star Pag	$\begin{aligned} & : 81880003 \\ & : 81880003 \\ & : 3 / 7 / 2019 \\ & : 5 \end{aligned}$
Groups Printed-Cars													
	Route 125 From North			Tolend Rd From East			Route 125 From South			Greenhill Rd From West			
Start Time	Left	Thru	Right	Int. Total									
07:00 AM	0	162	2	7	1	3	1	86	3	3	4	24	296
07:15 AM	1	188	1	2	4	0	7	105	4	3	9	29	353
07:30 AM	5	175	0	5	1	2	4	103	3	4	7	19	328
07:45 AM	7	164	1	5	0	5	2	108	6	4	12	24	338
Total	13	689	4	19	6	10	14	402	16	14	32	96	1315
08:00 AM	3	118	2	1	2	5	4	108	3	3	3	25	277
08:15 AM	5	118	1	9	3	1	5	82	3	3	11	21	262
08:30 AM	1	114	3	2	1	2	5	106	10	4	5	9	262
08:45 AM	5	102	4	0	2	6	7	94	2	1	5	10	238
Total	14	452	10	12	8	14	21	390	18	11	24	65	1039
Grand Total	27	1141	14	31	14	24	35	792	34	25	56	161	2354
Apprch \%	2.3	96.5	1.2	44.9	20.3	34.8	4.1	92	3.9	10.3	23.1	66.5	
Total \%	1.1	48.5	0.6	1.3	0.6	1	1.5	33.6	1.4	1.1	2.4	6.8	

File Name : 81880003
Site Code : 81880003
Start Date : $3 / 7 / 2019$

Groups Printed- Trucks													
	Route 125 From North			Tolend Rd From East			Route 125 From South			Greenhill Rd From West			
Start Time	Left	Thru	Right	Int. Total									
07:00 AM	0	12	0	0	0	0	0	4	0	0	0	1	17
07:15 AM	0	8	0	0	0	0	0	6	2	0	0	0	16
07:30 AM	0	12	0	0	0	0	1	8	1	0	0	0	22
07:45 AM	0	9	0	0	0	1	0	4	2	0	0	0	16
Total	0	41	0	0	0	1	1	22	5	0	0	1	71
08:00 AM	0	9	0	0	0	0	0	2	0	0	0	1	12
08:15 AM	0	4	0	0	0	0	0	5	0	0	0	0	9
08:30 AM	0	5	0	0	0	0	0	9	0	0	0	0	14
08:45 AM	1	3	0	0	0	0	0	10	0	0	0	0	14
Total	1	21	0	0	0	0	0	26	0	0	0	1	49
Grand Total	1	62	0	0	0	1	1	48	5	0	0	2	120
Apprch \%	1.6	98.4	0	0	0	100	1.9	88.9	9.3	0	0	100	
Total \%	0.8	51.7	0	0	0	0.8	0.8	40	4.2	0	0	1.7	

N/S Street : Route 1 E/N Street: Greenh City/State : Barringt Weather : Clear	NH	d Rd																	$\begin{aligned} & 81880003 \\ & 81880003 \\ & 3 / 7 / 2019 \\ & 13 \end{aligned}$
								Grou	Printe	Bikes P									
		Route From				Tolen From				Rout From	$\begin{aligned} & 125 \\ & \text { outh } \end{aligned}$			Green From	$\begin{aligned} & 1 \mathrm{Rd} \\ & \text { est } \end{aligned}$				
Start Time	Left	Thru	Right	Peds	Exclu. Total	Inclu. Total	Int. Total												
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch \%	0	0	0		0	0	0		0	0	0		0	0	0				
Total \%																	0	0	

	Route 125 From North				Tolend Rd From East				Route 125 From South				Greenhill Rd From West				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 07:00 AM																	
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% App. Total	0	0	0		0	0	0		0	0	0		0	0	0		
PHF	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000

600088 8: әpaply

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1

	07:00 AM															
+0 mins.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+15 mins.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+30 mins.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+45 mins.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Accurate Counts 978-664-2565													
N/S Street : Route 125 EN Street: Greenhill Rd / T City/State : Barrington, NH Weather : Clear												File Site Star Page	$\begin{aligned} & : 81880003 \\ & : 81880003 \\ & : 3 / 7 / 2019 \\ & : 1 \end{aligned}$
Groups Printed-Cars - Trucks													
	Route 125 From North			Tolend Rd From East			Route 125From South			Greenhill Rd From West			
Start Time	Left	Thru	Right	Int. Total									
04:00 PM	7	136	4	7	4	8	21	184	6	3	2	10	392
04:15 PM	3	111	4	12	11	6	22	156	3	0	4	5	337
04:30 PM	2	119	7	9	3	6	21	164	7	6	2	6	352
04:45 PM	6	115	6	9	5	7	25	195	5	3	3	10	389
Total	18	481	21	37	23	27	89	699	21	12	11	31	1470
05:00 PM	6	102	4	8	9	4	33	177	9	5	4	8	369
05:15 PM	2	103	5	10	12	7	22	167	7	3	0	8	346
05:30 PM	6	81	3	5	5	2	19	157	3	4	4	12	301
05:45 PM	4	89	2	6	5	4	20	158	1	3	3	6	301
Total	18	375	14	29	31	17	94	659	20	15	11	34	1317
Grand Total	36	856	35	66	54	44	183	1358	41	27	22	65	2787
Apprch \%	3.9	92.3	3.8	40.2	32.9	26.8	11.6	85.8	2.6	23.7	19.3	57	
Total \%	1.3	30.7	1.3	2.4	1.9	1.6	6.6	48.7	1.5	1	0.8	2.3	
Cars	36	840	35	66	54	43	183	1345	41	27	22	65	2757
\% Cars	100	98.1	100	100	100	97.7	100	99	100	100	100	100	98.9
Trucks	0	16	0	0	0	1	0	13	0	0	0	0	30
\% Trucks	0	1.9	0	0	0	2.3	0	1	0	0	0	0	1.1

	Route 125 From North				Tolend Rd From East				Route 125 From South				Greenhill Rd From West				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 04:00 PM																	
04:00 PM	7	136	4	147	7	4	8	19	21	184	6	211	3	2	10	15	392
04:15 PM	3	111	4	118	12	11	6	29	22	156	3	181	0	4	5	9	337
04:30 PM	2	119	7	128	9	3	6	18	21	164	7	192	6	2	6	14	352
04:45 PM	6	115	6	127	9	5	7	21	25	195	5	225	3	3	10	16	389
Total Volume	18	481	21	520	37	23	27	87	89	699	21	809	12	11	31	54	1470
\% App. Total	3.5	92.5	4		42.5	26.4	31		11	86.4	2.6		22.2	20.4	57.4		
PHF	. 643	. 884	. 750	. 884	. 771	. 523	. 844	. 750	. 890	. 896	. 750	. 899	. 500	. 688	. 775	. 844	. 938
Cars	18	471	21	510	37	23	26	86	89	688	21	798	12	11	31	54	1448
\% Cars	100	97.9	100	98.1	100	100	96.3	98.9	100	98.4	100	98.6	100	100	100	100	98.5
Trucks	0	10	0	10	0	0	1	1	0	11	0	11	0	0	0	0	22
\% Trucks	0	2.1	0	1.9	0	0	3.7	1.1	0	1.6	0	1.4	0	0	0	0	1.5

60008818

Accurate Counts 978-664-2565													
N/S Street : Route 125 ENW Street: Greenhill Rd / To City/State : Barrington, NH Weather : Clear												File Site Star Pag	: 81880003 81880003 3/7/2019 : 5
Groups Printed-Cars													
	Route 125 From North			Tolend Rd From East			Route 125 From South			Greenhill Rd From West			
Start Time	Left	Thru	Right	Int. Total									
04:00 PM	7	130	4	7	4	7	21	182	6	3	2	10	383
04:15 PM	3	108	4	12	11	6	22	152	3	0	4	5	330
04:30 PM	2	119	7	9	3	6	21	160	7	6	2	6	348
04:45 PM	6	114	6	9	5	7	25	194	5	3	3	10	387
Total	18	471	21	37	23	26	89	688	21	12	11	31	1448
05:00 PM	6	101	4	8	9	4	33	177	9	5	4	8	368
05:15 PM	2	101	5	10	12	7	22	167	7	3	0	8	344
05:30 PM	6	78	3	5	5	2	19	156	3	4	4	12	297
05:45 PM	4	89	2	6	5	4	20	157	1	3	3	6	300
Total	18	369	14	29	31	17	94	657	20	15	11	34	1309
Grand Total	36	840	35	66	54	43	183	1345	41	27	22	65	2757
Apprch \%	4	92.2	3.8	40.5	33.1	26.4	11.7	85.7	2.6	23.7	19.3	57	
Total \%	1.3	30.5	1.3	2.4	2	1.6	6.6	48.8	1.5	1	0.8	2.4	

Accurate Counts 978-664-2565													
N/S Street : Route 125 ENW Street: Greenhill Rd / T City/State : Barrington, NH Weather : Clear												File Site Star Pag	$\begin{aligned} & : 81880003 \\ & : 81880003 \\ & : 3 / 7 / 2019 \\ & : 9 \end{aligned}$
Groups Printed- Trucks													
	Route 125 From North			Tolend Rd From East			Route 125 From South			Greenhill Rd From West			
Start Time	Left	Thru	Right	Int. Total									
04:00 PM	0	6	0	0	0	1	0	2	0	0	0	0	9
04:15 PM	0	3	0	0	0	0	0	4	0	0	0	0	7
04:30 PM	0	0	0	0	0	0	0	4	0	0	0	0	4
04:45 PM	0	1	0	0	0	0	0	1	0	0	0	0	2
Total	0	10	0	0	0	1	0	11	0	0	0	0	22
05:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	1
05:15 PM	0	2	0	0	0	0	0	0	0	0	0	0	2
05:30 PM	0	3	0	0	0	0	0	1	0	0	0	0	4
05:45 PM	0	0	0	0	0	0	0	1	0	0	0	0	1
Total	0	6	0	0	0	0	0	2	0	0	0	0	8
Grand Total	0	16	0	0	0	1	0	13	0	0	0	0	30
Apprch \%	0	100	0	0	0	100	0	100	0	0	0	0	
Total \%	0	53.3	0	0	0	3.3	0	43.3	0	0	0	0	

Groups Printed- Bikes Peds																			
	Route 125 From North				Tolend Rd From East				Route 125 From South				Greenhill Rd From West						
Start Time	Left	Thru	Right	Peds	Exclu. Total	Inclu. Total	Int. Total												
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1
05:00 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1
Grand Total	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	2
Apprch \%	0	0	0		0	0	0		0	100	0		0	0	0				
Total \%	0	0	0		0	0	0		0	100	0		0	0	0		50	50	

File Name: $: 81880003$
Site Code $: 81880003$
Start Date : $3 / 712019$
Page No : 14

	Route 125 From North				Tolend Rd From East				Route 125 From South				Greenhill Rd From West				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 04:15 PM																	
04:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
05:00 PM	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1
Total Volume	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1
\% App. Total	0	0	0		0	0	0		0	100	0		0	0	0		
PHF	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 250	. 000	. 250	. 000	. 000	. 000	. 000	. 250

Groups Printed- Cars - Trucks													
	Route 125 From North			Tolend Rd From East			Route 125 From South			Greenhill Rd From West			
Start Time	Left	Thru	Right	Int. Total									
11:00 AM	4	98	3	9	3	4	11	131	5	2	3	13	286
11:15 AM	1	121	1	5	3	6	18	113	6	2	2	15	293
11:30 AM	8	150	7	5	1	6	13	94	3	4	4	14	309
11:45 AM	2	129	2	6	1	10	9	115	5	1	1	16	297
Total	15	498	13	25	8	26	51	453	19	9	10	58	1185
12:00 PM	5	113	4	5	2	9	11	110	4	2	2	12	279
12:15 PM	5	111	4	7	2	4	11	120	2	2	3	15	286
12:30 PM	2	105	3	3	1	9	12	119	3	4	3	9	273
12:45 PM	4	96	3	7	2	5	17	131	3	4	2	11	285
Total	16	425	14	22	7	27	51	480	12	12	10	47	1123
01:00 PM	5	107	1	6	1	6	13	116	5	1	1	14	276
01:15 PM	4	91	3	3	1	2	9	114	4	1	1	14	247
01:30 PM	7	115	0	5	6	4	11	104	6	1	3	5	267
01:45 PM	8	101	3	4	4	7	10	104	11	1	3	10	266
Total	24	414	7	18	12	19	43	438	26	4	8	43	1056
Grand Total	55	1337	34	65	27	72	145	1371	57	25	28	148	3364
Apprch \%	3.9	93.8	2.4	39.6	16.5	43.9	9.2	87.2	3.6	12.4	13.9	73.6	
Total \%	1.6	39.7	1	1.9	0.8	2.1	4.3	40.8	1.7	0.7	0.8	4.4	
Cars	55	1329	34	65	27	72	145	1360	57	25	28	148	3345
\% Cars	100	99.4	100	100	100	100	100	99.2	100	100	100	100	99.4
Trucks	0	8	0	0	0	0	0	11	0	0	0	0	19
\% Trucks	0	0.6	0	0	0	0	0	0.8	0	0	0	0	0.6

	Route 125 From North				Tolend Rd From East				Route 125 From South				Greenhill Rd From West				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 11:00 AM to 01:45 PM - Peak 1 of 1 A																	
Peak Hour for Entire Intersection Begins at 11:00 AM																	
11:00 AM	4	98	3	105	9	3	4	16	11	131	5	147	2	3	13	18	286
11:15 AM	1	121	1	123	5	3	6	14	18	113	6	137	2	2	15	19	293
11:30 AM	8	150	7	165	5	1	6	12	13	94	3	110	4	4	14	22	309
11:45 AM	2	129	2	133	6	1	10	17	9	115	5	129	1	1	16	18	297
Total Volume	15	498	13	526	25	8	26	59	51	453	19	523	9	10	58	77	1185
\% App. Total	2.9	94.7	2.5		42.4	13.6	44.1		9.8	86.6	3.6		11.7	13	75.3		
PHF	. 469	. 830	464	. 797	. 694	. 667	. 650	. 868	. 708	. 865	. 792	. 889	. 563	. 625	. 906	. 875	. 959
Cars	15	491	13	519	25	8	26	59	51	451	19	521	9	10	58	77	1176
\% Cars	100	98.6	100	98.7	100	100	100	100	100	99.6	100	99.6	100	100	100	100	99.2
Trucks	0	7	0	7	0	0	0	0	0	2	0	2	0	0	0	0	9
\% Trucks	0	1.4	0	1.3	0	0	0	0	0	0.4	0	0.4	0	0	0	0	0.8

Peak Hour Analysis From 11:00 AM to 01:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	11:15 AM				11:00 AM				12:15 PM				11:00 AM			
+0 mins.	1	121	1	123	9	3	4	16	11	120	2	133	2	3	13	18
+15 mins.	8	150	7	165	5	3	6	14	12	119	3	134	2	2	15	19
+30 mins.	2	129	2	133	5	1	6	12	17	131	3	151	4	4	14	22
+45 mins.	5	113	4	122	6	1	10	17	13	116	5	134	1	1	16	18
Total Volume	16	513	14	543	25	8	26	59	53	486	13	552	9	10	58	77
\% App. Total	2.9	94.5	2.6		42.4	13.6	44.1		9.6	88	2.4		11.7	13	75.3	
PHF	. 500	. 855	. 500	. 823	. 694	. 667	. 650	. 868	. 779	. 927	. 650	. 914	. 563	. 625	. 906	. 875

Groups Printed- Trucks													
	Route 125 From North			Tolend Rd From East			Route 125 From South			Greenhill Rd From West			
Start Time	Left	Thru	Right	Int. Total									
11:00 AM	0	3	0	0	0	0	0	1	0	0	0	0	4
11:15 AM	0	2	0	0	0	0	0	1	0	0	0	0	3
11:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45 AM	0	2	0	0	0	0	0	0	0	0	0	0	2
Total	0	7	0	0	0	0	0	2	0	0	0	0	9
12:00 PM	0	0	0	0	0	0	0	1	0	0	0	0	1
12:15 PM	0	1	0	0	0	0	0	1	0	0	0	0	2
12:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
12:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	1	0	0	0	0	0	2	0	0	0	0	3
01:00 PM	0	0	0	0	0	0	0	3	0	0	0	0	3
01:15 PM	0	0	0	0	0	0	0	2	0	0	0	0	2
01:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
01:45 PM	0	0	0	0	0	0	0	2	0	0	0	0	2
Total	0	0	0	0	0	0	0	7	0	0	0	0	7
Grand Total	0	8	0	0	0	0	0	11	0	0	0	0	19
Apprch \%	0	100	0	0	0	0	0	100	0	0	0	0	
Total \%	0	42.1	0	0	0	0	0	57.9	0	0	0	0	

N/S Street: Route 125
EM Street: Greenhill Rd / Tolend Rd
City/State: Barrington, NH
Weather : Clear

Groups Printed-Bikes Peds																		Inclu. Total	
	Route 125 From North				Tolend Rd From East				Route 125 From South				Greenhill Rd From West				Exclu. Total		Int. Total
Start Time	Left	Thru	Right	Peds															
11:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30 PM	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2	2
12:45 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1
Total	1	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	3	3
01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	1	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	3	3
Apprch \%	100	0	0		0	100	0		0	0	0		0	0	0				
Total \%	33.3	0	0		0	66.7	0		0	0	0		0	0	0		0	100	

610 Z/6
ع00088
웅

Peak Hour Analysis From 11:00 AM to 01:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:
Peak Hour for Each Approach Begins at.
0000008

+0 mins.	0
+15 mins.	0
+30 mins.	0
+45 mins.	1
Total Volume	1
\% App. Total	100
PHF	.250

VEHICLE TRAVEL SPEED DATA

Location: Route 125
Location : South of Scruton Pond Road City/State: Barrington, NH

NB					
Start	1	16	21	26	31
Time	15	20	25	30	35
03/07/19	0	0	0	0	0
$01: 00$	0	0	0	0	0
$02: 00$	0	0	0	0	0
$03: 00$	0	0	0	0	0
$04: 00$	0	0	0	0	0
$05: 00$	0	0	0	0	0
$06: 00$	0	0	0	0	0
$07: 00$	0	0	0	0	0
$08: 00$	0	0	0	0	0
$09: 00$	0	0	0	0	0
$10: 00$	0	0	0	0	0
$11: 00$	0	0	0	0	0
$12 P M$	0	0	0	0	0
$13: 00$	0	0	0	2	0
$14: 00$	0	0	0	0	2
$15: 00$	0	0	0	0	0
$16: 00$	0	0	0	0	0
$17: 00$	0	0	0	0	0
$18: 00$	0	0	0	0	0
$19: 00$	0	0	0	0	0
$20: 00$	0	0	0	0	1
$21: 00$	0	0	0	0	0
$22: 00$	0	0	0	0	0
$23: 00$	0	0	0	0	0
Total	0	0	0	2	9

48 MPH
54 MPH
59 MPH
62 MPH

54 MPH
$51-60 \mathrm{MPH}$
5639
73.1%
3248
42.1% 15th Percentile :
50th Percentile :
85th Percentile :
95th Percentile :

Mean Speed(Average) :

49 MPH
54 MPH
59 MPH
62 MPH
55 MPH
$51-60 \mathrm{MPH}$
6265
74.1%
3815
45.1% 15th Percentile :
50th Percentile
85th Percentile
95th Percentile :

Mean Speed(Average)
10 MPH Pace Speed

Location : South of Scruton Pond Road
City/State: Barrington,

Page 6 \square

Location : South of Scruton Pond Road City/State: Barrington, SB, NB

Location : Route 125
Location: South of Scruton Pond Road

Location：Route 125
Location：South of Scruton Pond Road
City／State：Barrington，NH
SB，NB

Kıן

BARRINGTON POLICE DEPARTMENT 774 FRANKLIN PIERCE HIGHWAY BARRINGTON, NH 03825

Chief Robert Williams
Emergency Dial 911
Phone (603) 664-7679
Fax (603) 664-5024

October 15, 2018

Barrington Road Safety Audit

Findings After Review of Crash Data

The Town of Barrington is approximately 48.5 square miles in size (land) and has over 125 miles of road. Most of the roadways are winding and are not equipped with street lights. This contributes to the number of crashes that occur within the town each year as well as the sheer volume of cars and trucks on the roadways every day.

Over the past ten years (2008-2017), the Barrington Police Department has covered 1640 crashes within our jurisdiction. Of those crashes, 336 resulted in non-capacitating injury, 39 resulted in serious bodily injury, and 12 resulted in fatalities. In total, the Department covers an average of 164 crashes each year and the numbers continue to increase each year.

Due to the large majority of crashes that are recorded, the focus was placed on roadways that accounted for most crashes. After review, the top three roadways for crashes include:

- Calef Highway (State Route 125) - Average of 42 crashes per year
- Franklin Pierce Highway (State Route 9) - Average of 44 crashes per year
- Washington Street (State Route 202) - Average of 16 crashes per year

The number of crashes on these roadways account for an average of 62% of the total crashes reported for the year in the Town.

Focusing on the top three roadways with the highest instance of crashes, we then reviewed the areas with the highest number of crashes. The top five areas with the highest number of crashes occur at intersections with Calef Highway (total crashes 2008-2017):

- Calef Highway at Franklin Pierce Highway - 76 Total Crashes
- Calef Highway at Newtown Plains Road - 39 Total Crashes
- Calef Highway at Beauty Hill Road - 20 Total Crashes
- Calef Highway at Mallego Road - 22 Total Crashes
- Calef Highway at Scruton Pond Road - 13 Total Crashes

Calef Highway (Route 125) is currently the most heavily traveled road in the town, in 2014 the average traffic volume recorded for the roadway was 16683 vehicles per day. The speed limit on Calef Highway where most of the intersections are located is 50 MPH , except for Calef Highway at Franklin Pierce, which is a post 35 MPH zone. Calef Highway is a major thoroughfare for people traveling within the state, including junctions with Routes 101 in Epping and the Spaulding Turnpike in Rochester.

The crashes at the above listed intersections were then reviewed for any involving serious bodily injury and/or death (2008-2017).

- Calef Highway at Franklin Pierce - 0 instances
- Calef Highway at Newtown Plains Road - 2 Instances
- Calef Highway at Beauty Hill Road - 5 Instances
- Calef Highway at Mallego Road - 2 Instances
- Calef Highway at Scruton Pond Road - 4 Instances (1 Fatal)

According to the data available on the NH DOT webpage, the intersection of Calef Highway and Franklin Pierce Highway was updated with traffic lights in the 1960's and was converted to the current traffic pattern in the 1970's. The addition of the traffic lights has completely reduced the number of crashes involving serious bodily injury/fatalities at that intersection. Though it is the intersection with the highest number of crashes per year, the last ten years of data show that none have been serious.

Conclusion

The intersections of concern to the department is Calef Highway at Beauty Hill Road, and Calef Highway at Scruton Pond Road. Beauty Hill Road is located in a long flat section of Calef Highway where we encounter vehicles going well over the posted speed limit. There is also a considerable amount of traffic that comes off Beauty Hill Road and during peak hours, this can be very dangerous for motorists trying to enter Calef Highway. Scruton Pond Road intersects Calef Highway at a low point in the roadway. Both north and south bound traffic on Calef Highway are going downhill as they approach the intersection of Scruton Pond Road. The north bound traffic is also coming around a corner. The location of the road and speed of vehicles in the area has a significant effect on the number of crashes in that area.

Data Source

All of the information was compiled using our in-house record system (IMC), which was the primary record system for the department until 2015, and our Strafford County records (also IMC) which has been our record system since 2015. Years 2008-2017 were used to provide a 10-year account of crash history.

At this time, I recommend that the information be provided to Colin at the Strafford Regional Planning Commission for further review.

Sincerely

Sgt. Kathleen P. O'Brien

Total Accidents In Barrington 2008-2017				
Year	Total Accidents	Acc w/ Non-Inc. Inj.	Acc. w/SBI	Acc. w/Fatalities
2008	152	23	3	1
2009	163	34	8	1
2010	151	29	0	2
2011	154	30	6	0
2012	164	30	4	1
2013	179	39	6	2
2014	164	35	2	2
2015	160	28	0	1
2016	177	43	5	2
2017	176	45	5	0
Total	$\mathbf{1 6 4 0}$	$\mathbf{3 3 6}$	$\mathbf{3 9}$	$\mathbf{1 2}$
Average	$\mathbf{1 6 4}$	$\mathbf{3 4}$	4	1

Roads with Highest Crash Instances

Total of All Crashes

Traffic Crash Data Top 3 Crash Roads											
	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017 Average	
Calef Highway	34	36	44	46	49	46	36	33	46	48	42
Franklin Pierce	46	56	35	39	47	41	47	43	47	41	44
Washington St.	10	13	19	12	23	21	15	19	19	12	16
Totals	90	105	98	97	119	108	98	95	112	101	102
Percent of All Crashes	59\%	64\%	65\%	63\%	73\%	60\%	60\%	59\%	63\%	57\%	62\%

Roads w/Highest Crash Instances

Intersection Related Crashes

Highest Intersection Related Crashes (Includes Total Crashes for the Year)										
	20082009		2010	2011	2012	2013	2014	2015	20162017	
Calef @ Franklin Pierce	5	10	10	12	4	8	14	4	5	4
Calef @ New Town Pl.	3	4	1	4	7	7	5	2	1	5
Calef @ Beauty Hill	1	1	2	2	4	1	1	0	1	7
Calef @ Mallego	3	1	3	3	1	2	2	2	1	4
Calef @ Scruton Pond	0	3	1	0	1	3	0	0	2	3
Total	12	16	16	21	16	18	22	8	8	20

Intersection Related Crashes

Intersection Crash Data - SBI and Fatalities

Total Intersection Related Crashes w/SBI \& Fatalities Over Ten Years (Utilizing Intersections/Area's with Highest Number of Total Accidents)											
Road	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Totals
Calef @ Franklin Pierce	0	0	0	0	0	0	0	0	0	0	0
Calef @ New Town Pl.	0	0	0	0	1	0	1	0	0	0	2
Calef @ Beauty Hill	0	1	0	2	0	1	0	0	0	1	5
Calef @ Mallego	0	1	0	0	0	0	0	0	1	0	2
Calef @ Scruton Pond	0	0	1	0	1	1	0	0	1	0	4

10 Year Total SBI/Fatalities at High Crash Intersections

SBI/Fatal Crash List 2008-2017				
Accident Number	Accident Date	Time	Location	Injury
08BAR-58-AC	5/16/2008	9:42 PM	Route 125 S of Deer Ridge Road	SBI
08BAR-60-AC	5/24/2008	3:47 PM	Frankline Pierce, East of Stonehouse Pond	SBI
08BAR-71-AC	6/30/2008	1:26 PM	Greenhill @ \# 147	SBI
08BAR-81-AC	8/4/2008	2:30 AM	Franklin Pierce Hwy @ Estate Drive	Fatal
09BAR-30-AC	3/2/2009	2:08 PM	Franklin Pierce Highway @ Kelly Ln.	SBI
09BAR-57-AC	4/24/2009	10:15 PM	Tolend Road @ Greenhill Road	SBI
09BAR-66-AC	5/20/2009	4:39 PM	Franklin Pierce Highway @ Washington	SBI
09BAR-72-AC	6/1/2009	4:48 PM	Tolend Road @ Carr Dr.	SBI
09BAR-84-AC	7/15/2009	5:00 PM	Calef Hwy @ Beauty Hill Road	SBI
O9BAR-101-AC	9/3/2009	7:15 AM	Calef Hwy @ Province Road	SBI
09BAR-114-AC	9/28/2009	7:00 AM	Franklin Pierce Hwy @ Haley Dr.	SBI
09BAR-116-AC	10/6/2009	7:59 AM	Old Concord Tnpk. 2500 ft. East of Meadowbrook	SBI
O9BAR-142-AC	12/4/2009	5:06 PM	Franklin Pierce Hwy. 200 ft . West Kelly Ln.	Fatal
10BAR-106-AC	10/3/2010	4:17 AM	Washington St. West of Mahala Way.	Fatal
10BAR-111-AC	10/18/2010	2:52 PM	Calef Highway 500 Ft . South Scrouton Pond Rd.	Fatal
11BAR-37-AC	3/17/2011	8:39 AM	Washington St. 1 mi. South of Pond Hill Rd.	SBI
11BAR-50-AC	5/2/2011	5:00 AM	Old Concord Tnpk. @ Truck Lanes	SBI
11BAR-51-AC	5/11/2011	5:05 PM	Calef Hwy. @ Beauty Hill Road	SBI
11BAR-63-AC	6/12/2011	7:16 AM	Franklin Pierce Highway @ Hearthside Dr.	SBI
11BAR-96-AC	8/14/2011	11:25 AM	Calef Highway @ Beauty Hill Rd.	SBI
11BAR-123-AC	10/30/2011	10:39 PM	Tolend @ Pumpkin Hollow	SBI
12BAR-18-AC	1/25/2012	2:16 PM	Old Concord Tnpk. 200 ft . West of Glass Ln.	SBI
12BAR-27-AC	2/8/2012	5:58 PM	Franklin Pierce @ Mallego Rd.	SBI
12BAR-56-AC	5/15/2012	2:39 PM	Franklin Pierce Hwy. East of Swain Rd.	Fatal
12BAR-95-AC	8/11/2012	4:21 PM	Calef Highway @ Newtown Plains Road	SBI
12BAR-113-AC	10/2/2012	2:13 PM	Calef Highway South of Scruton Pond	SBI
13BAR-69-AC	5/29/2013	11:02 AM	Franklin Pierce @ \#2143	SBI
13BAR-80-AC	6/14/2013	6:54 AM	Calef Highway @ Winkley Pond Rd.	SBI
13BAR-81-AC	6/18/2013	10:52 AM	Old Concord Tnpk. 1500 ft . E. Warren Rd.	SBI
13BAR-110-AC	9/11/2013	5:08 PM	Spring Dr. @ Washington St.	SBI
13BAR-120-AC	9/25/2013	6:07 PM	Franklin Pierce Hwy. 100 ft . W. Ramsdell Ln.	SBI
13BAR-134-AC	10/15/2013	3:49 PM	Canaan Back Road (OHRV)	Fatal
13BAR-135-AC	10/16/2013	11:32 PM	Calef Highway 200 ft . S. Scruton Pond Rd.	SBI
13BAR-143-AC	10/31/2013	10:37 PM	Frankline Pierce 500 ft . East Cooper Rd	Fatal
14BAR-97-AC	8/23/2014	5:34 AM	Franklin Pierce Hwy. @ \# 1738	Fatal
14BAR-102-AC	8/31/2014	7:28 PM	Calef Hwy. @ Newtown Plains	SBI
14BAR-126-AC	10/26/2014	10:00 AM	Franklin Pierce @ Calef Hwy.	SBI
14BAR-165-AC	12/26/2014	3:52 PM	Tolend Road 200 ft . West of Substitute Rd.	Fatal
15BAR-133-AC	11/1/2015	4:10 PM	Franklin Pierce @ Garnett Dr.	Fatal
16BAR-25-AC	2/2/2016	9:09 AM	Calef Hwy @ Barnz's Cinema	SBI
16BAR-47-AC	3/12/2016	10:47 AM	Old Concord Tnpk. @ \# 287	SBI
16BAR-49-AC	3/21/2016	11:42 AM	Calef Highway @ Pierce Road	Fatal
16BAR-54-AC	4/14/2016	7:42 PM	Calef Highway @ Province	SBI
16BAR-55-AC	4/14/2016	5:41 PM	Calef Highway @ Scrouton Pond Road	SBI

SBI/Fatal Crash List 2008-2017						
Accident Number	Accident Date	Time	Location	Injury		
16BAR-111-AC	$8 / 15 / 2016$	4:50 AM	Calef Highway @ Greenhill Road	SBI		
16BAR-167-AC	$12 / 16 / 2016$	$5: 11$ AM	Franklin Pierce @ Estate Drive	Fatal		
17BAR-5-AC	$1 / 10 / 2017$	$12: 18$ PM	Greenhill Road 1500 ft. West Calef Hwy.	SBI		
17BAR-13-AC	$1 / 20 / 2017$	$8: 20$ AM	Calef Highway @ Beauty Hill Rd.	SBI		
17BAR-32-AC	$2 / 16 / 2017$	$12: 34$ PM	Franklin Pierce Hwy. @ Madbury Line	SBI		
17BAR-76-AC	$6 / 12 / 2017$	$5: 02$ PM	Scrouton Pond @ Coachman Dr.	SBI		
17BAR-125-AC	$10 / 23 / 2017$	7:56 AM	Calef Hwy. North of Century Pines	SBI		
17BAR-132-AC	$11 / 1 / 2017$	$7: 31$ AM	Calef Hwy 1000 ft. North Pierce Road	SBI		

－《トய N゚ ゚N N N

$$
\left.\begin{array}{cl}
\begin{array}{cl}
\text { COMPUTED } \\
\text { VOLUME }
\end{array} & \begin{array}{c}
\text { PERCENT } \\
\text { GAIN }
\end{array} \\
& \\
\text { PERCENT } \\
\text { LOSS }
\end{array}\right]
$$

STATE OF NEW HAMPSHIRE, DEPARTMENT OF TRANSPORTATION - BUREAU OF TRAFFIC

$\begin{array}{lcccccc}\text { AVERAGE } & \text { COMPUTED } & \text { PERCENT } & \text { PERCENT } \\ \text { SUNDAY } & \text { WEEKDAY } & \begin{array}{c}\text { SATURDAY }\end{array} & \text { DAILY } & \text { VOLUME } & \text { GAIN } & \text { LOSS }\end{array}$
No.
PEAK HOUR VOLUMES:

STATION
027055
TYPE
82
$\begin{array}{ccc}\text { M } & \text { D } & \text { D } \\ \text { O } & \text { A } & \text { A } \\ \text { N } & \text { T } & \text { Y } \\ & \text { E } & \\ 7 & 8 & 3 \\ 7 & 9 & 4 \\ 7 & 10 & 5\end{array}$

STATE OF NEW HAMPSHIRE DEPARTMENT OF TRANSPORTATION BUREAU OF HIGHWAY DESIGN

CONFERENCE REPORT

PROJECT: BARRINGTON
X-A001(181)
16201
NH 125/Tolend Rd/Greenhill Rd Intersection Safety Improvements (HSIP)

DATE OF CONFERENCE: March 1, 2012

LOCATION OF CONFERENCE: Early Childhood Learning Center, Barrington

ATTENDED BY:

NHDOT
Bill Oldenburg
John Butler
Doug DePorter
OTHERS
See attached sign-in sheet.
SUBJECT: Public Officials/Public Informational Meeting

NOTES ON CONFERENCE:

Bill Oldenburg introduced this intersection safety improvement project at the intersection of NH Route 125 / Tolend Road / Greenhill Road. He explained that the intersection had been identified for improvements through the work of the Highway Safety Improvement Program (HSIP). The current Federal highway funding law, known by its acronym of SAFETEA-LU, created the Highway Safety Improvement Program to identify highway safety issues and provide for modest safety improvements that would achieve a significant reduction in traffic fatalities and serious injury accidents. New Hampshire receives $\$ 5.5$ million per year to implement modest safety improvements in locations where crash data indicates safety deficiencies. Crash data available for the intersection showed that there were 21 accidents between 2002 to 2009, including 1 fatal accident and 9 severe injury accidents.

In March of 2011 the Department met with the Board of Selectmen to get an understanding of the perceived deficiencies at the intersection, and to gain their support to investigate possible solutions to improve safety. Based on that input and an engineering study by the Department, a conceptual plan for improvements has been developed. Several important
issues were considered as the designs were developed, including safety, efficient operation, property impacts, historic resources, and natural resources.

John Butler described the existing intersection conditions and the conceptual plan for improvements. NH 125 through the intersection area has two 12^{\prime} wide travel lanes, 10^{\prime} wide paved shoulders, and a 150^{\prime} wide controlled access right-of-way. The posted speed limit on NH 125 is 50 mph . Environmental issues include some small pockets of wetlands scattered throughout the project area and a potentially historic house in one quadrant of the intersection. Current average daily traffic volumes are approximately 14,600 vehicles on NH 125, 2100 vehicles on Greenhill Road, and 1100 vehicles on Tolend Road.

In 2008, the Strafford Regional Planning Commission completed a NH Route 125 corridor study, which recommended signalizing the $\mathrm{NH} 125 /$ Tolend $\mathrm{Rd} /$ Greenhill Rd intersection and widening NH 125 to have two through lanes in each direction for long-term capacity needs. Concerns expressed by town officials and the public at the March 2011 meeting included the difficuity of safely pulling out of the two side roads and the speed of traffic on NH 125. The predominant recommendation at that meeting was to signalize the intersection.

Traffic data was collected at the intersection and an engineering analysis was done to determine if signalization is justified at the intersection. Based on that analysis, it was determined that signals are warranted, therefore, signalization of the intersection is proposed. The proposed design also calls for separate left turn and right turn lanes on NH 125 in both the northbound and southbound directions. Constructing the turning lanes will require widening NH 125 by approximately 10° in two areas. No impacts to private property or environmental resources are anticipated. The construction cost is estimated to be $\$ 625,000$.

Bill Oldenburg noted that an environmental document will be prepared for the project which will describe all known environmental resources in the project area, and the anticipated impacts to those resources. Bill noted that owners of historic properties directly affected by the project or agencies that possess a direct interest in historical resources can become more involved in an advisory role during project development by becoming a "Consulting Party" to the Section 106 process. He also noted that several areas of invasive (non-native) plans have been identified in the project area, and measures will be taken to ensure that these plants are not spread by the construction activities.

Bill noted that funding for the project will be a combination of State and Federal funds. No Town funds are anticipated to be required. If the proposal is well received at tonight's meeting, the project could possibly be advertised for construction this coming winter, with construction in 2013.

Discussion:

The fire chief requested that the new signals be equipped with Opticom for emergency vehicles and with a generator transfer switch so that the signals could be run off a portable generator if the power goes out. He noted that the Town might be able to provide a generator in the event of a power outage.

It was asked if the signals would operate in flashing mode during non-peak traffic times, and if there would be traffic sensors in the pavement. Bill Oldenburg responded that the signals will be fully actuated with sensors in the pavement, but they will not be put on flash mode during non-peak traffic.

It was recommended that lighting be provided at the intersection. Bill Oldenburg responded that lighting will be considered, but in general the Department has been reducing the number of active street lights statewide as a cost savings measure.

It was noted that speeding on NH 125 is a significant issue, and that tuming left from NH 125 is uncomfortable due to the fear of being rear-ended. It was asked if the speed limit on NH 125 would be reduced. Bill Oldenburg responded that the speed limit is likely to be reduced through the intersection area, but is unknown at this time what the reduced speed limit will be, and where the exact limits of the reduction will be.

It was noted that truck traffic on NH 125 is significant. In particular there has been an increase in Waste Management trucks heading north to a facility in Rochester.

It was recommended that signing could be improved on Tolend Road and Greenhill Road to alert drivers of the upcoming intersection.


```
cc: W. Cass
    D. DePorter
    W. Oldenburg
    C. Perron
    W. Lambert
        M. Dugas
    Barrington Selectmen
```

PROJECT Barrington - NH $125 /$ Greenhill Rd/Tolend Rd. $^{\text {R }}$ /
location Public Officials/Public Info, meeting, Early Child hoed Learning Center, PROJECTNO. $\frac{X-A \phi \phi \not 2(181)}{\text { Federal }}-\frac{16201}{\text { State }}$

STATE OF NEW HAMPSHIRE DEPARTMENT OF TRANSPORTATION BUREAU OF HIGHWAY DESIGN

CONFERENCE REPORT

PROJECT: BARRINGTON
X-A001(173)

$$
16178
$$

$$
\text { US } 202 \text { / NH } 9 \text { Intersection Safety Improvements (HSIP) }
$$

DATE OF CONFERENCE: July 18, 2012
LOCATION OF CONFERENCE: Early Childhood Learning Center, Barrington
ATTENDED BY: PUBLIC HEARING COMMISSION
Richard Adams, Chairperson
William Gregsak
Thomas Tatarczuch
NHDOT
Bill Oldenburg Victoria Chase John Butler Christine Perron
OTHERS
See attached sign-in sheet.

SUBJECT: Public Hearing

NOTES ON CONFERENCE:

A public hearing was held for the above-noted project on July 18, 2012. A transcript of the hearing is available in the Bureau of Right-of-Way. The following is a summary of the questions and comments made at the hearing, and the Department's response to those comments.

1. John Scruton, Barrington Town Administrator, voiced his support for the project. He noted that his preference would be to have the left tum lane included in the design, but understood that it would require significant additional cost.
2. John Allard, Barrington resident, expressed the following comments and questions:
a. He expressed his preference for the alternative design that makes US Route 202 the free-flow movement. He is concerned with the speed of traffic on the westbound NH 9 approach coming down the hill, and felt that making them stop at the intersection would be a way to control their speed.
b. He asked if the bypass shoulder was designed to accommodate tractor trailers.
c. He wanted to know how much additional property would be required from Parcel \#2 with the left turn lane alternative.

Response:

a. The Department has considered all the issues associated with the US 202 freeflow alternative and with the left turn lane alternative, and feels that the proposed design presented at the public hearing provides the most cost-effective solution while considering the issues of safety, efficient operations, property impacts, and impacts to cultural and natural resources.
b. The bypass shoulder will accornmodate tractor trailers going around a vehicle that is stopped to make a left hand turn.
c. There is only a small amount of additional property required from Parcel \#2 with the left turn lane alternative as compared to the proposed design, however, there are also impacts to three additional properties that are not impacted by the proposed design.
3. Steve Young, Barrington resident, asked if traffic would be routed along Gooseneck Lane during construction.
Response: US 202 and NH 9 traffic will not be detoured along any local roads, including Gooseneck Lane, during construction.
4. Terri Frank, Barrington resident, requested that measures be taken to reduce traffic speed along US 202 and NH 9. She suggested additional signage.
Response: The project area will be reviewed by the Bureau of Traffic to insure that appropriate signage is provided on the approaches to the intersection.

John D. Butler, PE
Preliminary Design Supervisor

ATTACHMENTS: Chairperson Preliminary Statement
Project Manager Statement
Design Presentation Outline
Right-of-Way Statement
Environment Statement
Meeting Sign-in Sheet

NOTED BY: W. Oldenburg

cc:	W. Cass	D. DePorter
W. Oldenburg	C. Perron	
W. Lambert	M. Dugas	
	V. Chase	

S:
(TOWNS)\Barrington\16178\Conference Reports\071812_PH_16178.doc

PRELIMINARY STATEMENT

BY
RICHARD ADAMS, CHAIR

BARRINGTON 16178

THIS MEETING IS CALLED TO ORDER. I AM RICHARD ADAMS, CHAIR OF THIS COMMISSION APPOINTED BY THE GOVERNOR AND EXECUTIVE COUNCIL. WILLIAM GREGSAK AND THOMAS TATARCZUCH ARE ALSO MEMBERS OF THIS COMMISSION.

THIS HEARING IS CONCERNED WITH THE RECONSTRUCTION OF US 202 AND NH 9 TO IMPROVE SAFETY. IT IS PURSUANT TO RSA 230:14, AND THE SURFACE TRANSPORTATION AND UNIFORM RELOCATION ASSISTANCE ACT OF 1987.

THE PURPOSE OF THIS HEARING IS TO DETERMINE THE NECESSITY OF THE OCCASION OF THE LAYOUT AND TO HEAR EVIDENCE OF THE ECONOMIC AND SOCIAL EFFECTS OF SUCH A LOCATION, ITS IMPACT ON THE ENVIRONMENT, AND ITS CONSISTENCY WITH THE GOALS AND OBJECTIVES OF SUCH LOCAL PLANNING AS HAS BEEN UNDERTAKEN BY THE TOWNS.

IMMEDIATELY FOLLOWING THE HEARING, THIS COMMISSION WILL EVALUATE ALL MATTERS BROUGHT TO OUR ATTENTION, AND MAKE DEFINITE decisions relative to the layout. THE DEPARTMENT WILL CONTACT EACH OWNER WHOSE PROPERTY IS AFFECTED AND DISCUSS INDIVIDUAL CONCERNS. IT IS, THEREFORE, IMPORTANT THAT ALL INDIVIDUALS DESIRING TO MAKE REQUESTS OR SUGGESTIONS, DO SO TONIGHT.

AT THIS TIME, I WILL ASK WILLIAM OLDENBURG, PROJECT MANAGER OF THE NEW HAMPSHIRE DEPARTMENT OF TRANSPORTATION, TO PRESENT, IN A FORMAL MANNER, THE LAYOUT WHICH HE HAS PROPOSED. AFTER THIS, I WILL OPEN THE FLOOR TO THOSE WHO WISH TO ADDRESS THE COMMISSION. I WILL REQUEST THAT ALL DESIRING TO SPEAK SIGNIFY THEIR DESIRE AND UPON RECOGNITION BY ME, STEP TO THE MICROPHONE, STATE THEIR NAME AND ADDRESS, AND MAKE THEIR STATEMENTS. PLEASE PRINT YOUR NAME AND address on the sign in sheet. this hearing is being recorded and a TRANSCRIPT WILL LATER BE PREPARED.

WILLIAM OLDENBURG WILL NOW PRESENT THE LAYOUT.

THANK YOU BILL

BEFORE I OPEN THE HEARING FOR COMMENTS, CONCERNS OR QUESTIONS, I would like to know if we have any elected officials with us this evening THAT WOULD LIKE TO BE HEARD?

ANY TOWN OFFICIALS?

I WILL NOW OPEN THE MEETING TO ANYONE DESIRING TO BE HEARD. AGAIN I WOULD ASK YOU TO RAISE YOUR HAND AND, UPON RECOGNITION BY ME, COME TO THE MICROPHONE, STATE YOUR NAME AND ADDRESS AND MAKE YOUR statements. please be sure that you have printed your name and address on the sign in sheet located on the podium.

THERE BEING NO INDICATION OF ANYONE REMAINING WHO DESIRES TO BE HEARD, THIS HEARING IS ADJOURNED. THE COMMISSION WILL TAKE A 15 MINUTE RECESS AND RECONVENE FOR A MEETING TO DISCUSS THE PROPOSED PROJECT. THIS MEETING IS A PUBLIC PROCEEDING UNDER RSA CHAPTER 91-A. THE INTENT OF THIS MEETING IS NOT TO CONTINUE TAKING TESTIMONY, BUT INSTEAD THE MEETING SERVES AS DECISION-MAKING FOR THE HEARING COMMISSION. THE PUBLIC MAY OBSERVE THE PROCEEDINGS. IF THE COMMISSION REQUIRES ADDITIONAL TIME TO CONSIDER THE TESTIMONY PRESENTED HERE TONIGHT, A FINDING OF NECESSITY MEETING HAS BEEN SCHEDULED FOR WEDNESDAY, AUGUST 1, 2012.

HEARING ADJOURNED AT \qquad .

```
Barrington
16178
Public Hearing
7/18/12
```

Thank you Mr. Chairman, members of the Commission, ladies and gentlemen good evening. It is a pleasure this evening to present what the Department of Transportation proposes for improvements to the intersection of US 202 and NH 9 in the Town of Barrington. My name is Bill Oldenburg and I'm the Project Manager for this project. Tonight's meeting is a Public Hearing to present the Department's preferred alternative to improve the safety of the intersection, and to get public comment and testimony.

Before I get started, I'd like to introduce several of my colleagues from the Department who will be helping with tonight's presentation. On my right is Victoria Chase. She is the Right-of-Way Engineer and she will be providing a brief summary of the right-of-way process for the project. On her right, is Christine Perron and she is the Environmental Manager for the project and she will provide a brief overview of the environmental study that has been completed for the project. Also at the Board is John Butler. He is one of our senior Preliminary Design engineers and he will be presenting the plans this evening and discussing the detailed aspects of the design. I would also like to acknowledge our Right-ofWay folks that are doing the recording this evening Linda Smith and Don LaBelle and transcriptionist Deb Mekula. We will try to be succinct as possible on presenting all of the information, but anticipate our presentation will take about 30 minutes. And then Commission Chairman Adams will open it up for your comments.

As everyone is aware US 202 and NH 9 are major east-west highways for the state and service many communities within the region. This project serves to provide for safety upgrades of this intersection.

The project limits where US 202 and NH 9 are combined extend approximately 400 feet from the intersection west towards Northwood. US 202 extends approximately 300 feet north from the intersection towards Rochester and NH 9 extends approximately 400 feet from the intersection towards Barrington.

This intersection came to our attention thru work we had been doing on the Highway Safety Improvement Program. The HSIP was included in the last reauthorization of the Federal Highway Program and came about from concerns by the FHWA and other agencies involved in highway safety, about the number of fatalities that were occurring on our nations highways. They set a goal to reduce fatal and serious injury crashes and as part of that initiative they provided funding for modest safety improvements, which would achieve a significant reduction in fatalities and serious injury crashes. The State receives about $\$ 6.5$ million each year to be used at various identified locations around the State. This program is also intended to be data driven, and any location where we intend to utilize these funds has to have a crash history that demonstrates a need. Our crash statistics showed that during 2002 to 2009 there were 12 crashes at this intersection, including 1 fatality and 3 severe injury accidents. 66% of the crashes involved more than 1 vehicle.

The primary purpose and need for this project is to improve the safety of the intersection. In developing the project we looked at numerous options that improved safety but also attempted to limit the impacts to the abutters. In March 2011 the Department met with the Town's Selectboard to discuss the intersection improvements. Discussions of this intersection and the various alternatives that were studied were also presented at a public informational meeting in February 2012. Several important issues were considered in the design: safety, efficient operation, property impacts and historic and natural resources. Based upon
these issues, our studies and input from the public meetings, the design that is shown on the boards and will be presented tonight is the Department's preferred alternative.

The plans you see here tonight are preliminary plans. Much more engineering work will be required to get these to a point where we can identify exactly the right-of-way impacts and to develop plans that are suitable for construction. The plans will be developed in more detail to determine the drainage needs, utility relocations, final grading, and this typically takes place if we have a positive public hearing. Based on your input tonight there may be some modifications made to the plans. Tonight's meeting is a significant milestone in the project, where it transitions from the preliminary design phase to the final design and right-of-way procurement phase.

At this time I would like to ask John Butler to present the plans in more detail. John.......

Thank you John. As this project will involve acquisitions of property and easements and I'd like to ask Victoria Chase to talk about the right-of-way process. Victoria....

Thank you Victoria. As part of this project the Department must consider and document environmental impacts as a result of the project. At this time I would like to ask Christine Perron to provide a summary of the environmental study completed for the project. Christine....

Thank you Christine.

The Department will study all of the issues that are raised and make recommendations on how they should be addressed. These recommendations will be presented to the hearing commission at a public meeting. The hearing commission will then make a decision on the necessity for the project. If there are no substantive issues raised tonight that will change the design, or that cannot be readily addressed, the finding of necessity for this project will held tonight immediately following this hearing. An alternative date of August 1,2012 has been scheduled for this meeting, if the commission cannot make their decision tonight. If there is a positive decision by the Commission the project will move to the final design phase and the right-of-way process will begin. Once all of the necessary approvals are done, permits and right-of-way procured, the project will advertise for construction, which we are anticipating for early 2014. This project will most likely take only I construction season to complete, ending in fall of 2014.

The project cost is estimated at roughly $\$ 600,000.100 \%$ of the cost of the project will be funded by Federal HSIP funds and State funds. As designed there are no Town funds anticipated for this project.

This concludes the Department's presentation. I'd like to thank all of you for your attentiveness and patience. I know we provided a lot of information fairly quickly. I would like to thank the Town staff
for their time and effort in assisting us in this project. At this time I would like to formally request Mr. Chairman that the Commission find occasion for the necessity for the layout of the project as presented this evening. Thank you for your consideration and attention.

Barrington 16178 Public Hearing

Existing Conditions

- plan orientation
- colors
- speed limits: 45 mph on US 202, 40 mph on NH 9
- describe existing intersection configuration
- traffic data: 2012 ADT: US 202/NH $9=7130$ vehicles

US $202=4190$ vehicles
NH $9=3180$ vehicles

- environmental constraints:
cemetery - historic
wetlands (prime)
- issues expressed at previous meetings
- confusion over who has the ROW
- poor sight distance

Proposed Layout

- Consolidate US 202 SB into a single leg
- Widen shoulder on US 202/NH 9 EB for bypass shoulder
- Tree clearing to improve sight distance to and from intersection
- Property impacts:
- $25^{\prime}+/$ strip acquisition from Parcel \#2 - multiple ownership
- Two small drainage easements from Parcel \#1
-

Utility impacts: relocate 2 to 4 poles

Other Alternatives

- Left Turn Lane
- significantly longer \& more expensive
- more property impacts
- proposed layout addresses the major safety concerns
- US 202 as Free Flow
- suggested at Feb. Public Info meeting
- curve needs to be flattened
- property impacts
- more expensive
- NH 9 WB coming down a steep grade to a STOP sign
- Operationally
- Good: US 202 SB free flow
- Bad: NH 9 WB heavy left turn must stop

COMMISSION HEARING SPEECH FOR VICTORIA

BARRINGTON 16178

JULY 18, 2012

THANK YOU, BILL, CHAIRMAN ADAMS, MEMBERS OF THE COMMISSION, LADIES AND GENTLEMEN. BEFORE I GO INTO THE RIGHT-OF-WAY PROCEDURES FOR THIS PROJECT, THERE ARE A COUPLE OF THINGS I'D LIKE TO MENTION. WE HAVE WITH US TONIGHT A MAP SHOWING THE PROJECT AND A HANDOUT ENTITLED "YOUR LAND AND NEW HAMPSHIRE HIGHWAYS" WHICH DESCRIBES THE RIGHT-OF-WAY ACQUISITION AND RELOCATION ASSISTANCE PROCEDURES THAT ARE UTILIZED BY THE STATE. THESE ITEMS ARE MOST USEFUL FOR THOSE PROPERTY OWNERS AFFECTED BY THIS PROPOSED PROJECT. THESE ARE AVAILABLE FROM THE DEPARTMENT'S STAFF.

IF AFTER REVIEWING THE INFORMATION RECEIVED AT THIS HEARING, CHAIRMAN ADAMS AND THE COMMISSION FIND NECESSITY FOR THIS LAYOUT, SEVERAL THINGS WILL HAPPEN. FIRST, WITH APPROVAL TO PROCEED WITH THE DESIGN OF THIS PROJECT, APPRAISALS WILL BE PREPARED FOR EACH OF THE PROPERTIES AFFECTED BY THE PROPOSED CONSTRUCTION YOU SEE ON THE PLANS. THE APPRAISALS WILL DETERMINE THE FAIR MARKET VALUE OF THE PROPERTY RIGHTS NEEDED FOR THE NEW CONSTRUCTION.

THESE APPRAISALS ARE REVIEWED SEPARATELY TO SEE THAT ALL ARE ACCURATE AND HAVE TAKEN INTO ACCOUNT ALL APPLICABLE APPROACHES TO

VALUE. ONCE THIS REVIEW IS COMPLETE, THE DEPARTMENTS' APPRAISALS ARE GIVEN TO THE COMMISSION TO BEGIN DISCUSSIONS WITH THE PROPERTY OWNERS REGARDING THE ACQUISITION. THE VALUE IN THIS APPRAISAL WILL BE THE OFFER OF COMPENSATION USED BY THE COMMISSION.

THE COMMISSION WILL CONTACT EACH PROPERTY OWNER AND DISCUSS EACH ACQUISITION SEPARATELY. WE URGE OWNERS AT THAT TIME TO ASK QUESTIONS AND BRING UP CONCERNS THAT THEY FEEL SHOULD BE CONSIDERED. IF THE PROPERTY OWNER IS SATISFIED WITH THE OFFER, DEEDS ARE PREPARED AND OWNERSHIP IS TRANSFERRED TO THE STATE. IF THE OWNER IS NOT HAPPY WITH THE FIGURES THE COMMISSION OFFERS, THEY CAN APPEAL TO THE NEW HAMPSHIRE BOARD OF TAX AND LAND APPEALS AND ARGUE FOR ADDITIONAL COMPENSATION THERE. IT IS IMPORTANT YOU UNDERSTAND THAT THIS CAN BE DONE WITH OR WITHOUT AN ATTORNEY. EITHER PARTY CAN APPEAL THE BOARD'S DECISION TO THE SUPERIOR COURT IF THEY ARE UNSATISFIED.

ANY TIME AFTER THIS HEARING OR BEFORE DESIGN APPROVAL, ALL INFORMATION IN SUPPORT OF THIS HEARING IS AVAILABLE AT THE DEPARTMENT'S HEADQUARTERS IN CONCORD FOR YOUR INSPECTION AND COPYING.

THAT'S ALL I HAVE BILL. THANK YOU.

BARRINGTON 16178 PUBLIC HEARING STATEMENT

Good evening, members of the commission, ladies and gentlemen.

Pursuant to the National Environmental Policy Act, the Department has evaluated alternatives to the proposed project and the potential impacts this project will have on the surrounding social, economic, and natural environments. Coordination was established and input received from Federal and State environmental agencies, including the US Army Corps of Engineers, NH Department of Environmental Services, the State Historic Preservation Office, and town and regional officials. After evaluation of the information gathered, an environmental document was prepared. The following is a brief summary of the information contained in that document.

1) The proposed project will require work within areas under the jurisdiction of the DES Wetlands Bureau and the US Army Corps of Engineers. The total wetland impact is expected to be approximately $2,000 \mathrm{sq}$. ft and is associated with roadside drainage. There will be no impacts to the Hale Pond Prime Wetland or the Prime Wetland Buffer, which is defined by DES as 100 feet from the edge of the prime wetland. Anticipated impacts do not meet the State's mitigation thresholds. The Department will continue to coordinate with the appropriate agencies to ensure that all wetland impacts are minimized and all permits are secured prior to construction.
2) State regulations prohibit the spread of invasive plants listed on the NH Prohibited Species List. The project area contains Japanese barberry, Oriental bittersweet, and multiflora rose, all of which are prohibited invasive plants. Appropriate best management practices will be implemented to prevent construction activities from spreading existing invasive plants and introducing new plants into the project area.
3) Stone walls are located throughout the project area and were assessed according to the State of New Hampshire Roadside Stone Wall Reconstruction Policy. Approximately 100 linear feet of stone wall will be impacted by the Proposed Action along the south side of 202 \& 9. Following coordination with the State Historic Preservation Office, it was agreed that this impacted stone wall would be reconstructed in-kind.
4) Pursuant to Section 106 of the National Historic Preservation Act, the NH Department of Transportation, in coordination with the Federal Highway Administration and State Historic Preservation Office, must take into account the impacts of the project on cultural resources. The project area has been evaluated and reviewed for historic properties and archeological sensitivity.

The land surrounding the intersection was part of the Thomas Wright Hale farm and house site from the early 1780 s to the early 1920 s. The house stood on the north side of the road just east of the intersection until it burned down in the early 1940s. The surviving house site is an un-filled cellar hole and foundation. There are stone walls throughout the property, and along the roads and property boundaries. Most interior walls are located on the land north and northeast of the house site where farm activity would have been concentrated. The Hale family cemetery is located west of the intersection on the north side of the road.

It was determined that the Proposed Action will not impact areas of the former Hale homestead that still retain a high potential for historic archaeological information. Therefore, the project-related impacts will have no effect on cultural resources under Section 106 of the National Historic Preservation Act.

A copy of the environmental document is available for anyone who wishes to review it after the hearing.
Barrington Finding of Necessity Meeting
July 18, 2012 Early Childhood Learning Center, Bar

Please PRINT Name	Address
Johtu Scicuman	Townt ADminisimion Barrivitan
Jutu suans	Resideut
stzue young	RESSIDCAT
Terri Frask	ReSiome
Marlone Allard	Residint
utagne uli	Peoveral
Desadry letegrin	Meiclintor
-ruait gouctieilo	Residium
Teffrey Lenyevin	R-ivdent
Joed shembume	Resident Alstorical Sociecty president
.	

WEEKDAY MORNING PEAK HOUR (7:00-8:00 AM)

$14 \longrightarrow$

WEEKDAY EVENING PEAK HOUR (4:00-5:00 PM)

(11:00 AM - 12:00 PM)

Table 1A
TRIP GENERATION
Gas Station/C-Store 1
Donut Shop 2
Less Trip Linking 3
Opening Year Generation

Trip Generation Summary - Horizon Year (2012)

AM Peak Hour

AM Peak Hour			PM Peak Hour		
Entering	Exiting	Total	Entering	Exiting	Total
100 veh	100 veh	200 trips	115 veh	115 veh	230 trips
138 veh	138 veh	276 trips	43 veh	43 veh	86 trips
-47 veh	-47 veh	-94 trips	-15 veh	-15 veh	-30 trips
191 veh	191 veh	382 trips	143 veh	143 veh	286 trips

TRIP COMPOSITION

| Primary Trips | 46 veh | 46 veh | 92 trips | 42 veh | 42 veh | 84 trips |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Pass-by Trips ${ }^{4}$ | $\underline{145} \underline{\text { veh }}$ | $\underline{145}$ veh | $\underline{290}$ trips | $\underline{101} \underline{\text { veh }}$ | $\underline{101} \underline{\text { veh }}$ | $\underline{202} \underline{t r i p s}$ |
| Total Trips | 191 veh | 191 veh | 382 trips | 143 veh | 143 veh | 286 trips |

Table 1B
Trip Generation Summary - Horizon Year (2022)

AM Peak Hour			PM Peak Hour		
Entering	Exiting	Total	Entering	Exiting	Total
100 veh	100 veh	200 trips	115 veh	115 veh	230 trips
152 veh	152 veh	304 trips	47 veh	47 veh	94 trips
-52 veh	-52 veh	-104 trips	-16 veh	-16 veh	-32 trips
200 veh	200 veh	400 trips	146 veh	146 veh	292 trips

TRIP COMPOSITION

Primary Trips	47 veh	47 veh	94 trips	42 veh	42 veh	84 trips	
Pass-by Trips ${ }^{4}$	$\underline{153}$ veh	$\underline{153}$ veh	$\underline{306}$	$\underline{\text { trips }}$	$\underline{104} \underline{\text { veh }}$	$\underline{104} \underline{\text { veh }}$	$\underline{208} \underline{t r i p s}$
Total Trips	200 veh	200 veh	400 trips	146 veh	146 veh	292 trips	

[^13]The primary trips or "new" trips to the area are expected to be distributed in the following manner:

To / From		Percentage
NH Route 125 - North		30%
NH Route 125 - South		25%
NH Route 9 - East		25%
NH Route 9 - West		$\underline{20 \%}$
		100%

These percentages are based on an analysis of several factors, including overall regional accessibility, population densities and local knowledge of the study area. The pass-by trips are expected to be distributed in proportion to the approach volumes observed at the $\mathrm{NH} 125 / \mathrm{NH} 9$ signalized intersection.

Appendix G contains diagrams that summarize the anticipated distribution of site traffic throughout the study area for the morning and evening analysis periods.

BUILD TRAFFIC VOLUMES

The Build traffic projections (with the proposed development) are summarized schematically on Figure 5 (2012) and Figure 6 (2022). These projections are based on the No-Build traffic volumes (Figure 3 and Figure 4), the trip generation estimates contained in Table 1B, and the anticipated trip distribution patterns described above. Since the difference between the trip generation estimates for 2012 and 2022 is not significant, the 2022 trip generation estimates were applied to both the opening year and horizon year cases.

1373A
NORTH

Institute of Transportation Engineers (ITE)

Trip Generation, 9 th Edition

Land Use Code (LUC) 853 - Convenience Market with Gasoline Pumps
Average Vehicle Trips Ends vs: Vehicle Fueling Positions
Independent Variable (X): 12

Average Weekday Daily
$\mathrm{T}=542.6^{*}(\mathrm{X})$
$\mathrm{T}=542.6^{*} \quad 12$
$\mathrm{T}=6511.20$
$T=6,512 \quad$ vehicle trips
with 50% ($3,256 \mathrm{vpd}$) entering and 50% ($3,256 \mathrm{vpd}$) exiting
Weekday Morning Peak Hour Of Adjacent Street Traffic
$\mathrm{T}=16.57^{*}(\mathrm{X})$
$\mathrm{T}=16.57^{*} \quad 12$
$\mathrm{T}=198.84$
T = 109200 vehicle trips 100 with 50% (100 vph) entering and $50 \% ~(98 \mathrm{vph})$ exiting

Weekday Evening Peak Hour Of Adjacent Street Traffic

$\mathrm{T}=19.07$ * (X)
$\mathrm{T}=19.07$ * $\quad 12$
$\mathrm{T}=228.84$

Saturday Daily

$\mathrm{T}=204.47^{*}$ (X)
$\mathrm{T}=204.47$ * 12
$\mathrm{T}=2453.64$
$\mathrm{T}=2,454 \quad$ vehicle trips
with 50% ($1,227 \mathrm{vph}$) entering and 50% ($1,227 \mathrm{vph}$) exiting

Saturday Midday Peak Hour

```
T = 10.00* (X)
T=10.00* 12
T=120.00
T=120 vehicle trips
    with 51% ( 61 vph) entering and 49% (
\[
59 \mathrm{vph}) \text { exiting. }
\]
```

 * Assume 60 Pass-by
 \(\begin{array}{llll} & \begin{array}{l}\text { ToTAL } \\ \text { TRiPS }\end{array} & \frac{\text { PASS-By }}{61} & \frac{\text { PrimARY }}{36} \\ \text { In }_{\text {IN }} & \frac{59}{\text { TOTAL }} & \frac{59}{120} & \frac{36}{72}\end{array}\)

WEEKDAY MORNING PEAK HOUR (7:00-8:00 AM)

WEEKDAY EVENING PEAK HOUR (4:00 - 5:00 PM)

Warehousing (150)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 29
Avg. 1000 Sq. Ft. GFA: 285
Directional Distribution: 50% entering, 50% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.74	$0.15-16.93$	1.55

Data Plot and Equation

Warehousing (150)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 34
Avg. 1000 Sq. Ft. GFA: 451
Directional Distribution: 77\% entering, 23\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.17	$0.02-1.93$	0.20

Data Plot and Equation

Warehousing

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday

Setting/Location: General Urban/Suburban

Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 226
Directional Distribution: 50\% entering, 50\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.15	$0.01-1.58$	0.53

Specialty Trade Contractor (180)

Vehlcle Trip Ends vs: 1000 Sq. Ft. GFA On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 19
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: 50% entering, 50% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
10.22	$3.00-43.33$	8.82

Data Plot and Equation

Trip Generation Manual, 10th Edition - Institute of Transportation Enginears

Specialty Trade Contractor (180)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of AdJacent Street Traffic, One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 19
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: 73% entering, 27% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.66	$0.12-9.17$	2.09

Data Plot and Equation

Specialty Trade Contractor (180)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 18
Avg. 1000 Sq. Ft. GFA: 6
Directional Distribution: 32\% entering, 68\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.97	$0.38-10.83$	2.07

Data Plot and Equation

Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 159
Avg. Num. of Dwelling Units: 264
Directional Distribution: 50\% entering, 50\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
9.44	$4.81-19.39$	2.10

Data Plot and Equation

Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 173
Avg. Num. of Dwelling Units: 219
Directional Distribution: 25% entering, 75% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.74	$0.33-2.27$	0.27

Data Plot and Equation

Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 190
Avg. Num. of Dwelling Units: 242
Directional Distribution: 63% entering, 37% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.99	$0.44-2.98$	0.31

Data Plot and Equation

Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units
On a: Saturday

Setting/Location: General Urban/Suburban
Number of Studies: 52
Avg. Num. of Dwelling Units: 207
Directional Distribution: 50% entering, 50% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
9.54	$5.32-15.25$	2.17

Data Plot and Equation

Single-Family Detached Housing
 (210)

Vehicle Trip Ends vs: Dwelling Units
On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 31
Avg. Num. of Dwelling Units: 188
Directional Distribution: 54\% entering, 46\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.93	$0.64-1.75$	0.26

Data Plot and Equation

General Office Building (710)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 66
Avg. 1000 Sq. Ft. GFA: 171
Directional Distribution: 50% entering, 50% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
9.74	$2.71-27.56$	5.15

Data Plot and Equation

General Office Building (710)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 35
Avg. 1000 Sq. Ft. GFA: 117
Directional Distribution: 86% entering, 14% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.16	$0.37-4.23$	0.47

Data Plot and Equation

Trip Generation Manual, 10th Edition - Institute of Transportation Engineers

* use rate (set weekday pm peak-hour trip calculations)

General Office Building (710)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 32
Avg. 1000 Sq. Ft. GFA: 114
Directional Distribution: 16\% entering, 84% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.15	$0.47-3.23$	0.42

Data Plot and Equation

General Office Building (710)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday

Setting/Location: General Urban/Suburban
Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 94
Directional Distribution: 50% entering, 50% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
2.21	$1.24-7.46$	1.70

General Office Building (710)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban
Number of Studies: 3
Avg. 1000 Sq. Ft. GFA: 82
Directional Distribution: 54\% entering, 46\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.53	$0.30-1.57$	0.52

Data Plot and Equation

Trip Generation Manual, 10th Edition • Institute of Transportation Engineers

Government Office Building (730)

Data Plot and Equation

Government Office Building
 (730)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 7
Avg. 1000 Sq. Ft. GFA: 11
Directional Distribution: 75\% entering, 25\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
3.34	$0.45-7.38$	2.18

Data Plot and Equation

Government Office Building
 (730)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Weokday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 8
Avg. 1000 Sq. Ft. GFA: 22
Directional Distribution: 25\% entering, 75\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
1.71	$1.09-6.19$	1.24

Data Plot and Equation

Shopping Center (820)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 147
Avg. 1000 Sq. Ft. GLA: 453
Directional Distribution: 50\% entering, 50\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
37.75	$7.42-207.98$	16.41

Data Plot and Equation

Shopping Center (820)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA
On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 84
Avg. 1000 Sq. Ft. GLA: 351
Directional Distribution: 62% entering, 38% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
0.94	$0.18-23.74$	0.87

Data Plot and Equation

Trip Generation Manual, 10th Edition - Institute of Transportatlon Engineers

Shopping Center (820)

	Vehicle Trip Ends vs: On a: Setting/Location: Number of Studies: Avg. 1000 Sq. Ft. GLA: Directional Distribution:	1000 Sq. Ft. GLA Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. General Urban/Suburban 261 327 48% entering, 52% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GLA		
Average Rate	Range o	f Rates Standard Deviation
3.81	0.74-1	8.69 2.04

Data Plot and Equation

Shopping Center (820)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA
On a: Saturday

Setting/Location: General Urban/Suburban

Number of Studies: 58
Avg. 1000 Sq. Ft. GLA: 602
Directional Distribution: 50\% entering, 50% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
46.12	$13.01-167.89$	17.91

Data Plot and Equation

Shopping Center (820)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA

On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 119
Avg. 1000 Sq. Ft. GLA: 416
Directional Distribution: 52% entering, 48% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
4.50	$1.42-15.10$	1.88

Data Plot and Equation

Drive-in Bank

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 21
Avg. 1000 Sq. Ft. GFA: 7
Directional Distribution: 50\% entering, 50% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
100.03	$32.67-408.42$	61.61

Data Plot and Equation

Drive-in Bank

(912)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
 On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 46
Avg. 1000 Sq. Ft. GFA: 5
Directional Distribution: 58\% entering, 42\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
9.50	$0.89-29.47$	5.85

Data Plot and Equation

Drive-in Bank
 (912)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
 On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
 Setting/Location: General Urban/Suburban
 Number of Studies: 115
 Avg. 1000 Sq. Ft. GFA: 4
 Directional Distribution: 50\% entering, 50\% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
20.45	$3.04-109.91$	15.01

Data Plot and Equation

Drive-in Bank
 (912)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday

Setting/Location: General Urban/Suburban

Number of Studies: 5
Avg. 1000 Sq. Ft. GFA: 3
Directional Distribution: 50\% entering, 50\% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
86.48	$42.46-171.78$	38.92

Drive-in Bank

(912)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA
On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 41
Avg. 1000 Sq. Ft. GFA: 4
Directional Distribution: 51% entering, 49% exiting
Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
26.35	$7.18-107.00$	15.32

Data Plot and Equation

WEEKDAY MORNING PEAK HOUR (7:00-8:00 AM)

SATURDAY MIDDAY PEAK HOUR (11:00-12:00 PM)

Town of Barrington, New Hampshire
2010 U.S. Census Journey-to-Work Data

NH Route 125 at Greenhill Road and Tolend Road
NH Route 125 at Scruton Pond Road
NH Route 125 at NH Route 9
NH Route 125 at the North Project Site Roadway
NH Route 125 at the South Project Site Roadway

NH Route 125 at Greenhill Road and Tolend Road

	4	\rightarrow	\dagger	\checkmark	\pm	4	4	9	\%	t	\downarrow	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$		7	+	「	${ }^{7}$	+	「
Traffic Volume (vph)	19	43	129	25	8	15	20	564	28	17	971	5
Future Volume (vph)	19	43	129	25	8	15	20	564	28	17	971	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	14	14	14	14	14	14	12	12	12	12	12	12
Storage Length (ft)	0		0	0		0	100		100	60		60
Storage Lanes	0		0	0		0	1		1	1		1
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		579			696			2249			626	
Travel Time (s)		13.2			15.8			51.1			14.2	
Peak Hour Factor	0.87	0.87	0.87	0.82	0.82	0.82	0.93	0.93	0.93	0.94	0.94	0.94
Heavy Vehicles (\%)	0\%	0\%	2\%	0\%	0\%	9\%	7\%	5\%	24\%	0\%	6\%	0\%
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	219	0	0	58	0	22	606	30	18	1033	5
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	11.0		11.0	11.0		11.0	16.0	16.0	11.0	16.0	16.0
Total Split (s)	16.0	16.0		16.0	16.0		14.0	50.0	50.0	14.0	50.0	50.0
Total Split (\%)	20.0\%	20.0\%		20.0\%	20.0\%		17.5\%	62.5\%	62.5\%	17.5\%	62.5\%	62.5\%
Maximum Green (s)	10.0	10.0		10.0	10.0		8.0	44.0	44.0	8.0	44.0	44.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		-2.0			-2.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	Min	Min	None	Min	Min
v/c Ratio		0.62			0.40		0.07	0.47	0.03	0.03	0.85	0.00
Control Delay		23.5			30.6		3.2	7.2	0.1	2.9	21.3	0.0
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		23.5			30.6		3.2	7.2	0.1	2.9	21.3	0.0
Queue Length 50th (ft)		39			14		2	86	0	2	231	0
Queue Length 95th (ft)		111			47		7	256	0	6	\#751	0
Internal Link Dist (ft)		499			616			2169			546	
Turn Bay Length (ft)							100		100	60		60
Base Capacity (vph)		387			162		341	1281	957	662	1209	1130
Starvation Cap Reductn		0			0		0	0	0	0	0	0
Spillback Cap Reductn		0			0		0	0	0	0	0	0
Storage Cap Reductn		0			0		0	0	0	0	0	0
Reduced v/c Ratio		0.57			0.36		0.06	0.47	0.03	0.03	0.85	0.00
Intersection Summary												

2019 Existing Weekday Morning Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road
Area Type: Other

Cycle Length: 80
Actuated Cycle Length: 71.3
Natural Cycle: 75
Control Type: Actuated-Uncoordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4		\geqslant	7	-		4	\dagger	\%		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$		\%	\uparrow	「	\%	4	\%
Traffic Volume (voh)	19	43	129	25	8	15	20	564	28	17	971	5
Future Volume (vph)	19	43	129	25	8	15	20	564	28	17	971	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	14	14	14	14	14	14	12	12	12	12	12	12
Total Lost time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.91			0.96		1.00	1.00	0.85	1.00	1.00	0.85
FIt Protected		1.00			0.97		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1808			1841		1687	1810	1302	1805	1792	1615
Flt Permitted		0.96			0.46		0.10	1.00	1.00	0.37	1.00	1.00
Satd. Flow (perm)		1744			871		174	1810	1302	698	1792	1615
Peak-hour factor, PHF	0.87	0.87	0.87	0.82	0.82	0.82	0.93	0.93	0.93	0.94	0.94	0.94
Adj. Flow (vph)	22	49	148	30	10	18	22	606	30	18	1033	5
RTOR Reduction (vph)	0	95	0	0	16	0	0	0	10	0	0	2
Lane Group Flow (vph)	0	124	0	0	42	0	22	606	20	18	1033	3
Heavy Vehicles (\%)	0\%	0\%	2\%	0\%	0\%	9\%	7\%	5\%	24\%	0\%	6\%	0\%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Actuated Green, G (s)		8.5			8.5		50.9	48.5	48.5	48.3	47.2	47.2
Effective Green, g (s)		10.5			10.5		54.9	50.5	50.5	52.3	49.2	49.2
Actuated g/C Ratio		0.14			0.14		0.72	0.66	0.66	0.69	0.65	0.65
Clearance Time (s)		6.0			6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)		3.0			3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		240			120		213	1201	864	524	1158	1044
v/s Ratio Prot							c0.01	0.33		0.00	c0.58	
v/s Ratio Perm		c0.07			0.05		0.07		0.02	0.02		0.00
v/c Ratio		0.52			0.35		0.10	0.50	0.02	0.03	0.89	0.00
Uniform Delay, d1		30.4			29.7		10.7	6.5	4.4	4.2	11.2	4.8
Progression Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		1.9			1.8		0.2	0.3	0.0	0.0	8.9	0.0
Delay (s)		32.3			31.5		10.9	6.8	4.4	4.2	20.2	4.8
Level of Service		C			C		B	A	A	A	C	A
Approach Delay (s)		32.3			31.5			6.8			19.8	
Approach LOS		C			C			A			B	
Intersection Summary												
HCM 2000 Control Delay			17.2		HCM 2000	evel of	Service		B			
HCM 2000 Volume to Capacity ratio			0.78									
Actuated Cycle Length (s)			76.1		Sum of lost	time (s)			12.0			
Intersection Capacity Utilization			69.1\%		CU Level	Service			C			
Analysis Period (min)			15									

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis
AJA

| | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	86	0	0	154	0	131	1033	31	27	727	32
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		5	2	2	1	6	6

Switch Phase

Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	11.0	11.0	11.0	11.0	16.0	16.0	11.0	16.0	16.0
Total Split (s)	16.0	16.0	16.0	16.0	14.0	50.0	50.0	14.0	50.0	50.0
Total Split (\%)	20.0\%	20.0\%	20.0\%	20.0\%	17.5\%	62.5\%	62.5\%	17.5\%	62.5\%	62.5\%
Maximum Green (s)	10.0	10.0	10.0	10.0	8.0	44.0	44.0	8.0	44.0	44.0
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		-2.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)		4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag					Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	Min	Min	None	Min	Min
v/c Ratio		0.28		0.56	0.27	0.83	0.03	0.09	0.67	0.03
Control Delay		17.9		33.1	4.4	19.2	0.0	3.6	15.3	0.1
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		17.9		33.1	4.4	19.2	0.0	3.6	15.3	0.1
Queue Length 50th (t)		13		48	14	226	0	3	224	0
Queue Length 95th (ft)		50		95	26	\#733	0	8	340	0
Internal Link Dist (ft)		499		616		2169			546	
Turn Bay Length (t)					100		100	60		60
Base Capacity (vph)		327		297	499	1243	1118	358	1232	1110
Starvation Cap Reductn		0		0	,	0	0	0	0	0
Spillback Cap Reductn		0		0	0	0	0	0	0	0
Storage Cap Reductn		0		0	0	0	0	0	0	0
Reduced v/c Ratio		0.26		0.52	0.26	0.83	0.03	0.08	0.59	0.03

Intersection Summary

2019 Existing Weekday Evening Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road
Area Type:
Other

Cycle Length: 80
Actuated Cycle Length: 70.6
Natural Cycle: 70
Control Type: Actuated-Uncoordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4	\rightarrow		7	\square	4	4	4	1	*	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\uparrow		\%	\uparrow	F	${ }_{1}$	\uparrow	F
Traffic Volume (vph)	16	15	41	49	31	36	118	930	28	24	640	28
Future Volume (vph)	16	15	41	49	31	36	118	930	28	24	640	28
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	14	14	14	14	14	14	12	12	12	12	12	12
Total Lost time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.92			0.96		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99			0.98		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1850			1878		1805	1863	1615	1805	1863	1615
Flt Permitted		0.89			0.85		0.22	1.00	1.00	0.10	1.00	1.00
Satd. Flow (perm)		1673			1622		419	1863	1615	182	1863	1615
Peak-hour factor, PHF	0.84	0.84	0.84	0.75	0.75	0.75	0.90	0.90	0.90	0.88	0.88	0.88
Adj. Flow (vph)	19	18	49	65	41	48	131	1033	31	27	727	32
RTOR Reduction (vph)	0	42	0	0	20	0	0	0	11	0	0	13
Lane Group Flow (vph)	0	44	0	0	134	0	131	1033	20	27	727	19
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	0\%	4\%	0\%	2\%	0\%	0\%	2\%	0\%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2			6
Actuated Green, G (s)		9.1			9.1		50.8	45.1	45.1	43.8	41.6	41.6
Effective Green, g (s)		11.1			11.1		54.8	47.1	47.1	47.8	43.6	43.6
Actuated g/C Ratio		0.15			0.15		0.74	0.63	0.63	0.64	0.59	0.59
Clearance Time (s)		6.0			6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)		3.0			3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		249			241		452	1179	1022	208	1091	946
v / s Ratio Prot							c0.03	c0.55		0.01	0.39	
v/s Ratio Perm		0.03			c0.08		0.18		0.01	0.08		0.01
v / c Ratio		0.18			0.55		0.29	0.88	0.02	0.13	0.67	0.02
Uniform Delay, d1		27.7			29.4		6.2	11.2	5.1	10.9	10.5	6.5
Progression Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		0.3			2.7		0.4	7.5	0.0	0.3	1.6	0.0
Delay (s)		28.0			32.1		6.5	18.8	5.1	11.2	12.0	6.5
Level of Service		C			C		A	B	A	B	B	A
Approach Delay (s)		28.0			32.1			17.1			11.8	
Approach LOS		C			C			B			B	
Intersection Summary												
HCM 2000 Control Delay			16.7		CM 2000	evel of S	ervice		B			
HCM 2000 Volume to Capacity ratio			0.79									
Actuated Cycle Length (s)			74.4		Sum of lost	ime (s)			12.0			
Intersection Capacity Utilization			74.9\%		CU Level of	Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

2019 Existing Saturday Midday Peak Hour
1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4	\rightarrow		7	\square	4	4	4	7	V	\dagger	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\dagger		7	\uparrow	「	K	\uparrow	F
Traffic Volume (vph)	12	13	77	33	11	35	68	602	25	20	662	17
Future Volume (vph)	12	13	77	33	11	35	68	602	25	20	662	17
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (t)	14	14	14	14	14	14	12	12	12	12	12	12
Storage Length (ft)	0		0	0		0	100		100	60		60
Storage Lanes	0		0	0		0	1		1	1		1
Taper Length (t)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (t)		579			696			2249			626	
Travel Time (s)		13.2			15.8			51.1			14.2	
Peak Hour Factor	0.88	0.88	0.88	0.87	0.87	0.87	0.89	0.89	0.89	0.80	0.80	0.80
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	1\%	0\%
Shared Lane Trafic (\%)												
Lane Group Flow (vph)	0	117	0	0	91	0	76	676	28	25	828	21
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			12			12	
Link Offsel(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	0.92	0.92	0.92	0.92	0.92	0.92	1.00	1.00	1.00	1.00	1.00	1.00
Tuming Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		5	2	2	1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	11.0		11.0	11.0		11.0	16.0	16.0	11.0	16.0	16.0
Total Split (s)	16.0	16.0		16.0	16.0		14.0	50.0	50.0	14.0	50.0	50.0
Total Split (\%)	20.0\%	20.0\%		20.0\%	20.0\%		17.5\%	62.5\%	62.5\%	17.5\%	62.5\%	62.5\%
Maximum Green (s)	10.0	10.0		10.0	10.0		8.0	44.0	44.0	8.0	44.0	44.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		-2.0			-2.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	Min	Min	None	Min	Min
vic Ratio		0.33			0.33		0.16	0.49	0.02	0.04	0.68	0.02
Control Delay		14.2			22.3		3.4	8.4	0.0	2.9	15.3	0.1
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		14.2			22.3		3.4	8.4	0.0	2.9	15.3	0.1
Queue Length 50th (ft)		11			20		7	86	0	2	261	0
Queue Length 95th (ti)		56			61		16	285	0	6	343	0
Internal Link Dist (ft)		499			616			2169			546	

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4	\rightarrow	7	1	\longleftarrow	4	4	\uparrow	p	b	\dagger	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Bay Length (t)							100		100	60		60
Base Capacity (vph)		436			342		513	1413	1233	675	1356	1199
Starvation Cap Reductn		0			0		0	0	0	0	0	0
Spillback Cap Reductn		0			0		0	0	0	0	0	0
Storage Cap Reductn		0			0		0	0	0	0	0	0
Reduced v/c Ratio		0.27			0.27		0.15	0.48	0.02	0.04	0.61	0.02
Intersection Summary												
Area Type: Other												
Cycle Length: 80												
Actuated Cycle Length: 63.7												
Natural Cycle: 60												
Control Type: Actuated-Uncoordinated												

Splits and Phases: 1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	$\stackrel{ }{*}$	\rightarrow	\geqslant	6	4	4	\cdots	\uparrow	1	-	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\uparrow		7	\uparrow	F	${ }^{7}$	\uparrow	F
Traffic Volume (vph)	12	13	77	33	11	35	68	602	25	20	662	17
Future Volume (vph)	12	13	77	33	11	35	68	602	25	20	662	17
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	14	14	14	14	14	14	12	12	12	12	12	12
Total Lost time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.90			0.94		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99			0.98		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1810			1867		1805	1900	1615	1805	1881	1615
FIt Permitted		0.95			0.77		0.18	1.00	1.00	0.34	1.00	1.00
Satd. Flow (perm)		1737			1470		337	1900	1615	644	1881	1615
Peak-hour factor, PHF	0.88	0.88	0.88	0.87	0.87	0.87	0.89	0.89	0.89	0.80	0.80	0.80
Adj. Flow (vph)	14	15	88	38	13	40	76	676	28	25	828	21
RTOR Reduction (vph)	0	78	0	0	35	0	0	0	10	0	0	8
Lane Group Flow (vph)	0	39	0	0	56	0	76	676	18	25	828	13
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	1\%	0\%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	-	
Permitted Phases	4			8			2		2	6		6
Actuated Green, G (s)		5.9			5.9		48.0	42.8	42.8	41.4	39.5	39.5
Effective Green, $\mathrm{g}(\mathrm{s})$		7.9			7.9		52.0	44.8	44.8	45.4	41.5	41.5
Actuated g/C Ratio		0.12			0.12		0.76	0.65	0.65	0.66	0.60	0.60
Clearance Time (s)		6.0			6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)		3.0			3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		200			169		409	1240	1054	492	1137	977
v/s Ratio Prot							c0.02	c0.36		0.00	c0.44	
v/s Ratio Perm		0.02			c0.04		0.12		0.01	0.03		0.01
v/c Ratio		0.20			0.33		0.19	0.55	0.02	0.05	0.73	0.01
Uniform Delay, d1		27.5			27.9		6.2	6.4	4.2	4.3	9.6	5.4
Progression Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		0.5			1.1		0.2	0.5	0.0	0.0	2.4	0.0
Delay (s)		28.0			29.1		6.4	6.9	4.2	4.4	11.9	5.4
Level of Service		C			c		A	A	A	A	B	A
Approach Delay (s)		28.0			29.1			6.8			11.6	
Approach LOS		C			c			A			B	
Intersection Summary												
HCM 2000 Control Delay			11.4		CM 2000	evel of S	Service		B			
HCM 2000 Volume to Capacity ratio			0.60									
Actuated Cycle Length (s)			68.6		Sum of lost	lime (s)			12.0			
Intersection Capacity Utilization			60.2\%		CU Level of	Service			B			
Analysis Period (min)			15									

	4	\rightarrow	7	t		4	4	\dagger	+		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\uparrow		${ }^{1}$	\uparrow	「	\%	\uparrow	「
Traffic Volume (vph)	19	43	132	25	8	15	20	556	28	17	993	5
Future Volume (vph)	19	43	132	25	8	15	20	556	28	17	993	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	14	14	14	14	14	14	12	12	12	12	12	12
Storage Length (ft)	0		0	0		0	100		100	60		60
Storage Lanes			0	0		0	1		1	1		1
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		579			696			2249			626	
Travel Time (s)		13.2			15.8			51.1			14.2	
Peak Hour Factor	0.87	0.87	0.87	0.82	0.82	0.82	0.93	0.93	0.93	0.94	0.94	0.94
Heavy Vehicles (\%)	0\%	0\%	2\%	0\%	0\%	9\%	7\%	5\%	24\%	0\%	6\%	0\%

Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	223	0	0	58	0	22	598	30	18	1056	5
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		5	2	2	1	6	6

Switch Phase										
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	11.0	11.0	11.0	11.0	16.0	16.0	11.0	16.0	16.0
Total Split (s)	16.0	16.0	16.0	16.0	14.0	50.0	50.0	14.0	50.0	50.0
Total Split (\%)	20.0\%	20.0\%	20.0\%	20.0\%	17.5\%	62.5\%	62.5\%	17.5\%	62.5\%	62.5\%
Maximum Green (s)	10.0	10.0	10.0	10.0	8.0	44.0	44.0	8.0	44.0	44.0
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		-2.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)		4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag					Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	Min	Min	None	Min	Min
v/c Ratio		0.63		0.40	0.08	0.47	0.03	0.03	0.87	0.00
Control Delay		23.5		30.7	3.3	7.1	0.1	2.8	22.9	0.0
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		23.5		30.7	3.3	7.1	0.1	2.8	22.9	0.0
Queue Length 50th (t)		39		14		85	0	2	245	0
Queue Length 95th (f)		111		47	7	251	0	6	\#776	0
Internal Link Dist (ft)		499		616		2169			546	
Turn Bay Length (tt)					100		100	60		60
Base Capacity (vph)		390		162	325	1280	956	668	1208	1129
Starvation Cap Reductn		0		0	0	0	0	0	0	0
Spillback Cap Reductn		0		0	0	0	0	0	0	0
Storage Cap Reductn		0		0	0	,	0	0	0	0
Reduced v/c Ratio		0.57		0.36	0.07	0.47	0.03	0.03	0.87	0.00

Intersection Summary

2020 No Build Weekday Morning Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road
Area Type:
Other

Cycle Length: 80
Actuated Cycle Length: 71.1

Natural Cycle: 75

Control Type: Actuated-Uncoordinated
\# 95th percentile volume exceeds capacity, queue may be fonger.
Queue shown is maximum after two cycles.
Splits and Phases: 1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

2020 No Build Weekday Morning Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4	\rightarrow	\%	7	-		4	\dagger	7	*	\downarrow	\pm
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\ddagger		\%	\uparrow	「	\%	\uparrow	「
Trafic Volume (vph)	19	43	132	25	8	15	20	556	28	17	993	5
Future Volume (vph)	19	43	132	25	8	15	20	556	28	17	993	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	14	14	14	14	14	14	12	12	12	12	12	12
Total Lost time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Utill Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.91			0.96		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		1.00			0.97		0.95	1.00	1.00	0.95	1.00	1.00
Sald. Flow (prot)		1807			1841		1687	1810	1302	1805	1792	1615
Flt Permitted		0.96			0.46		0.08	1.00	1.00	0.37	1.00	1.00
Satd. Flow (perm)		1744			867		148	1810	1302	706	1792	1615
Peak-hour factor, PHF	0.87	0.87	0.87	0.82	0.82	0.82	0.93	0.93	0.93	0.94	0.94	0.94
Adj. Flow (vph)	22	49	152	30	10	18	22	598	30	18	1056	5
RTOR Reduction (vph)	0	97	0	0	15	0	0	0	10	0	0	2
Lane Group Flow (vph)	0	126	0	0	43	0	22	598	20	18	1056	3
Heavy Vehicles (\%)	0\%	0\%	2\%	0\%	0\%	9\%	7\%	5\%	24\%	0\%	6\%	0\%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Actuated Green, G (s)		8.6			8.6		50.7	48.3	48.3	48.1	47.0	47.0
Effective Green, g (s)		10.6			10.6		54.7	50.3	50.3	52.1	49.0	49.0
Actuated g/C Ratio		0.14			0.14		0.72	0.66	0.66	0.69	0.64	0.64
Clearance Time (s)		6.0			6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)		3.0			3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Gpp Cap (vph)		243			120		195	1197	861	528	1155	1041
v/s Ratio Prot							c0.01	0.33		0.00	c0.59	
v/s Ratio Perm		c0.07			0.05		0.07		0.02	0.02		0.00
v/c Ratio		0.52			0.35		0.11	0.50	0.02	0.03	0.91	0.00
Uniform Delay, d1		30.3			29.6		11.8	6.5	4.4	4.2	11.7	4.8
Progression Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		1.9			1.8		0.3	0.3	0.0	0.0	11.1	0.0
Delay (s)		32.2			31.4		12.0	6.8	4.4	4.2	22.7	4.8
Level of Service		C			C		B	A	A	A	C	A
Approach Delay (s)		32.2			31.4			6.9			22.3	
Approach LOS		C			C			A			C	
Intersection Summary												
HCM 2000 Control Delay			18.7		HCM 2000	evel of S	Service		B			
HCM 2000 Volume to Capacity ratio			0.79									
Actuated Cycle Length (s)			76.0		um of lost	ime (s)			12.0			
Intersection Capacity Utilization			70.4\%		CU Level of	Service			C			
			15									
Analysis Period (min) c Critical Lane Group												

2020 No Build Weekday Evening Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4	\rightarrow				4	4	\dagger	P	v	\downarrow	\pm
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\$		\%	\uparrow	「	4	4	「
Traffic Volume (vph)	16	15	42	50	31	36	121	950	28	24	657	28
Future Volume (vph)	16	15	42	50	31	36	121	950	28	24	657	28
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (f)	14	14	14	14	14	14	12	12	12	12	12	12
Storage Length (t)	0		0	0		0	100		100	60		60
Storage Lanes	0		0	0		0	1		1	1		1
Taper Length (t)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		579			696			2249			626	
Travel Time (s)		13.2			15.8			51.1			14.2	
Peak Hour Factor	0.84	0.84	0.84	0.75	0.75	0.75	0.90	0.90	0.90	0.88	0.88	0.88
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	0\%	4\%	0\%	2\%	0\%	0\%	2\%	0\%
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	87	0	0	156	0	134	1056	31	27	747	32
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		0			0			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	0.92	0.92	0.92	0.92	0.92	0.92	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	,	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	11.0		11.0	11.0		11.0	16.0	16.0	11.0	16.0	16.0
Total Split (s)	16.0	16.0		16.0	16.0		14.0	50.0	50.0	14.0	50.0	50.0
Total Split (\%)	20.0\%	20.0\%		20.0\%	20.0\%		17.5\%	62.5\%	62.5\%	17.5\%	62.5\%	62.5\%
Maximum Green (s)	10.0	10.0		10.0	10.0		8.0	44.0	44.0	8.0	44.0	44.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		-2.0			-2.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	Min	Min	None	Min	Min
v/c Ratio		0.29			0.58		0.29	0.84	0.03	0.09	0.68	0.03
Control Delay		17.9			34.5		4.4	19.9	0.0	3.6	15.5	0.1
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		17.9			34.5		4.4	19.9	0.0	3.6	15.5	0.1
Queue Length 50th (ft)		13			51		14	238	0	3	236	0
Queue Length 95th (t)		51			97		27	\#759	0	8	356	0
Internal Link Dist (t)		499			616			2169			546	

Lanes, Volumes, Timings
AJA

	4	\rightarrow	\geqslant	7	4	4	4	\dagger	7	\checkmark	\dagger	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Bay Length (ti)							100		100	60		60
Base Capacity (vph)		319			287		488	1254	1127	343	1231	1109
Starvation Cap Reductn		0			0		0	0	0	0	0	0
Spillback Cap Reductn		0			0		0	0	0	0	0	0
Storage Cap Reductn		0			0		0	0	0	0	0	0
Reduced v/c Ratio		0.27			0.54		0.27	0.84	0.03	0.08	0.61	0.03
Intersection Summary												
Area Type: Other												
Cycle Length: 80												
Actuated Cycle Length: 72.5												
Natural Cycle: 75												
Control Type: Actuated-Uncoordinated												
\# 95th percentile volume exceeds capacity, queue may be longer.												

Splits and Phases: 1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

2020 No Build Weekday Evening Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4	\rightarrow	\%	7	4	4	4	4	/	(\pm	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\ddagger		7	4	${ }^{7}$	\%	4	T
Traffic Volume (vph)	12	13	79	33	11	35	70	615	25	20	677	17
Future Volume (vph)	12	13	79	33	11	35	70	615	25	20	677	17
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	14	14	14	14	14	14	12	12	12	12	12	12
Storage Length (ft)	0		0	0		0	100		100	60		60
Storage Lanes	0		0	0		0	1		1	1		1
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		579			696			2249			626	
Travel Time (s)		13.2			15.8			51.1			14.2	
Peak Hour Factor	0.88	0.88	0.88	0.87	0.87	0.87	0.89	0.89	0.89	0.80	0.80	0.80
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	1\%	0\%
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	119	0	0	91	0	79	691	28	25	846	21
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	11.0		11.0	11.0		11.0	16.0	16.0	11.0	16.0	16.0
Total Split (s)	16.0	16.0		16.0	16.0		14.0	50.0	50.0	14.0	50.0	50.0
Total Split (\%)	20.0\%	20.0\%		20.0\%	20.0\%		17.5\%	62.5\%	62.5\%	17.5\%	62.5\%	62.5\%
Maximum Green (s)	10.0	10.0		10.0	10.0		8.0	44.0	44.0	8.0	44.0	44.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		-2.0			-2.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	Min	Min	None	Min	Min
v/c Ratio		0.33			0.34		0.17	0.49	0.02	0.04	0.70	0.02
Contol Delay		14.2			22.6		3.4	8.5	0.0	2.9	15.7	0.1
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		14.2			22.6		3.4	8.5	0.0	2.9	15.7	0.1
Queue Length 50th (ft)		11			20		7	90	0	2	275	0
Queue Length 95th (ft)		56			62		17	295	0	6	355	0
Internal Link Dist (ft)		499			616			2169			546	
Turn Bay Length (t)							100		100	60		60
Base Capacity (vph)		434			334		501	1409	1229	663	1344	1189
Starvation Cap Reductn		0			0		0	0	0	0	0	0
Spillback Cap Reductn		0			0		0	0	0	0	0	0
Storage Cap Reductn		0			0		0	0	0	0	0	0
Reduced v/c Ratio		0.27			0.27		0.16	0.49	0.02	0.04	0.63	0.02
Intersection Summary												

2020 No Build Saturday Midday Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road
Area Type: Other
Cycle Length: 80
Actuated Cycle Length: 64.4
Naturel Cycle: 60
Control Type: Actuated-Uncoordinated
Splits and Phases: 1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

2020 No Build Saturday Midday Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4	\rightarrow	7	7	\leftarrow		4	\dagger	1	*	\dagger	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			¢		\%	\uparrow	F	\%	\uparrow	F
Traffic Volume (vph)	12	13	79	33	11	35	70	615	25	20	677	17
Future Volume (vph)	12	13	79	33	11	35	70	615	25	20	677	17
Ideal Flow (Vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	14	14	14	14	14	14	12	12	12	12	12	12
Total Lost time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.90			0.94		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99			0.98		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1809			1867		1805	1900	1615	1805	1881	1615
Flt Permitted		0.95			0.76		0.17	1.00	1.00	0.33	1.00	1.00
Satd. Flow (perm)		1738			1450		319	1900	1615	625	1881	1615
Peak-hour factor, PHF	0.88	0.88	0.88	0.87	0.87	0.87	0.89	0.89	0.89	0.80	0.80	0.80
Adj. Flow (vph)	14	15	90	38	13	40	79	691	28	25	846	21
RTOR Reduction (vph)	0	80	0	0	35	0	0	0	10	0	0	8
Lane Group Flow (voh)	0	39	0	0	56	0	79	691	18	25	846	13
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	1\%	0\%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Actuated Green, G (s)		6.0			6.0		48.7	43.4	43.4	42.1	40.1	40.1
Effective Green, $g(s)$		8.0			8.0		52.7	45.4	45.4	46.1	42.1	42.1
Actuated g/C Ratio		0.12			0.12		0.76	0.65	0.65	0.66	0.61	0.61
Clearance Time (s)		6.0			6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)		3.0			3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		200			167		398	1242	1056	483	1141	979
v / s Ratio Prot							c0.02	c0.36		0.00	c0.45	
V/s Ratio Perm		0.02			c0.04		0.13		0.01	0.03		0.01
v/c Ratio		0.20			0.33		0.20	0.56	0.02	0.05	0.74	0.01
Uniform Delay, d1		27.8			28.2		6.6	6.5	4.2	4.4	9.8	5.4
Progression Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		0.5			1.2		0.2	0.5	0.0	0.0	2.6	0.0
Delay (s)		28.3			29.4		6.9	7.1	4.2	4.4	12.4	5.4
Level of Service		C			C		A	A	A	A	B	A
Approach Delay (s)		28.3			29.4			6.9			12.0	
Approach LOS		C			C			A			B	
Intersection Summary												
HCM 2000 Control Delay			11.7		HCM 2000	evel of S	Service		B			
HCM 2000 Volume to Capacity ratio			0.62									
Actuated Cycle Length (s)			69.4		Sum of lost	time (s)			12.0			
Intersection Capacity Utilization			61.0\%		ICU Level of	Service			B			
Analysis Period (min)			15									

c Critical Lane Group

2030 Build Weekday Morning Peak Hour

1：NH Route 125 （Calef Highway）\＆Greenhill Road／Tolend Road

	4	\rightarrow	\bigcirc	\downarrow	4	4	4	\dagger	\％	（	\dagger	$+$
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\＄		7	中	「	7	中	F
Traffic Volume（vph）	19	43	139	29	8	15	22	577	34	17	1043	5
Future Volume（vph）	19	43	139	29	8	15	22	577	34	17	1043	5
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width（ft）	14	14	14	14	14	14	12	12	12	12	12	12
Storage Length（ ft ）	0		0	0		0	100		100	60		60
Storage Lanes	0		0	0		0	1		1	1		1
Taper Length（ ft ）	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed（mph）		30			30			30			30	
Link Distance（ ft ）		579			696			2249			626	
Travel Time（s）		13.2			15.8			51.1			14.2	
Peak Hour Factor	0.87	0.87	0.87	0.82	0.82	0.82	0.93	0.93	0.93	0.94	0.94	0.94
Heavy Vehicles（\％）	0\％	0\％	2\％	0\％	0\％	9\％	7\％	5\％	24\％	0\％	6\％	0\％
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	0	231	0	0	63	0	24	620	37	18	1110	5
Turn Type	Perm	NA		Perm	NA		pm＋pt	NA	Perm	pm＋pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial（s）	5.0	5.0		5.0	5.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split（s）	11.0	11.0		11.0	11.0		11.0	16.0	16.0	11.0	16.0	16.0
Total Split（s）	16.0	16.0		16.0	16.0		14.0	50.0	50.0	14.0	50.0	50.0
Total Split（\％）	20．0\％	20．0\％		20．0\％	20．0\％		17．5\％	62．5\％	62．5\％	17．5\％	62．5\％	62．5\％
Maximum Green（ s ）	10.0	10.0		10.0	10.0		8.0	44.0	44.0	8.0	44.0	44.0
Yellow Time（s）	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All－Red Time（s）	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）		－2．0			－2．0		－2．0	－2．0	－2．0	－2．0	－2．0	－2．0
Total Lost Time（s）		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead／Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead－Lag Optimize？							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension（s）	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	Min	Min	None	Min	Min
v／c Ratio		0.64			0.49		0.09	0.49	0.04	0.03	0.92	0.00
Control Delay		23.5			36.5		3.4	7.4	0.1	2.9	27.7	0.0
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		23.5			36.5		3.4	7.4	0.1	2.9	27.7	0.0
Queue Length 50th（ft）		40			16		2	91	0	2	280	0
Queue Length 95th（ t ）		114			52		7	265	0	6	\＃835	0
Internal Link Dist（ft）		499			616			2169			546	
Turn Bay Length（ft）							100		100	60		60
Base Capacity（vph）		396			144		323	1278	955	651	1206	1127
Starvation Cap Reductn		0			0		0	0	0	0	0	0
Spillback Cap Reductn		0			0		0	0	0	0	0	0
Storage Cap Reductn		0			0		0	0	0	0	0	0
Reduced v／c Ratio		0.58			0.44		0.07	0.49	0.04	0.03	0.92	0.00
Intersection Summary												

Lanes，Volumes，Timings
AJA
Area Type: Other
Cycle Length: $80 \quad$ Cength: 70.9
Actuated Cycle Letural Cycle: 90
Control Type: Actuated-Uncoordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

2030 Build Weekday Morning Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	*	\rightarrow	7	7		4	4	\dagger	1		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\pm			\$		7	\uparrow	「	7	\uparrow	T
Traffic Volume (vph)	19	43	139	29	8	15	22	577	34	17	1043	5
Future Volume (vph)	19	43	139	29	8	15	22	577	34	17	1043	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	14	14	14	14	14	14	12	12	12	12	12	12
Total Lost time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.91			0.96		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		1.00			0.97		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1803			1848		1687	1810	1302	1805	1792	1615
Flt Permitted		0.96			0.40		0.08	1.00	1.00	0.36	1.00	1.00
Satd. Flow (perm)		1746			759		142	1810	1302	679	1792	1615
Peak-hour factor, PHF	0.87	0.87	0.87	0.82	0.82	0.82	0.93	0.93	0.93	0.94	0.94	0.94
Adj. Flow (vph)	22	49	160	35	10	18	24	620	37	18	1110	5
RTOR Reduction (vph)	0	102	0	0	15	0	0	0	13	,	0	2
Lane Group Flow (vph)	0	129	0	0	48	0	24	620	24	18	1110	3
Heavy Vehicles (\%)	0\%	0\%	2\%	0\%	0\%	9\%	7\%	5\%	24\%	0\%	6\%	0\%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	-	
Permitted Phases	4			8			2		2	6		6
Actuated Green, G (s)		8.6			8.6		50.5	48.1	48.1	47.9	46.8	46.8
Effective Green, g (s)		10.6			10.6		54.5	50.1	50.1	51.9	48.8	48.8
Actuated g/C Ratio		0.14			0.14		0.72	0.66	0.66	0.68	0.64	0.64
Clearance Time (s)		6.0			6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)		3.0			3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		244			106		191	1196	860	510	1153	1039
v / s Ratio Prot							c0.01	0.34		0.00	c0.62	
v/s Ratio Perm		c0.07			0.06		0.08		0.02	0.02		0.00
v/c Ratio		0.53			0.45		0.13	0.52	0.03	0.04	0.96	0.00
Uniform Delay, d1		30.3			29.9		14.3	6.6	4.4	4.3	12.6	4.8
Progression Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		2.1			3.0		0.3	0.4	0.0	0.0	18.1	0.0
Delay (s)		32.3			32.9			7.0	4.5	4.3	30.8	4.8
Level of Service		C			C		B	A	A	A	C	A
Approach Delay (s)		32.3			32.9			7.1			30.2	
Approach LOS		C			C			A			C	
Intersection Summary												
HCM 2000 Control Delay			23.1		HCM 2000	evel of S	Service		C			
HCM 2000 Volume to Capacity ratio			0.83									
Actuated Cycle Length (s)			75.8		Sum of lost	time (s)			12.0			
Intersection Capacity Utilization			73.4\%		CU Level of	Service			D			
Analysis Period (min)			15									

c Critical Lane Group

	4	\rightarrow	\uparrow	\checkmark	4	4	＋	\dagger	1	t	\dagger	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		＊			\dagger		${ }^{7}$	个	「	7	中	「
Traffic Volume（vph）	16	15	46	56	31	36	129	1004	33	24	668	28
Future Volume（vph）	16	15	46	56	31	36	129	1004	33	24	668	28
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width（ft）	14	14	14	14	14	14	12	12	12	12	12	12
Storage Length（ft）	0		0	0		0	100		100	60		60
Storage Lanes	0		0	0		0	1		1	1		1
Taper Length（ ft ）	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed（mph）		30			30			30			30	
Link Distance（ ft ）		579			696			2249			626	
Travel Time（s）		13.2			15.8			51.1			14.2	
Peak Hour Factor	0.84	0.84	0.84	0.75	0.75	0.75	0.90	0.90	0.90	0.88	0.88	0.88
Heavy Vehicles（\％）	0\％	0\％	0\％	0\％	0\％	4\％	0\％	2\％	0\％	0\％	2\％	0\％
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	0	92	0	0	164	0	143	1116	37	27	759	32
Turn Type	Perm	NA		Perm	NA		pm＋pt	NA	Perm	pm＋pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial（s）	5.0	5.0		5.0	5.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split（s）	11.0	11.0		11.0	11.0		11.0	16.0	16.0	11.0	16.0	16.0
Total Split（s）	16.0	16.0		16.0	16.0		14.0	50.0	50.0	14.0	50.0	50.0
Total Split（\％）	20．0\％	20．0\％		20．0\％	20．0\％		17．5\％	62．5\％	62．5\％	17．5\％	62．5\％	62．5\％
Maximum Green（s）	10.0	10.0		10.0	10.0		8.0	44.0	44.0	8.0	44.0	44.0
Yellow Time（s）	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All－Red Time（s）	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）		－2．0			－2．0		－2．0	－2．0	－2．0	－2．0	－2．0	－2．0
Total Lost Time（s）		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead／Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead－Lag Optimize？							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension（s）	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	Min	Min	None	Min	Min
v／c Ratio		0.30			0.62		0.31	0.89	0.03	0.09	0.69	0.03
Control Delay		17.3			37.4		4.7	23.9	0.1	3.6	16.0	0.1
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		17.3			37.4		4.7	23.9	0.1	3.6	16.0	0.1
Queue Length 50th（ ft ）		14			56		15	272	0	3	245	0
Queue Length 95th（ft）		51			103		28	\＃826	0	8	365	0
Internal Link Dist（ft）		499			616			2169			546	
Turn Bay Length（ ft ）							100		100	60		60
Base Capacity（vph）		321			278		476	1252	1126	341	1224	1103
Starvation Cap Reductn		0			0		0	0	0	0	0	0
Spillback Cap Reductn		0			0		0	0	0	0	0	0
Storage Cap Reductn		0			0		0	0	0	0	0	0
Reduced v／c Ratio		0.29			0.59		0.30	0.89	0.03	0.08	0.62	0.03
Intersection Summary												

2020 Build Weekday Evening Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road
Area Type:
Other
Cycle Length: 80
Actuated Cycle Length: 73
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

2020 Build Weekday Evening Peak Hour

1：NH Route 125 （Calef Highway）\＆Greenhill Road／Tolend Road

	4	\rightarrow	7	7			＋	\dagger	7		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		＊			\uparrow		\％	中	「	7	\uparrow	「
Traffic Volume（Vph）	16	15	46	56	31	36	129	1004	33	24	668	28
Future Volume（vph）	16	15	46	56	31	36	129	1004	33	24	668	28
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	14	14	14	14	14	14	12	12	12	12	12	12
Total Lost time（s）		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util．Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.92			0.96		1.00	1.00	0.85	1.00	1.00	0.85
FIt Protected		0.99			0.98		0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）		1844			1881		1805	1863	1615	1805	1863	1615
Flt Permitted		0.90			0.82		0.21	1.00	1.00	0.09	1.00	1.00
Satd．Flow（perm）		1670			1573		390	1863	1615	167	1863	1615
Peak－hour factor，PHF	0.84	0.84	0.84	0.75	0.75	0.75	0.90	0.90	0.90	0.88	0.88	0.88
Adj．Flow（vph）	19	18	55	75	41	48	143	1116	37	27	759	32
RTOR Reduction（vph）	0	47	0	0	19	0	0	－	13	0	0	13
Lane Group Flow（vph）	0	45	0	0	145	0	143	1116	24	27	759	19
Heavy Vehicles（\％）	0\％	0\％	0\％	0\％	0\％	4\％	0\％	2\％	0\％	0\％	2\％	0\％
Turn Type	Perm	NA		Perm	NA		pm＋pt	NA	Perm	pm＋pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Actuated Green，G（s）		9.4			9.4		53.0	47.1	47.1	45.8	43.5	43.5
Effective Green， g （s）		11.4			11.4		57.0	49.1	49.1	49.8	45.5	45.5
Actuated g／C Ratio		0.15			0.15		0.74	0.64	0.64	0.65	0.59	0.59
Clearance Time（s）		6.0			6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension（s）		3.0			3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap（vph）		247			233		435	1191	1032	200	1103	956
v／s Ratio Prot							c0．03	c0．60		0.01	0.41	
v／s Ratio Perm		0.03			c0．09		0.21		0.01	0.08		0.01
v／c Ratio		0.18			0.62		0.33	0.94	0.02	0.14	0.69	0.02
Uniform Delay，d1		28.6			30.7		6.9	12.5	5.1	14.3	10.8	6.5
Progression Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay，d2		0.4			5.1		0.4	13.5	0.0	0.3	1.8	0.0
Delay（s）		29.0			35.8		7.3	26.0	5.1	14.6	12.6	6.5
Level of Service		C			D		A	C	A	B	B	A
Approach Delay（s）		29.0			35.8			23.3			12.4	
Approach LOS		C			D			C			B	
Intersection Summary												
HCM 2000 Control Delay			20.6		HCM 2000	evel of S	Service		C			
HCM 2000 Volume to Capacity ratio			0.85									
Actuated Cycle Length（s）			76.8		Sum of lost	time（s）			12.0			
Intersection Capacity Utilization			80．6\％		ICU Level of	Service			D			
Analysis Period（min）			15									

c Critical Lane Group

2020 Build Saturday MIdday Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4	\rightarrow	7	1	4	4	4	4	\%	1	\pm	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\ddagger		7	中	T	4	4	「
Traffic Volume (vph)	12	13	82	39	11	35	73	641	30	20	705	17
Future Volume (vph)	12	13	82	39	11	35	73	641	30	20	705	17
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	14	14	14	14	14	14	12	12	12	12	12	12
Storage Length (ft)	0		0	0		0	100		100	60		60
Storage Lanes	0		0	0		0	1		1	1		1
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		579			696			2249			626	
Travel Time (s)		13.2			15.8			51.1			14.2	
Peak Hour Factor	0.88	0.88	0.88	0.87	0.87	0.87	0.89	0.89	0.89	0.80	0.80	0.80
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	1\%	0\%
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	122	0	0	98	0	82	720	34	25	881	21
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	11.0		11.0	11.0		11.0	16.0	16.0	11.0	16.0	16.0
Total Split (s)	16.0	16.0		16.0	16.0		14.0	50.0	50.0	14.0	50.0	50.0
Total Split (\%)	20.0\%	20.0\%		20.0\%	20.0\%		17.5\%	62.5\%	62.5\%	17.5\%	62.5\%	62.5\%
Maximum Green (s)	10.0	10.0		10.0	10.0		8.0	44.0	44.0	8.0	44.0	44.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		-2.0			-2.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	Min	Min	None	Min	Min
v/c Ratio		0.34			0.39		0.19	0.51	0.03	0.04	0.72	0.02
Control Delay		14.2			25.5		3.6	8.8	0.0	2.9	16.6	0.1
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		14.2			25.5		3.6	8.8	0.0	2.9	16.6	0.1
Queue Length 50th (ft)		12			27		8	103	0	2	308	0
Queue Length 95th (t)		56			69		17	315	0	6	382	0
Internal Link Dist (ft)		499			616			2169			546	
Turn Bay Length (ft)							100		100	60		60
Base Capacity (vph)		423			308		476	1402	1224	641	1306	1159
Starvation Cap Reductn		0			0		0	0	0	0	0	0
Spillback Cap Reductn		0			0		0	0	0	0	0	0
Storage Cap Reductn		0			0		0	0	0	0	0	0
Reduced v/c Ratio		0.29			0.32		0.17	0.51	0.03	0.04	0.67	0.02
Intersection Summary												

Lanes, Volumes, Timings
AJA

Area Type:
Other
Cycle Length: 80
Actuated Cycle Length: 66.6
Natural Cycle: 60
Control Type: Actuated-Uncoordinated
Splits and Phases: 1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

2020 Build Saturday MIdday Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4	\rightarrow	7		\leftarrow		4	\dagger	P		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\uparrow		\%	\uparrow	「	${ }^{7}$	\uparrow	F
Traffic Volume (vph)	12	13	82	39	11	35	73	641	30	20	705	17
Future Volume (vph)	12	13	82	39	11	35	73	641	30	20	705	17
Ideal Flow (Vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Widh	14	14	14	14	14	14	12	12	12	12	12	12
Total Lost time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.90			0.94		1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected		0.99			0.98		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1808			1872		1805	1900	1615	1805	1881	1615
Flt Permitted		0.95			0.72		0.15	1.00	1.00	0.31	1.00	1.00
Satd. Flow (perm)		1734			1385		291	1900	1615	593	1881	1615
Peak-hour factor, PHF	0.88	0.88	0.88	0.87	0.87	0.87	0.89	0.89	0.89	0.80	0.80	0.80
Adj. Flow (vph)	14	15	93	45	13	40	82	720	34	25	881	21
RTOR Reduction (vph)	0	82	0	0	33	0	0	0	12	0	0	8
Lane Group Flow (vph)	0	40	0	0	65	0	82	720	22	25	881	13
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	1\%	0\%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	,		1	-	
Permitted Phases	4			8			2		2	6		6
Actuated Green, G (s)		6.3			6.3		50.6	45.3	45.3	44.0	42.0	42.0
Effective Green, $\mathrm{g}(\mathrm{s})$		8.3			8.3		54.6	47.3	47.3	48.0	44.0	44.0
Actuated g/C Ratio		0.12			0.12		0.76	0.66	0.66	0.67	0.61	0.61
Clearance Time (s)		6.0			6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)		3.0			3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		201			160		376	1255	1066	465	1155	992
v/s Ratio Prot							c0.02	c0.38		0.00	c0.47	
v/s Ratio Perm		0.02			c0.05		0.14		0.01	0.03		0.01
v/c Ratio		0.20			0.41		0.22	0.57	0.02	0.05	0.76	0.01
Uniform Delay, d1		28.6			29.4		7.4	6.6	4.2	4.5	10.0	5.4
Progression Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		0.5			1.7		0.3	0.6	0.0	0.0	3.0	0.0
Delay (s)		29.1			31.1		7.7	7.3	4.2	4.6	13.1	5.4
Level of Service		C			C		A	A	A	A	B	A
Approach Delay (s)		29.1			31.1			7.2			12.7	
Approach LOS		C			C			A			B	
Intersection Summary												
HCM 2000 Control Delay			12.3		HCM 2000	evel of S	Service		B			
HCM 2000 Volume to Capacity ratio			0.65									
Actuated Cycle Length (s)			71.6		Sum of lost	me (s)			12.0			
Intersection Capacity Utilization			62.8\%		ICU Level o	Service			B			
Analysis Period (min)			15									

c Critical Lane Group

Area Type:
 Other

Cycle Length: 80
Actuated Cycle Length: 70.5
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

2030 No Build Weekday Morning Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4	\rightarrow	7	7	\checkmark		4	\dagger			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\$$			$\$$		\%	\uparrow	「	7	4	「
Traffic Volume (Vph)	21	48	146	28	9	17	22	643	31	19	1095	6
Future Volume (vph)	21	48	146	28	9	17	22	643	31	19	1095	6
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	14	14	14	14	14	14	12	12	12	12	12	12
Total Lost time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.91			0.96		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		1.00			0.97		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1807			1838		1687	1810	1302	1805	1792	1615
Fit Permitted		0.96			0.42		0.08	1.00	1.00	0.29	1.00	1.00
Satd. Flow (perm)		1748			800		150	1810	1302	556	1792	1615
Peak-hour factor, PHF	0.87	0.87	0.87	0.82	0.82	0.82	0.93	0.93	0.93	0.94	0.94	0.94
Adj. Flow (vph)	24	55	168	34	11	21	24	691	33	20	1165	6
RTOR Reduction (vph)	0	96	0	0	18	0	0	0	12	0	0	2
Lane Group Flow (vph)	0	151	0	0	48	0	24	691	21	20	1165	4
Heavy Vehicles (\%)	0\%	0\%	2\%	0\%	0\%	9\%	7\%	5\%	24\%	0\%	6\%	0\%
Turn Type	Perm	NA		Perm	NA		pmpt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		,
Actuated Green, G (s)		8.9			8.9		47.4	45.2	45.2	47.4	45.2	45.2
Effective Green, g (s)		10.9			10.9		51.4	47.2	47.2	51.4	47.2	47.2
Actuated g/C Ratio		0.15			0.15		0.69	0.64	0.64	0.69	0.64	0.64
Clearance Time (s)		6.0			6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)		3.0			3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		256			117		190	1149	827	455	1138	1025
v / s Ratio Prot							c0.01	0.38		0.00	c0.65	
v/s Ratio Perm		c0.09			0.06		0.08		0.02	0.03		0.00
v/c Ratio		0.59			0.41		0.13	0.60	0.03	0.04	1.02	0.00
Uniform Delay, d1		29.6			28.8		16.3	8.0	5.0	4.7	13.5	5.0
Progression Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		3.4			2.3		0.3	0.9	0.0	0.0	32.9	0.0
Delay (s)		33.0			31.1		16.6	8.9	5.0	4.8	46.4	5.0
Level of Service		C			C		B	A	A	A	D	A
Approach Delay (s)		33.0			31.1			9.0			45.5	
Approach LOS		C			C			A			D	
Intersection Summary												
			31.6		HCM 2000	evel of S	Service		C			
HCM 2000 Volume to Capacity ratio			0.89									
Actuated Cycle Length (s)			74.3		Sum of lost	ime (s)			12.0			
Intersection Capacity Utilization			77.0\%		ICU Level of	Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis
AJA

2030 No Build Weekday Evening Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4	\rightarrow	7	\bigcirc	4	4		4	7	,	\ddagger	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\ddagger		${ }^{7}$	4	「	1	中	\%
Traffic Volume (vph)	18	17	47	56	35	40	134	1049	31	27	725	31
Future Volume (vph)	18	17	47	56	35	40	134	1049	31	27	725	31
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	14	14	14	14	14	14	12	12	12	12	12	12
Storage Length (ft)	0		0	0		0	100		100	60		60
Storage Lanes	0		0	0		0	1		1	1		1
Taper Length (t)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		579			696			2249			626	
Travel Time (s)		13.2			15.8			51.1			14.2	
Peak Hour Factor	0.84	0.84	0.84	0.75	0.75	0.75	0.90	0.90	0.90	0.88	0.88	0.88
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	0\%	4\%	0\%	2\%	0\%	0\%	2\%	0\%
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	97	0	0	175	0	149	1166	34	31	824	35
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	11.0		11.0	11.0		11.0	16.0	16.0	11.0	16.0	16.0
Total Split (s)	16.0	16.0		16.0	16.0		14.0	50.0	50.0	14.0	50.0	50.0
Total Split (\%)	20.0\%	20.0\%		20.0\%	20.0\%		17.5\%	62.5\%	62.5\%	17.5\%	62.5\%	62.5\%
Maximum Green (s)	10.0	10.0		10.0	10.0		8.0	44.0	44.0	8.0	44.0	44.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		-2.0			-2.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	Min	Min	None	Min	Min
v/c Ratio		0.32			0.65		0.37	0.94	0.03	0.11	0.81	0.04
Control Delay		18.4			39.6		5.7	28.9	0.1	3.7	21.0	0.1
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		18.4			39.6		5.7	28.9	0.1	3.7	21.0	0.1
Queue Length 50th (ft)		16			66		16	304	0	3	288	0
Queue Length 95th (ft)		54			110		29	\#882	0	8	424	0
Internal Link Dist (ft)		499			616			2169			546	
Turn Bay Length (t)							100		100	60		60
Base Capacity (vph)		319			280		414	1247	1122	346	1189	1075
Starvation Cap Reductn		0			0		0	0	0	0	0	0
Spillback Cap Reductn		0			0		0	0	0	0	0	0
Storage Cap Reductn		0			0		0	0	0	0	0	0
Reduced v/c Ratio		0.30			0.63		0.36	0.94	0.03	0.09	0.69	0.03
Intersection Summary												

Cycle Length: 80
Actuated Cycle Length: 72.7
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

2030 No Build Weekday Evening Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4	\rightarrow	7	1			4	4	1	4	\dagger	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\$$			\uparrow		午	\uparrow	7	\%	\uparrow	F
Traffic Volume (vph)	18	17	47	56	35	40	134	1049	31	27	725	31
Future Volume (vph)	18	17	47	56	35	40	134	1049	31	27	725	31
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	14	14	14	14	14	14	12	12	12	12	12	12
Total Lost time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.92			0.96		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99			0.98		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1849			1880		1805	1863	1615	1805	1863	1615
Flt Permitted		0.88			0.82		0.15	1.00	1.00	0.09	1.00	1.00
Satd. Flow (perm)		1641			1572		283	1863	1615	174	1863	1615
Peak-hour factor, PHF	0.84	0.84	0.84	0.75	0.75	0.75	0.90	0.90	0.90	0.88	0.88	0.88
Adj. Flow (vph)	21	20	56	75	47	53	149	1166	34	31	824	35
RTOR Reduction (vph)	0	48	0	0	20	0	0	0	12	0	0	15
Lane Group Flow (vph)	0	49	0	0	155	0	149	1166	22	31	824	20
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	0\%	4\%	0\%	2\%	0\%	0\%	2\%	0\%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Actuated Green, G (s)		9.5			9.5		54.0	46.7	46.7	44.0	41.7	41.7
Effective Green, $\mathrm{g}(\mathrm{s})$		11.5			11.5		57.0	48.7	48.7	48.0	43.7	43.7
Actuated g/C Ratio		0.15			0.15		0.75	0.64	0.64	0.63	0.57	0.57
Clearance Time (s)		6.0			6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)		3.0			3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		246			236		395	1185	1028	200	1064	922
v/s Ratio Prot							c0.05	c0.63		0.01	0.44	
v/s Ratio Perm		0.03			c0.10		0.23		0.01	0.09		0.01
v/c Ratio		0.20			0.66		0.38	0.98	0.02	0.15	0.77	0.02
Uniform Delay, d1		28.5			30.6		9.1	13.5	5.1	15.9	12.6	7.1
Progression Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		0.4			6.5		0.6	22.2	0.0	0.4	3.6	0.0
Delay (s)		28.9			37.1		9.7	35.7	5.1	16.2	16.2	7.1
Level of Service		C			D		A	D	A	B	B	A
Approach Delay (s)		28.9			37.1			32.0			15.8	
Approach LOS		C			D			C			B	
Intersection Summary												
HCM 2000 Control Delay			26.5		HCM 2000	Level of S	Service		C			
HCM 2000 Volume to Capacity ratio			0.89									
Actuated Cycle Length (s)			76.5		Sum of lost	time (s)			12.0			
Intersection Capacity Utilization			82.9\%		CU Level of	Service			E			
Analysis Period (min)			15									

c Critical Lane Group

2030 No Build Saturday Midday Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4	\rightarrow		1	4	4		\dagger	\neq	y	\dagger	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$		7	+	「	1	4	「
Traffic Volume (vph)	13	14	87	37	12	39	77	679	28	22	747	19
Future Volume (vph)	13	14	87	37	12	39	77	679	28	22	747	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	14	14	14	14	14	14	12	12	12	12	12	12
Storage Length (ft)	0		0	0		0	100		100	60		60
Storage Lanes	0		0	0		0	1		1	1		1
Taper Length (f)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		579			696			2249			626	
Travel Time (s)		13.2			15.8			51.1			14.2	
Peak Hour Factor	0.88	0.88	0.88	0.87	0.87	0.87	0.89	0.89	0.89	0.80	0.80	0.80
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	1\%	0\%
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	130	0	0	102	0	87	763	31	28	934	24
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	11.0		11.0	11.0		11.0	16.0	16.0	11.0	16.0	16.0
Total Split (s)	16.0	16.0		16.0	16.0		14.0	50.0	50.0	14.0	50.0	50.0
Total Split (\%)	20.0\%	20.0\%		20.0\%	20.0\%		17.5\%	62.5\%	62.5\%	17.5\%	62.5\%	62.5\%
Maximum Green (s)	10.0	10.0		10.0	10.0		8.0	44.0	44.0	8.0	44.0	44.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		-2.0			-2.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	Min	Min	None	Min	Min
v/c Ratio		0.37			0.42		0.21	0.54	0.03	0.05	0.75	0.02
Control Delay		14.5			26.0		3.8	9.3	0.0	2.9	18.2	0.1
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		14.5			26.0		3.8	9.3	0.0	2.9	18.2	0.1
Queue Length 50th (ft)		14			27		8	113	0	3	345	0
Queue Length 95th (ft)		59			70		18	348	0	7	431	0
Internal Link Dist (ft)		499			616			2169			546	
Turn Bay Length (t)							100		100	60		60
Base Capacity (vph)		412			291		441	1410	1230	609	1284	1141
Starvation Cap Reductn		0			0		0	0	0	0	0	0
Spillback Cap Reductn		0			0		0	0	0	0	0	0
Storage Cap Reductn		0			0		0	0	0	0	0	0
Reduced v/c Ratio		0.32			0.35		0.20	0.54	0.03	0.05	0.73	0.02
Intersection Summary												

Lanes, Volumes, Timings
AJA
S: \Jobs\8188VAnalysis 18188 -2030SMNB.syn

Area Type:
Other
Cycle Length: 80
Actuated Cycle Length: 68.4
Natural Cycle: 60
Control Type: Actuated-Uncoordinated
Splits and Phases: 1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4	\rightarrow	7	7	\leftarrow	4	4	\uparrow	+	\%	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\$$			\oplus		\%	4	7	${ }^{*}$	\uparrow	F
Traffic Volume (vph)	13	14	87	37	12	39	77	679	28	22	747	19
Future Volume (vph)	13	14	87	37	12	39	77	679	28	22	747	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	14	14	14	14	14	14	12	12	12	12	12	12
Total Lost time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.90			0.94		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99			0.98		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1808			1867		1805	1900	1615	1805	1881	1615
Flt Permitted		0.95			0.70		0.13	1.00	1.00	0.29	1.00	1.00
Satd. Flow (perm)		1723			1336		246	1900	1615	548	1881	1615
Peak-hour factor, PHF	0.88	0.88	0.88	0.87	0.87	0.87	0.89	0.89	0.89	0.80	0.80	0.80
Adj. Flow (vph)	15	16	99	43	14	45	87	763	31	28	934	24
RTOR Reduction (vph)	0	88	0	0	37	0	0	0	10	0	0	9
Lane Group Flow (vph)	0	42	0	0	65	0	87	763	21	28	934	15
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	1\%	0\%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	,		1	-	
Permitted Phases	4			8			2		2	6		6
Actuated Green, G (s)		6.3			6.3		52.4	47.0	47.0	45.8	43.7	43.7
Effective Green, $\mathrm{g}(\mathrm{s})$		8.3			8.3		56.4	49.0	49.0	49.8	45.7	45.7
Actuated g/C Ratio		0.11			0.11		0.77	0.67	0.67	0.68	0.62	0.62
Clearance Time (s)		6.0			6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)		3.0			3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		194			151		346	1268	1078	442	1171	1005
v/s Ratio Prot							c0.03	c0.40		0.00	c0.50	
v/s Ratio Perm		0.02			c0.05		0.17		0.01	0.04		0.01
v/c Ratio		0.22			0.43		0.25	0.60	0.02	0.06	0.80	0.01
Uniform Delay, d1		29.6			30.3		8.8	6.8	4.1	4.7	10.4	5.3
Progression Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		0.6			2.0		0.4	0.8	0.0	0.1	3.9	0.0
Delay (s)		30.2			32.3		9.2	7.6	4.1	4.7	14.3	5.3
Level of Service		C			C		A	A	A	A	B	A
Approach Delay (s)		30.2			32.3			7.6			13.8	
Approach LOS		C			C			A			B	
Intersection Summary												
HCM 2000 Control Delay			13.1		HCM 2000	Level of S	Service		B			
HCM 2000 Volume to Capacity ratioActuated Cycle Length (s)			0.68									
			73.4		Sum of lost	time (s)			12.0			
Intersection Capacity Utilization			65.3\%		CU Level of	Service			C			
Analysis Period (min)			15									

c Critical Lane Group

2030 Build Weekday Morning Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4		7	7		4	4	\dagger	7		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\$		\%	4	「	7	4	「
Traffic Volume (vph)	21	48	153	32	,	17	24	664	37	19	1145	6
Future Volume (vph)	21	48	153	32	9	17	24	664	37	19	1145	6
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.907			0.960				0.850			0.850
Flt Protected		0.995			0.973		0.950			0.950		
Satd. Flow (prot)	0	1804	0	0	1844	0	1687	1810	1302	1805	1792	1615
Flt Permitted		0.966			0.371		0.085			0.278		
Satd. Flow (perm)	0	1752	0	0	703	0	151	1810	1302	528	1792	1615
Satd. Flow (RTOR)		118			21				123			123
Adj. Flow (vph)	24	55	176	39	11	21	26	714	40	20	1218	6
Lane Group Flow (vph)	0	255	0	0	71	0	26	714	40	20	1218	6
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	,		1	6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	11.0		11.0	11.0		11.0	16.0	16.0	11.0	16.0	16.0
Total Split (s)	16.0	16.0		16.0	16.0		14.0	50.0	50.0	14.0	50.0	50.0
Total Split (\%)	20.0\%	20.0\%		20.0\%	20.0\%		17.5\%	62.5\%	62.5\%	17.5\%	62.5\%	62.5\%
Maximum Green (s)	10.0	10.0		10.0	10.0		8.0	44.0	44.0	8.0	44.0	44.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		-2.0			-2.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	Min	Min	None	Min	Min
v/c Ratio		0.69			0.56		0.09	0.59	0.04	0.04	1.02	0.01
Control Delay		26.6			41.2		3.5	10.6	0.1	2.9	47.5	0.0
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		26.6			41.2		3.5	10.6	0.1	2.9	47.5	0.0
Queue Length 50th (tt)		50			18		3	115	0	2	371	0
Queue Length 95th (tt)		\#138			\#65		8	333	0	6	\#950	0
Internal Link Dist (ft)		499			616			2169			546	
Turn Bay Length (ft)							100		100	60		60
Base Capacity (vph)		398			138		328	1209	910	562	1195	1118
Starvation Cap Reductn		0			0		0	0	0	0	0	0
Spillback Cap Reductn		0			0		0	0	0	0	0	0
Storage Cap Reductn		0			0		0	0	0	0	0	0
Reduced v/c Ratio		0.64			0.51		0.08	0.59	0.04	0.04	1.02	0.01
Intersection Summary												

Intersection Summary
Cycle Length: 80
Actuated Cycle Length: 70.4
Natural Cycle: 90
Control Type: Actuated-Uncoordinated

Lanes, Volumes, Timings
AJA
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

2030 Build Weekday Morning Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4	\rightarrow	7	7			4	4	1	-	$\frac{1}{*}$	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\pm			\$		7	\uparrow	「	7	\uparrow	「
Traffic Volume (vph)	21	48	153	32	9	17	24	664	37	19	1145	6
Future Volume (vph)	21	48	153	32	9	17	24	664	37	19	1145	6
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	14	14	14	14	14	14	12	12	12	12	12	12
Total Lost time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.91			0.96		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		1.00			0.97		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1804			1845		1687	1810	1302	1805	1792	1615
Flt Permitted		0.97			0.37		0.09	1.00	1.00	0.28	1.00	1.00
Satd. Flow (perm)		1751			702		151	1810	1302	528	1792	1615
Peak-hour factor, PHF	0.87	0.87	0.87	0.82	0.82	0.82	0.93	0.93	0.93	0.94	0.94	0.94
Adj. Flow (vph)	24	55	176	39	11	21	26	714	40	20	1218	6
RTOR Reduction (vph)	0	101	0	0	18	0	0	0	15	,	0	2
Lane Group Flow (vph)	0	154	0	0	53	0	26	714	25	20	1218	4
Heavy Vehicles (\%)	0\%	0\%	2\%	0\%	0\%	9\%	7\%	5\%	24\%	0\%	6\%	0\%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Actuated Green, G (s)		8.9			8.9		47.2	45.0	45.0	47.2	45.0	45.0
Effective Green, $\mathrm{g}(\mathrm{s})$		10.9			10.9		51.2	47.0	47.0	51.2	47.0	47.0
Actuated g/C Ratio		0.15			0.15		0.69	0.63	0.63	0.69	0.63	0.63
Clearance Time (s)		6.0			6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)		3.0			3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		257			103		191	1148	825	437	1136	1024
v/s Ratio Prot							c0.01	0.39		0.00	c0.68	
v/s Ratio Perm		c0.09			0.08		0.09		0.02	0.03		0.00
v/c Ratio		0.60			0.52		0.14	0.62	0.03	0.05	1.07	0.00
Uniform Delay, d1		29.6			29.2		16.3	8.2	5.1	4.9	13.5	5.0
Progression Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		3.9			4.3		0.3	1.1	0.0	0.0	48.3	0.0
Delay (s)		33.5			33.5		16.6	9.2	5.1	4.9	61.9	5.0
Level of Service		C			C		B	A	A	A	E	A
Approach Delay (s)		33.5			33.5			9.3			60.7	
Approach LOS		C			C			A			E	
Intersection Summary												
			39.8		HCM 2000	Level of	Service		D			
HCM 2000 Volume to Capacity ratio			0.93									
Actuated Cycle Length (s)			74.1		Sum of los	time (s)			12.0			
Intersection Capacity Utilization			80.0\%		CU Level	Service			D			
			15									
Analysis Period (min) c Critical Lane Group												

2030 Build Weekday Evening Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4	\rightarrow	+	4	4	4	4	\dagger	\%	1	$\frac{1}{\square}$	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$		${ }^{7}$	\uparrow	「	${ }^{7}$	4	F
Traffic Volume (vph)	18	17	51	62	35	40	142	1103	36	27	756	31
Future Volume (vph)	18	17	51	62	35	40	142	1103	36	27	756	31
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	14	14	14	14	14	14	12	12	12	12	12	12
Storage Length (ft)	0		0	0		0	100		100	60		60
Storage Lanes	0		0	0		0	1		1	1		1
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		579			696			2249			626	
Travel Time (s)		13.2			15.8			51.1			14.2	
Peak Hour Factor	0.84	0.84	0.84	0.75	0.75	0.75	0.90	0.90	0.90	0.88	0.88	0.88
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	0\%	4\%	0\%	2\%	0\%	0\%	2\%	0\%
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	102	0	0	183	0	158	1226	40	31	859	35
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	11.0		11.0	11.0		11.0	16.0	16.0	11.0	16.0	16.0
Total Split (s)	16.0	16.0		16.0	16.0		14.0	50.0	50.0	14.0	50.0	50.0
Total Split (\%)	20.0\%	20.0\%		20.0\%	20.0\%		17.5\%	62.5\%	62.5\%	17.5\%	62.5\%	62.5\%
Maximum Green (s)	10.0	10.0		10.0	10.0		8.0	44.0	44.0	8.0	44.0	44.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		-2.0			-2.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	Min	Min	None	Min	Min
v/c Ratio		0.33			0.71		0.42	0.98	0.04	0.11	0.83	0.04
Control Delay		18.2			44.6		7.6	36.3	0.1	3.7	22.6	0.1
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		18.2			44.6		7.6	36.3	0.1	3.7	22.6	0.1
Queue Length 50th (ft)		18			76		17	350	0	3	310	0
Queue Length 95th (f)		55			\#116		42	\#947	0	8	458	0
Internal Link Dist (ft)		499			616			2169			546	
Turn Bay Length (f)							100		100	60		60
Base Capacity (vph)		318			267		392	1254	1128	338	1164	1055
Starvation Cap Reductn		0			0		0	0	0	0	0	0
Spillback Cap Reductn		0			0		0	0	0	0	0	0
Storage Cap Reductn		0			0		0	0	0	0	0	0
Reduced v/c Ratio		0.32			0.69		0.40	0.98	0.04	0.09	0.74	0.03
Intersection Summary												

2030 Build Weekday Evening Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

2030 Build Weekday Evening Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	\rangle	\rightarrow		7			4	\dagger	7	*	$\frac{1}{*}$	\pm
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\ddagger		${ }^{4}$	\uparrow	F	${ }^{*}$	*	F
Traffic Volume (vph)	18	17	51	62	35	40	142	1103	36	27	756	31
Future Volume (vph)	18	17	51	62	35	40	142	1103	36	27	756	31
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	14	14	14	14	14	14	12	12	12	12	12	12
Total Lost time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Utill. Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.92			0.96		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99			0.98		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1844			1882		1805	1863	1615	1805	1863	1615
Flt Permitted		0.88			0.79		0.13	1.00	1.00	0.09	1.00	1.00
Satd. Flow (perm)		1640			1530		251	1863	1615	169	1863	1615
Peak-hour factor, PHF	0.84	0.84	0.84	0.75	0.75	0.75	0.90	0.90	0.90	0.88	0.88	0.88
Adj. Flow (vph)	21	20	61	83	47	53	158	1226	40	31	859	35
RTOR Reduction (vph)	0	52	0	0	19	0	0	0	14	0	0	15
Lane Group Flow (vph)	0	50	0	0	164	0	158	1226	26	31	859	20
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	0\%	4\%	0\%	2\%	0\%	0\%	2\%	0\%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Actuated Green, G (s)		9.6			9.6		55.4	48.0	48.0	45.2	42.9	42.9
Effective Green, $\mathrm{g}(\mathrm{s})$		11.6			11.6		58.3	50.0	50.0	49.2	44.9	44.9
Actuated g/C Ratio		0.15			0.15		0.75	0.64	0.64	0.63	0.58	0.58
Clearance Time (s)		6.0			6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)		3.0			3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		244			227		375	1195	1036	197	1073	930
v / s Ratio Prot							c0.05	c0.66		0.01	0.46	
v/s Ratio Perm		0.03			c0.11		0.26		0.02	0.09		0.01
v/c Ratio		0.21			0.72		0.42	1.03	0.02	0.16	0.80	0.02
Uniform Delay, d1		29.1			31.6		10.4	14.0	5.1	16.3	13.0	7.1
Progression Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		0.4			10.8		0.8	32.8	0.0	0.4	4.4	0.0
Delay (s)		29.5			42.5		11.2	46.8	5.1	16.7	17.3	7.1
Level of Service		C			D		B	D	A	B	B	A
Approach Delay (s)		29.5			42.5			41.7			16.9	
Approach LOS		C			D			D			,	
Intersection Summary												
HCM 2000 Control Delay			32.6		HCM 2000	Level of S	Service		C			
HCM 2000 Volume to Capacity ratioActuated Cycle Length (s)			0.94									
			77.9		Sum of lost	time (s)			12.0			
Intersection Capacity Utilization			86.6\%		CU Level of	Service			E			
Analysis Period (min)			15									

c Critical Lane Group

2030 Build Saturday MIdday Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4	\rightarrow	\%	4	4	4	4	4	p	4	\dagger	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		* 9			*		${ }^{7}$	4	「	7	4	T
Traffic Volume (vph)	13	14	90	43	12	39	80	705	33	22	775	19
Future Volume (vph)	13	14	90	43	12	39	80	705	33	22	775	19
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.896			0.944				0.850			0.850
Flt Protected		0.994			0.978		0.950			0.950		
Satd. Flow (prot)	0	1805	0	0	1871	0	1805	1900	1615	1805	1881	1615
Flt Permitted		0.947			0.670		0.113			0.270		
Satd. Flow (perm)	0	1720	0	0	1282	0	215	1900	1615	513	1881	1615
Satd. Flow (RTOR)		102			38				123			123
Adj. Flow (vph)	15	16	102	49	14	45	90	792	37	28	969	24
Lane Group Flow (vph)	0	133	0	0	108	0	90	792	37	28	969	24
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	11.0		11.0	11.0		11.0	16.0	16.0	11.0	16.0	16.0
Total Split (s)	16.0	16.0		16.0	16.0		14.0	50.0	50.0	14.0	50.0	50.0
Total Split (\%)	20.0\%	20.0\%		20.0\%	20.0\%		17.5\%	62.5\%	62.5\%	17.5\%	62.5\%	62.5\%
Maximum Green (s)	10.0	10.0		10.0	10.0		8.0	44.0	44.0	8.0	44.0	44.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)		-2.0			-2.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	Min	Min	None	Min	Min
v/c Ratio		0.38			0.47		0.23	0.56	0.03	0.05	0.78	0.02
Control Delay		14.4			29.2		4.1	9.7	0.0	3.0	19.4	0.1
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		14.4			29.2		4.1	9.7	0.0	3.0	19.4	0.1
Queue Length 50th (ft)		14			32		9	128	0	3	382	0
Queue Length 95th (ft)		59			77		19	372	0	7	463	0
Internal Link Dist (ft)		499			616			2169			546	
Turn Bay Length (ft)							100		100	60		60
Base Capacity (vph)		404			270		413	1410	1230	583	1264	1125
Starvation Cap Reductn		0			0		0	0	0	0	0	0
Spillback Cap Reductn		0			0		0	0	0	0	0	0
Storage Cap Reductn		0			0		0	0	0	0	0	0
Reduced v/c Ratio		0.33			0.40		0.22	0.56	0.03	0.05	0.77	0.02
Intersection Summary												
Cycle Length: 80												
Actuated Cycle Length: 69.9												
Natural Cycle: 60												
Control Type: Actuated-Uncoordinated												

Splits and Phases: 1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

2030 Build Saturday MIdday Peak Hour

1: NH Route 125 (Calef Highway) \& Greenhill Road/Tolend Road

	4	\rightarrow	7	7	\leftarrow	4	4	4			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\uparrow		7	\uparrow	「	\%	\uparrow	F
Traffic Volume (vph)	13	14	90	43	12	39	80	705	33	22	775	19
Future Volume (vph)	13	14	90	43	12	39	80	705	33	22	775	19
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	14	14	14	14	14	14	12	12	12	12	12	12
Total Lost time (s)		4.0			4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Fit		0.90			0.94		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99			0.98		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1807			1870		1805	1900	1615	1805	1881	1615
Flt Permitted		0.95			0.67		0.11	1.00	1.00	0.27	1.00	1.00
Satd. Flow (perm)		1721			1282		215	1900	1615	514	1881	1615
Peak-hour factor, PHF	0.88	0.88	0.88	0.87	0.87	0.87	0.89	0.89	0.89	0.80	0.80	0.80
Adj. Flow (vph)	15	16	102	49	14	45	90	792	37	28	969	24
RTOR Reduction (vph)	0	90	0	0	34	0	0	0	12	0	0	9
Lane Group Flow (vph)	0	43	0	0	74	0	90	792	25	28	969	15
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	1\%	0\%
Tum Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Actuated Green, G (s)		6.6			6.6		53.6	48.2	48.2	47.2	45.0	45.0
Effective Green, $\mathrm{g}(\mathrm{s})$		8.6			8.6		57.6	50.2	50.2	51.2	47.0	47.0
Actuated g/C Ratio		0.11			0.11		0.77	0.67	0.67	0.68	0.63	0.63
Clearance Time (s)		6.0			6.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)		3.0			3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		197			147		322	1271	1080	423	1178	1012
v/s Ratio Prot							c0.03	0.42		0.00	c0.52	
v/s Ratio Perm		0.02			c0.06		0.19		0.02	0.04		0.01
v/C Ratio		0.22			0.51		0.28	0.62	0.02	0.07	0.82	0.01
Uniform Delay, d1		30.1			31.2		10.1	7.0	4.2	4.9	10.8	5.3
Progression Factor		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2		0.6			2.7		0.5	1.0	0.0	0.1	4.8	0.0
Delay (s)		30.7			33.9		10.6	8.0	4.2	5.0	15.5	5.3
Level of Service		C			C		B	A	A	A	B	A
Approach Delay (s)		30.7			33.9			8.1			15.0	
Approach LOS		C			C			A			B	
Intersection Summary												
HCM 2000 Control Delay			14.0		HCM 2000	Level of S	Service		B			
HCM 2000 Volume to Capacity ratio			0.72									
Actuated Cycle Length (s)			75.0		Sum of lost	lime (s)			12.0			
Intersection Capacity Utilization			67.3\%		CU Level of	Service			C			
Analysis Period (min)			15									

c Critical Lane Group

NH Route 125 at Scruton Pond Road

2019 Existing Weekday Evening Peak Hour

2: NH Route 125 (Calef Highway) \& Scrunton Pond Road

HCM LOS
F

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	757	-125	-	-	
HCM Lane V/C Ratio	0.027	-0.768	-	-	
HCM Control Delay (s)	9.9	0	94.1	-	-
HCM Lane LOS	A	A	F	-	-
HCM 95th \%bile Q(veh)	0.1	-	4.5	-	-

Intersection						
Int Delay, s/veh	12.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			A	F	
Traffic Vol, veh/h	59	39	5	593	1128	12
Future Vol, veh/h	59	39	5	593	1128	12
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	83	83	86	86	94	94
Heavy Vehicles, \%	0	0	0	6	5	0
Mvmt Flow	71	47	6	690	1200	13

Major/Minor	Minor2	Major1	Major2			
Conflicting Flow All	1909	1207	1213	0	-	0
\quad Stage 1	1207	-	-	-	-	-
\quad Stage 2	702	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	76	226	582	-	-	-
\quad Stage 1	286	-	-	-	-	-
\quad Stage 2	495	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	75	226	582	-	-	-
Mov Cap-2 Maneuver	75	-	-	-	-	-
\quad Stage 1	281	-	-	-	-	-
Stage 2	495	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s 215.9	0.1	0	

HCMLOS F

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	582	-102	-	-	
HCM Lane V/C Ratio	0.01	-1.158	-	-	
HCM Control Delay (s)	11.2	0	215.9	-	-
HCM Lane LOS	B	A	F	-	-
HCM 95th \%tile Q(veh)	0	-	7.7	-	-

2020 No Build Weekday Evening Peak Hour

2: NH Route 125 (Calef Highway) \& Scrunton Pond Road

2020 No Build Saturday Midday Peak Hour

2: NH Route 125 (Calef Highway) \& Scrunton Pond Road

Major/Minor	Minor2	Major1	Major2			
Conflicting Flow All	1669	902	927	0	-	0
\quad Stage 1	902	-	-	-	-	-
\quad Stage 2	767	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	107	339	746	-	-	-
\quad Stage 1	399	-	-	-	-	-
\quad Stage 2	462	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	102	339	746	-	-	-
Mov Cap-2 Maneuver	102	-	-	-	-	-
\quad Stage 1	380	-	-	-	-	-
Stage 2	462	-	-	-	-	-

2030 Build Weekday Morning Peak Hour

2: NH Route 125 (Calef Highway) \& Scrunton Pond Road

Intersection						
Int Delay, s/veh	16.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			A	F	
Traffic Vol, veh/h	59	40	7	622	1189	12
Future Vol, veh/h	59	40	7	622	1189	12
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	83	83	86	86	94	94
Heavy Vehicles, \%	0	0	0	6	5	0
Mvmt Flow	71	48	8	723	1265	13

Major/Minor	Minor2	Major1	Major2			
Conflicting Flow All	2011	1272	1278	0	-	0
\quad Stage 1	1272	-	-	-	-	-
\quad Stage 2	739	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	-66	207	550	-	-	-
\quad Stage 1	266	-	-	-	-	-
\quad Stage 2	476	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	-64	207	550	-	-	-
Mov Cap-2 Maneuver	-64	-	-	-	-	-
\quad Stage 1	260	-	-	-	-	-
Stage 2	476	-	-	-	-	-

$\xrightarrow{\text { Notes }} \stackrel{\text { Volume exceeds capacity }}{\sim} \$$: Delay exceeds $300 s \quad+$: Computation Not Defined $\quad *:$ All major volume in platoon

2020 Build Weekday Evening Peak Hour

2: NH Route 125 (Calef Highway) \& Scrunton Pond Road

	Intersection					
Int Delay, s/veh	7.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			4	t	
Traffic Vol, veh/h	57	17	21	701	782	43
Future Vol, veh/h	57	17	21	701	782	43
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	\# 0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	74	74	92	92	85	85
Heavy Vehicles, \%	0	0	0	0	1	0
Mvmt Flow	77	23	23	762	920	51

Major/Minor	Minor2	Major1		Major2		
Conflicting Flow All	2104	1331	1338	0	-	0
Stage 1	1331	-	-	-	-	
Stage 2	773	-	-	-	-	
Critical Hdwy	6.4	6.2	4.1	-	-	
Critical Hdwy Stg 1	5.4	.	-	-	-	
Critical Hdwy Stg 2	5.4	-	-	-	-	
Follow-up Hdwy	3.5	3.3	2.2	-	-	
Pot Cap-1 Maneuver	- 57	191	522	-	-	
Stage 1	249	-	-	-	-	
Stage 2	459	-	-	-	-	
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	~ 56	191	522	-	-	-
Mov Cap-2 Maneuver	~ 56	-	-	-	-	
Stage 1	243		-	-	-	-
Stage 2	459	-	-	-	-	

Notes

$\sim:$ Volume exceeds capacity $\$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined *: All major volume in platoon

2030 No Build Weekday Evening Peak Hour

2: NH Route 125 (Calef Highway) \& Scrunton Pond Road

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad : All major volume in platoon

2030 No Build Saturday Midday Peak Hour
2: NH Route 125 (Calef Highway) \& Scrunton Pond Road

Major/Minor	Minor2	Major1						Major2	
Conflicting Flow All	1840	995	1023	0	-	0			
\quad Stage 1	995	-	-	-	-	-			
\quad Stage 2	845	-	-	-	-	-			
Critical Hdwy	6.4	6.2	4.1	-	-	-			
Critical Hdwy Stg 1	5.4	-	-	-	-	-			
Critical Hdwy Stg 2	5.4	-	-	-	-	-			
Follow-up Hdwy	3.5	3.3	2.2	-	-	-			
Pot Cap-1 Maneuver	84	300	686	-	-	-			
\quad Stage 1	361	-	-	-	-	-			
Stage 2	425	-	-	-	-	-			

Platoon blocked, \%
Mov Cap-1 Maneuver ~79 300686 - . .

Mov Cap-2 Maneuver	~ 79	-	-	-	-	-
Stage 1	339	-	-	-	-	-
Stage 2	425	-	-	-	-	-

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 s \quad+$: Computation Not Defined \quad : All major volume in platoon

2030 Build Weekday Morning Peak Hour

2: NH Route 125 (Calef Highway) \& Scrunton Pond Road

	Intersection					
Int Delay, s/veh	34.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			4	\dagger	
Traffic Vol, veh/h	66	45	8	682	1306	13
Future Vol, veh/h	66	45	8	682	1306	13
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	\# 0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	83	83	86	86	94	94
Heavy Vehicles, \%	0	0	0	6	5	0
Mumt Flow	80	54	9	793	1389	14

Intersection						
Int Delay, s/veh	7.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*			\uparrow	F	
Traffic Vol, veh/h	27	12	21	1195	743	74
Future Vol, veh/h	27	12	21	1195	743	74
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	\# 0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	57	57	92	92	93	93
Heavy Vehicles, \%	0	0	0	0	1	0
Mumt Flow	47	21	23	1299	799	80

Major/Minor	Minor2	Major1	Major2		
Conflicting Flow All	2184	839	879	0	-
\quad Stage 1	839	-	-	-	-
\quad Stage 2	1345	-	-	-	-
	-				
Critical Hdwy	6.4	6.2	4.1	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-
Pot Cap-1 Maneuver	51	369	777	-	-
\quad Stage 1	427	-	-	-	-
\quad Stage 2	245	-	-	-	-
Platoon blocked, \%				-	-
Mov Cap-1 Maneuver	-46	369	777	-	-
Mov Cap-2 Maneuver	~ 46	-	-	-	
\quad Stage 1	382	-	-	-	-
Stage 2	245	-	-	-	

MajorMinor	Minor2	Major1		Major2		
Conflicting Flow All	1925	1039	1067	0	-	0
\quad Stage 1	1039	-	-	-	-	-
\quad Stage 2	886	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	-74	283	661	-	-	-
\quad Stage 1	344	-	-	-	-	-
\quad Stage 2	406	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	-69	283	661	-	-	-
Mov Cap-2 Maneuver	-69	-	-	-	-	-
\quad Stage 1	320	-	-	-	-	-
Stage 2	406	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s 288.6	0.3	0	
HCM LOS	F		

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT	SBR	
Capacity (veh/h)	661	-	84	-	-
HCM Lane V/C Ratio	0.038	-1.303	-	-	
HCM Control Delay (s)	10.7	0	288.6	-	-
HCM Lane LOS	B	A	F	-	-
HCM 95th \%tile Q(veh)	0.1	-	8.2	-	-

Notes

\sim : Volume exceeds capacity $\quad \$$: Delay exceeds 300s $\quad \mathbf{~}$: Computation Not Defined \quad : All major volume in platoon

NH Route 125 at NH Route 9

2019 Existing Weekday Morning Peak Hour
3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

	\cdots		P	$\underline{4}$	\downarrow	J	\cdots	4	\dagger	7	-	
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	\%	\uparrow	${ }^{7}$	${ }_{1}$	中 ${ }^{\text {c }}$		${ }^{7}$	+	T	7	4	「
Traffic Volume (vph)	53	460	196	181	875	49	63	565	169	180	142	80
Future Volume (vph)	53	460	196	181	875	49	63	565	169	180	142	80
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	11	12	12	12	12	11	12	11	11
Storage Length (ft)	150		150	150		0	100		100	100		100
Storage Lanes	1		1	1		0	1		1	1		1
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		283			2648			562			661	
Travel Time (s)		6.4			60.2			12.8			15.0	
Peak Hour Factor	0.91	0.91	0.91	0.95	0.95	0.95	0.86	0.86	0.86	0.66	0.66	0.66
Heavy Vehicles (\%)	7\%	5\%	1\%	5\%	4\%	16\%	2\%	1\%	1\%	8\%	5\%	1\%
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	58	505	215	191	973	0	73	657	197	273	215	121
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	8
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	18.0	18.0	11.0	18.0		11.0	18.0	18.0	11.0	18.0	18.0
Total Split (s)	36.0	36.0	36.0	36.0	36.0		36.0	53.0	53.0	36.0	53.0	53.0
Total Split (\%)	22.4\%	22.4\%	22.4\%	22.4\%	22.4\%		22.4\%	32.9\%	32.9\%	22.4\%	32.9\%	32.9\%
Maximum Green (s)	30.0	28.0	28.0	30.0	28.0		30.0	47.0	47.0	30.0	47.0	47.0
Yellow Time (s)	4.0	6.0	6.0	4.0	6.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-4.0	-4.0	-2.0	-4.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min	Min	None	Min		None	None	None	None	None	None
v/c Ratio	0.41	1.31	0.51	0.72	0.92		0.46	1.07	0.34	0.85	0.29	0.17
Control Delay	75.9	202.9	33.0	75.7	65.3		75.7	104.8	18.7	82.1	30.9	6.2
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	75.9	202.9	33.0	75.7	65.3		75.7	104.8	18.7	82.1	30.9	6.2
Queue Length 50th (ft)	56	~659	100	184	513		71	~ 744	59	262	137	3
Queue Length 95th (ft)	107	\#943	198	274	\#685		122	\#981	126	269	160	14
Internal Link Dist (ft)		203			2568			482			581	
Turn Bay Length (ft)	150		150	150			100		100	100		100
Base Capacity (vph)	359	385	420	353	1057		376	613	581	355	751	729
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.16	1.31	0.51	0.54	0.92		0.19	1.07	0.34	0.77	0.29	0.17
Intersection Summary												

Area Type:

Other
Cycle Length: 161
Actuated Cycle Length: 150.8
Natural Cycle: 120
Control Type: Actuated-Uncoordinated
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highway)

2019 Existing Weekday Morning Peak Hour

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

c Critical Lane Group

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

	\dagger		Pa	4	\downarrow	\downarrow	\cdots	,	\rangle	\dagger	k	ψ
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	${ }^{7}$	\uparrow	7	${ }^{7}$	性		${ }_{1}$	\uparrow	F'	${ }_{1}$	\uparrow	「
Traffic Volume (vph)	194	903	106	81	483	97	81	165	102	254	469	128
Future Volume (vph)	194	903	106	81	483	97	81	165	102	254	469	128
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (f)	12	12	12	11	12	12	12	12	11	12	11	11
Storage Length (t)	150		150	150		,	100		100	100		100
Storage Lanes	1		1	1		0	1		1	1		1
Taper Length (tt)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		283			2648			562			661	
Travel Time (s)		6.4			60.2			12.8			15.0	
Peak Hour Factor	0.91	0.91	0.91	0.93	0.93	0.93	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	1\%	0\%	0\%	0\%	0\%	1\%	0\%	1\%
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	213	992	116	87	623	0	88	179	111	276	510	139
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		,	.	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	8
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	18.0	18.0	11.0	18.0		11.0	18.0	18.0	11.0	18.0	18.0
Total Solit (s)	36.0	36.0	36.0	36.0	36.0		36.0	53.0	53.0	36.0	53.0	53.0
Total Split (\%)	22.4\%	22.4\%	22.4\%	22.4\%	22.4\%		22.4\%	32.9\%	32.9\%	22.4\%	32.9\%	32.9\%
Maximum Green (s)	30.0	28.0	28.0	30.0	28.0		30.0	47.0	47.0	30.0	47.0	47.0
Yellow Time (s)	4.0	6.0	6.0	4.0	6.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-4.0	-4.0	-2.0	-4.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min	Min	None	Min		None	None	None	None	None	None
v/c Ratio	0.66	1.68	0.20	0.45	0.73		0.45	0.39	0.24	0.74	0.81	0.23
Control Delay	60.9	341.9	9.9	64.5	51.2		64.2	45.5	8.2	61.6	51.1	9.5
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	60.9	341.9	9.9	64.5	51.2		64.2	45.5	8.2	61.6	51.1	9.5
Queue Length 50th (ft)	175	-1263	9	72	258		73	127	0	226	386	13
Queue Length 95th (t)	274	\#1675	58	136	371		137	220	47	356	\#637	67
Internal Link Dist (t)		203			2568			482			581	
Turn Bay Length (t)	150		150	150			100		100	100		100
Base Capacity (vph)	462	592	573	446	903		462	744	681	457	720	675
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.46	1.68	0.20	0.20	0.69		0.19	0.24	0.16	0.60	0.71	0.21
Intersection Summary												

2019 Existing Weekday Evening Peak Hour

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

Area Type:
 Other

Cycle Length: 161
Actuated Cycle Length: 127.7
Natural Cycle: 130
Control Type: Actuated-Uncoordinated

- Volume exceeds capacity, queve is theoretically infinite.

Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capzcity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highway)

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

	\%			4	\downarrow	\cdots	\cdots	\checkmark	7	\square	k	4
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	\%	\uparrow	"	\%	怆		\%	\uparrow	7	7	\uparrow	「
Traffic Volume (vph)	194	903	106	81	483	97	81	165	102	254	469	128
Future Volume (vph)	194	903	106	81	483	97	81	165	102	254	469	128
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	11	12	12	12	12	11	12	11	11
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95		1.00	1.00	1.00	1.00	1.00	1.00
Fit	1.00	1.00	0.85	1.00	0.97		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1805	1900	1615	1745	3491		1805	1900	1561	1787	1837	1546
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1805	1900	1615	1745	3491		1805	1900	1561	1787	1837	1546
Peak-hour factor, PHF	0.91	0.91	0.91	0.93	0.93	0.93	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	213	992	116	87	519	104	88	179	111	276	510	139
RTOR Reduction (vph)	0	0	70	0	10	0	0	0	84	0	0	76
Lane Group Flow (vph)	213	992	46	87	613	0	88	179	27	276	510	63
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	1\%	0\%	0\%	0\%	0\%	1\%	0\%	1\%
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Actuated Green, G (s)	20.8	35.7	35.7	12.0	26.9		11.9	28.7	28.7	24.7	41.5	41.5
Effective Green, g (s)	22.8	39.7	39.7	14.0	30.9		13.9	30.7	30.7	26.7	43.5	43.5
Actuated g/C Ratio	0.18	0.31	0.31	0.11	0.24		0.11	0.24	0.24	0.21	0.34	0.34
Clearance Time (s)	6.0	8.0	8.0	6.0	8.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Gp Cap (vph)	323	593	504	192	848		197	458	377	375	628	529
v/s Ratio Prot	c0.12	c0.52		0.05	0.18		0.05	0.09		c0.15	c0.28	
V/s Ratio Perm			0.03						0.02			0.04
v/c Ratio	0.66	1.67	0.09	0.45	0.72		0.45	0.39	0.07	0.74	0.81	0.12
Uniform Delay, d1	48.5	43.7	30.9	53.0	44.2		53.0	40.4	37.2	46.9	38.1	28.7
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	4.8	310.1	0.1	1.7	3.1		1.6	0.6	0.1	7.3	7.9	0.1
Delay (s)	53.3	353.8	31.0	54.7	47.2		54.6	40.9	37.3	54.2	46.0	28.8
Level of Service	D	F	C	D	D		D	D	D	D	D	C
Approach Delay (s)		277.0			48.2			43.0			45.9	
Approach LOS		F			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			137.6		CM 2000	evel of S	rvice		F			
HCM 2000 Volume to Capacity ratio			1.11									
Actuated Cycle Length (s)			127.1		m of lost	ime (s)			16.0			
Intersection Capacity Utilization			94.5\%		Level of	Service			F			
Analysis Period (min)			15									

c Critical Lane Group

2019 Existing Saturday Midday Peak Hour
3：NH Route 125 （Calef Highway）\＆NH Route 9 （Littleworth Road）／NH Route 9 （Franklin Pierce Highw

	\cdots	4	P	澈	\pm	－	\leqslant	\％	\％	\checkmark	－	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	${ }^{7}$	4	T	${ }_{1}$	中 $\%$		7	4	「	${ }_{1}$	中	F
Traffic Volume（vph）	112	466	106	105	579	125	112	247	157	146	198	102
Future Volume（vph）	112	466	106	105	579	125	112	247	157	146	198	102
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width（ft）	12	12	12	11	12	12	12	12	11	12	11	11
Storage Length（ f ）	150		150	150		0	100		100	100		100
Storage Lanes	1		1	1		0	1		1	1		1
Taper Length（ ft ）	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed（mph）		30			30			30			30	
Link Distance（ ft ）		283			2648			562			661	
Travel Time（s）		6.4			60.2			12.8			15.0	
Peak Hour Factor	0.95	0.95	0.95	0.80	0.80	0.80	0.89	0.89	0.89	0.90	0.90	0.90
Heavy Vehicles（\％）	0\％	1\％	0\％	0\％	1\％	0\％	0\％	0\％	0\％	0\％	1\％	0\％
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	118	491	112	131	880	0	126	278	176	162	220	113
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width（ft）		12			12			12			12	
Link Offset（ft）		0			0			0			0	
Crosswalk Width（ft）		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.04	1.00	1.00	1.00	1.00	1.04	1.00	1.04	1.04
Turning Speed（mph）	15		9	15		9	15		9	15		9
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	8
Switch Phase												
Minimum Initial（s）	5.0	10.0	10.0	5.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split（s）	11.0	18.0	18.0	11.0	18.0		11.0	18.0	18.0	11.0	18.0	18.0
Total Split（s）	36.0	36.0	36.0	36.0	36.0		36.0	53.0	53.0	36.0	53.0	53.0
Total Split（\％）	22．4\％	22．4\％	22．4\％	22．4\％	22．4\％		22．4\％	32．9\％	32．9\％	22．4\％	32．9\％	32．9\％
Maximum Green（s）	30.0	28.0	28.0	30.0	28.0		30.0	47.0	47.0	30.0	47.0	47.0
Yellow Time（s）	4.0	6.0	6.0	4.0	6.0		4.0	4.0	4.0	4.0	4.0	4.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	－2．0	－4．0	－4．0	－2．0	－4．0		－2．0	－2．0	－2．0	－2．0	－2．0	－2．0
Total Lost Time（s）	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead／Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead－Lag Optimize？	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min	Min	None	Min		None	None	None	None	None	None
v／c Ratio	0.47	0.85	0.20	0.50	0.79		0.48	0.65	0.40	0.55	0.49	0.24
Control Delay	51.1	52.3	9.5	50.9	40.8		50.9	45.9	16.6	50.1	39.3	7.2
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	51.1	52.3	9.5	50.9	40.8		50.9	45.9	16.6	50.1	39.3	7.2
Queue Length 50th（ f ）	73	304	5	81	274		78	169	33	100	126	0
Queue Length 95th（ft）	154	\＃682	55	147	\＃411		160	293	101	198	228	43
Internal Link Dist（ ft ）		203			2568			482			581	

2019 Existing Saturday Midday Peak Hour

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

Splits and Phases: 3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highway)

2019 Existing Saturday Midday Peak Hour
3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

	\%	\dagger	par	\leqslant	\downarrow	W	\checkmark	\checkmark	خ	\square	k	4
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NW
Lane Configurations	\%	\uparrow	7	\%	$\uparrow t$		\%	4	「	\%	\uparrow	F
Traffic Volume (vph)	112	466	106	105	579	125	112	247	157	146	198	102
Future Volume (vph)	112	466	106	105	579	125	112	247	157	146	198	102
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	11	12	12	12	12	11	12	11	11
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95		1.00	1.00	1.00	1.00	1.00	1.00
Fit	1.00	1.00	0.85	1.00	0.97		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1805	1881	1615	1745	3485		1805	1900	1561	1805	1818	1561
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1805	1881	1615	1745	3485		1805	1900	1561	1805	1818	1561
Peak-hour factor, PHF	0.95	0.95	0.95	0.80	0.80	0.80	0.89	0.89	0.89	0.90	0.90	0.90
Adj. Flow (vph)	118	491	112	131	724	156	126	278	176	162	220	113
RTOR Reduction (vph)	0	0	70	0	10	0	0	0	89	0	0	85
Lane Group Flow (vph)	118	491	42	131	870	0	126	278	87	162	220	28
Heavy Vehicles (\%)	0\%	1\%	0\%	0\%	1\%	0\%	0\%	0\%	0\%	0\%	1\%	0\%
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Actuated Green, G (s)	12.8	28.7	28.7	13.8	29.7		13.3	21.9	21.9	15.4	24.0	24.0
Effective Green, g (s)	14.8	32.7	32.7	15.8	33.7		15.3	23.9	23.9	17.4	26.0	26.0
Actuated g/C Ratio	0.14	0.31	0.31	0.15	0.32		0.14	0.23	0.23	0.16	0.25	0.25
Clearance Time (s)	6.0	8.0	8.0	6.0	8.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	252	581	499	260	1110		261	429	352	296	446	383
v/s Ratio Prot	0.07	c0.26		c0.08	0.25		0.07	c0.15		c0.09	0.12	
v/s Ratio Perm			0.03						0.06			0.02
v/c Ratio	0.47	0.85	0.08	0.50	0.78		0.48	0.65	0.25	0.55	0.49	0.07
Uniform Delay, d1	41.9	34.2	25.9	41.4	32.7		41.6	37.1	33.6	40.6	34.2	30.6
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.4	10.9	0.1	1.5	3.7		1.4	3.4	0.4	2.1	0.9	0.1
Delay (s)	43.3	45.1	26.0	42.9	36.4		43.0	40.5	33.9	42.7	35.1	30.7
Level of Service	D	D	,	D	D		D	D	C	D	D	C
Approach Delay (s)		41.8			37.3			39.1			36.6	
Approach LOS		D			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			38.7	HCM 2000 Level of Service					D			
HCM 2000 Volume to Capacity ratio			0.67									
Actuated Cycle Length (s)			105.8		um of lost	me (s)			16.0			
Intersection Capacity Utilization			64.8\%	ICU Level of Service					C			
Analysis Period (min)			15									

c Critical Lane Group

3：NH Route 125 （Calef Highway）\＆NH Route 9 （Littleworth Road）／NH Route 9 （Franklin Pierce Highw

	\cdots		［		\downarrow	W	\leqslant	\％	¢	\square	K	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	7	4	「	${ }^{7}$	$\uparrow+$		4	\uparrow	「	${ }_{1}$	中	F
Traffic Volume（vph）	52	492	185	236	911	66	108	543	164	174	137	107
Future Volume（vph）	52	492	185	236	911	66	108	543	164	174	137	107
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width（ft）	12	12	12	11	12	12	12	12	11	12	11	11
Storage Length（ft）	150		150	150		0	100		100	100		100
Storage Lanes	1		1	1		0	1		1	1		1
Taper Length（ft）	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed（mph）		30			30			30			30	
Link Distance（ft）		283			2648			562			661	
Travel Time（s）		6.4			60.2			12.8			15.0	
Peak Hour Factor	0.91	0.91	0.91	0.95	0.95	0.95	0.86	0.86	0.86	0.66	0.66	0.66
Heavy Vehicles（\％）	7\％	5\％	1\％	5\％	4\％	16\％	2\％	1\％	1\％	8\％	5\％	1\％
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	57	541	203	248	1028	0	126	631	191	264	208	162
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	8
Switch Phase												
Minimum Initial（s）	5.0	10.0	10.0	5.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split（s）	11.0	18.0	18.0	11.0	18.0		11.0	18.0	18.0	11.0	18.0	18.0
Total Split（s）	36.0	36.0	36.0	36.0	36.0		36.0	53.0	53.0	36.0	53.0	53.0
Total Split（\％）	22．4\％	22．4\％	22．4\％	22．4\％	22．4\％		22．4\％	32．9\％	32．9\％	22．4\％	32．9\％	32．9\％
Maximum Green（ s ）	30.0	28.0	28.0	30.0	28.0		30.0	47.0	47.0	30.0	47.0	47.0
Yellow Time（s）	4.0	6.0	6.0	4.0	6.0		4.0	4.0	4.0	4.0	4.0	4.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	－2．0	－4．0	－4．0	－2．0	－4．0		－2．0	－2．0	－2．0	－2．0	－2．0	－2．0
Total Lost Time（s）	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead／Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead－Lag Optimize？	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min	Min	None	Min		None	None	None	None	None	None
v／c Ratio	0.42	1.44	0.49	0.82	0.92		0.60	1.06	0.34	0.84	0.31	0.24
Control Delay	77.7	255.5	31.8	82.4	64.4		77.2	102.4	18.7	84.1	36.2	10.5
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	77.7	255.5	31.8	82.4	64.4		77.2	102.4	18.7	84.1	36.2	10.5
Queue Length 50th（ft）	58	－782	93	249	556		128	~ 745	58	266	151	24
Queue Length 95th（ft）	106	\＃1025	183	\＃360	\＃748		184	\＃924	120	259	165	33
Internal Link Dist（ft）		203			2568			482			581	
Turn Bay Length（ ft ）	150		150	150			100		100	100		100
Base Capacity（vph）	350	375	412	345	1116		367	598	569	347	676	674
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v／c Ratio	0.16	1.44	0.49	0.72	0.92		0.34	1.06	0.34	0.76	0.31	0.24
Intersection Summary												

2020 No Build Weekday Morning Peak Hour

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw
Area Type:
Other
Cycle Length: 161
Actuated Cycle Length: 154.6
Natural Cycle: 120
Control Type: Actuated-Uncoordinated
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highway)

3：NH Route 125 （Calef Highway）\＆NH Route 9 （Littleworth Road）／NH Route 9 （Franklin Pierce Highw

Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	\％	\uparrow	「	＊	中 ${ }^{\text {P }}$		\％	\uparrow	「	\％	\uparrow	$\stackrel{ }{1}$
Traffic Volume（vph）	52	492	185	236	911	66	108	543	164	174	137	107
Future Volume（vph）	52	492	185	236	911	66	108	543	164	174	137	107
Ideal Flow（vphol）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	11	12	12	12	12	11	12	11	11
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util．Factor	1.00	1.00	1.00	1.00	0.95		1.00	1.00	1.00	1.00	1.00	1.00
Fit	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）	1687	1810	1599	1662	3410		1770	1881	1546	1671	1749	1546
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（perm）	1687	1810	1599	1662	3410		1770	1881	1546	1671	1749	1546
Peak－hour factor，PHF	0.91	0.91	0.91	0.95	0.95	0.95	0.86	0.86	0.86	0.66	0.66	0.66
Adj．Flow（vph）	57	541	203	248	959	69	126	631	191	264	208	162
RTOR Reduction（vph）	0	0	80	0	3	0	0	0	79	0	0	77
Lane Group Flow（vph）	57	541	123	248	1025	0	126	631	112	264	208	85
Heavy Vehicles（\％）	7\％	5\％	1\％	5\％	4\％	16\％	2\％	1\％	1\％	8\％	5\％	1\％
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Actuated Green，G（s）	9.2	29.4	29.4	26.3	46.5		16.4	47.1	47.1	27.1	57.8	57.8
Effective Green， g （s）	11.2	33.4	33.4	28.3	50.5		18.4	49.1	49.1	29.1	59.8	59.8
Actuatedg／C Ratio	0.07	0.21	0.21	0.18	0.32		0.12	0.31	0.31	0.19	0.38	0.38
Clearance Time（s）	6.0	8.0	8.0	6.0	8.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap（vph）	121	387	342	301	1104		208	592	486	311	670	593
v／s Ratio Prot	0.03	c0．30		c0．15	c0．30		0.07	c0．34		c0．16	0.12	
v／s Ratio Perm			0.08						0.07			0.05
v／c Ratio	0.47	1.40	0.36	0.82	0.93		0.61	1.07	0.23	0.85	0.31	0.14
Uniform Delay，d1	69.5	61.2	52.1	61.4	51.0		65.3	53.4	39.5	61.3	33.6	31.3
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay，d2	2.9	194.1	0.6	16.5	13.1		4.9	55.8	0.2	18.9	0.3	0.1
Delay（s）	72.4	255.4	52.8	77.9	64.1		70.2	109.2	39.7	80.2	33.9	31.5
Level of Service	E	F	D	E	E		E	F	D	F	C	C
Approach Delay（s）		191.0			66.8			90.0			52.5	
Approach LOS		F			E			F			D	

Intersection Summary			
HCM 2000 Control Delay	97.5	HCM 2000 Level of Service	F
HCM 2000 Volume to Capacity ratio	1.05		16.0
Actuated Cycle Length（s）	155.9	Sum of lost time（s）	E
Intersection Capacity Utilization	90.5%	ICU Level of Service	
Analysis Period（min）	15		

2020 No Build Weekday Evening Peak Hour

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

	\cdots		pran	4	\dagger	لا	\checkmark	4	>	\dagger	㐫	
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	${ }^{*}$	4	1	${ }_{1}$	个 ${ }^{\text {P }}$		1	4	7 ${ }^{\text {P }}$	${ }^{1}$	4	1
Traffic Volume (vph)	191	931	104	102	511	127	101	160	99	249	458	163
Future Volume (vph)	191	931	104	102	511	127	101	160	99	249	458	163
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	11	12	12	12	12	11	12	11	11
Storage Length (ft)	150		150	150		0	100		100	100		100
Storage Lanes	1		1	1		0	1		1	1		1
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		283			2648			562			661	
Travel Time (s)		6.4			60.2			12.8			15.0	
Peak Hour Factor	0.91	0.91	0.91	0.93	0.93	0.93	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	1\%	0\%	0\%	0\%	0\%	1\%	0\%	1\%
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	210	1023	114	110	686	0	110	174	108	271	498	177
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.04	1.00	1.00	1.00	1.00	1.04	1.00	1.04	1.04
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	8
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	18.0	18.0	11.0	18.0		11.0	18.0	18.0	11.0	18.0	18.0
Total Split (s)	36.0	36.0	36.0	36.0	36.0		36.0	53.0	53.0	36.0	53.0	53.0
Total Split (\%)	22.4\%	22.4\%	22.4\%	22.4\%	22.4\%		22.4\%	32.9\%	32.9\%	22.4\%	32.9\%	32.9\%
Maximum Green (s)	30.0	28.0	28.0	30.0	28.0		30.0	47.0	47.0	30.0	47.0	47.0
Yellow Time (s)	4.0	6.0	6.0	4.0	6.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-4.0	-4.0	-2.0	-4.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min	Min	None	Min		None	None	None	None	None	None
v/c Ratio	0.66	1.78	0.20	0.52	0.78		0.51	0.38	0.23	0.74	0.83	0.30
Control Delay	62.0	387.0	10.2	64.8	53.4		64.6	44.9	7.6	63.1	53.6	14.2
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	62.0	387.0	10.2	64.8	53.4		64.6	44.9	7.6	63.1	53.6	14.2
Queue Length 50th (ft)	173	~1343	7	91	291		91	123	0	222	383	36
Queue Length 95th (ft)	275	\#1810	59	165	\#455		165	213	44	356	\#633	106
Internal Link Dist (ft)		203			2568			482			581	

Lanes, Volumes, Timings
AJA

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

	\cdots		0^{4}	$\underline{4}$	1	W	4	4	\dagger	\uparrow	匆	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Turn Bay Length (ft)	150		150	150			100		100	100		100
Base Capacity (vph)	454	575	559	439	888		454	733	673	450	708	666
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.46	1.78	0.20	0.25	0.77		0.24	0.24	0.16	0.60	0.70	0.27
Intersection Summary												
Area Type: Other												
Cycle Length: 161												
Actuated Cycle Length: 129.4												
Natural Cycle: 120												
Control Type: Actuated-Uncoordinated												
~ Volume exceeds capacity, queue is theoretically infinite.												
Queue shown is maximum after two cycles.												
\# 95th percentile volume exceeds capacity, queue may be longer.												
Queue shown is maxim	ter two	es.										

Splits and Phases: 3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highway)

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

c Critical Lane Group

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

	\cdots	\dagger	[4	$\frac{1}{\dagger}$	b	\cdots	\%	-	\uparrow	-	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	${ }_{1}$	+	「	${ }^{7}$	+1		${ }^{7}$	4	F'	${ }^{7}$	4	7
Traffic Volume (vph)	109	486	104	126	604	144	135	239	153	141	192	124
Future Volume (vph)	109	486	104	126	604	144	135	239	153	141	192	124
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	11	12	12	12	12	11	12	11	11
Storage Length (ft)	150		150	150		0	100		100	100		100
Storage Lanes	1		1	1		0	1		1	1		1
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		283			2648			562			661	
Travel Time (s)		6.4			60.2			12.8			15.0	
Peak Hour Factor	0.95	0.95	0.95	0.80	0.80	0.80	0.89	0.89	0.89	0.90	0.90	0.90
Heavy Vehicles (\%)	0\%	1\%	0\%	0\%	1\%	0\%	0\%	0\%	0\%	0\%	1\%	0\%
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	115	512	109	158	935	0	152	269	172	157	213	138
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	8
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	18.0	18.0	11.0	18.0		11.0	18.0	18.0	11.0	18.0	18.0
Total Split (s)	36.0	36.0	36.0	36.0	36.0		36.0	53.0	53.0	36.0	53.0	53.0
Total Split (\%)	22.4\%	22.4\%	22.4\%	22.4\%	22.4\%		22.4\%	32.9\%	32.9\%	22.4\%	32.9\%	32.9\%
Maximum Green (s)	30.0	28.0	28.0	30.0	28.0		30.0	47.0	47.0	30.0	47.0	47.0
Yellow Time (s)	4.0	6.0	6.0	4.0	6.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-4.0	-4.0	-2.0	-4.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min	Min	None	Min		None	None	None	None	None	None
v/c Ratio	0.47	0.90	0.19	0.55	0.81		0.53	0.65	0.40	0.54	0.53	0.32
Control Delay	51.8	57.8	9.2	51.1	40.7		50.9	47.0	16.7	50.9	43.1	11.9
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	51.8	57.8	9.2	51.1	40.7		50.9	47.0	16.7	50.9	43.1	11.9
Queue Length 50th (ft)	72	328	3	99	295		95	166	31	98	127	12
Queue Length 95th (ft)	152	\#728	53	170	427		187	289	100	194	233	68
Internal Link Dist (ft)		203			2568			482			581	
Turn Bay Length (ft)	150		150	150			100		100	100		100
Base Capacity (vph)	549	572	562	531	1161		549	885	789	549	847	789
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.21	0.90	0.19	0.30	0.81		0.28	0.30	0.22	0.29	0.25	0.17
Intersection Summary												

Lanes, Volumes, Timings
AJA

2020 No Build Saturday Midday Peak Hour

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

Area Type:
 Other

Cycle Length: 161
Actuated Cycle Length: 107.4
Natural Cycle: 65
Control Type: Actuated-Uncoordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highway)

2020 No Build Saturday Midday Peak Hour

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis
AJA

2030 Build Weekday Morning Peak Hour

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

	'		Pat	4	$\frac{1}{7}$	W	4	a	¢	\uparrow	k	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	$\%$	4	「	${ }_{1}$	+ ${ }^{\text {a }}$		${ }^{7}$	4	F	K	+	T
Traffic Volume (vph)	52	523	185	243	930	77	118	543	164	174	137	115
Future Volume (vph)	52	523	185	243	930	77	118	543	164	174	137	115
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	11	12	12	12	12	11	12	11	11
Storage Length (ft)	150		150	150		0	100		100	100		100
Storage Lanes	1		1	1		0	1		1	1		1
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		283			2648			562			661	
Travel Time (s)		6.4			60.2			12.8			15.0	
Peak Hour Factor	0.91	0.91	0.91	0.95	0.95	0.95	0.86	0.86	0.86	0.66	0.66	0.66
Heavy Vehicles (\%)	7\%	5\%	1\%	5\%	4\%	16\%	2\%	1\%	1\%	8\%	5\%	1\%
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	57	575	203	256	1060	0	137	631	191	264	208	174
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	8
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	18.0	18.0	11.0	18.0		11.0	18.0	18.0	11.0	18.0	18.0
Total Split (s)	36.0	36.0	36.0	36.0	36.0		36.0	53.0	53.0	36.0	53.0	53.0
Total Split (\%)	22.4\%	22.4\%	22.4\%	22.4\%	22.4\%		22.4\%	32.9\%	32.9\%	22.4\%	32.9\%	32.9\%
Maximum Green (s)	30.0	28.0	28.0	30.0	28.0		30.0	47.0	47.0	30.0	47.0	47.0
Yellow Time (s)	4.0	6.0	6.0	4.0	6.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-4.0	-4.0	-2.0	-4.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min	Min	None	Min		None	None	None	None	None	None
v/c Ratio	0.42	1.54	0.49	0.83	0.95		0.62	1.06	0.34	0.84	0.31	0.26
Control Delay	77.8	295.2	32.0	83.5	67.6		77.3	104.0	18.8	84.5	37.2	10.8
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	77.8	295.2	32.0	83.5	67.6		77.3	104.0	18.8	84.5	37.2	10.8
Queue Length 50th (ft)	58	~ 862	94	258	581		139	~ 752	59	268	154	27
Queue Length 95th (ft)	106	\#1104	183	\#386	\#787		197	\#924	120	259	167	35
Internal Link Dist (ft)		203			2568			482			581	
Turn Bay Length (ft)	150		150	150			100		100	100		100
Base Capacity (vph)	349	374	411	343	1121		365	595	568	345	663	669
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.16	1.54	0.49	0.75	0.95		0.38	1.06	0.34	0.77	0.31	0.26
Intersection Summary												

Lanes, Volumes, Timings
AJA

2030 Build Weekday Morning Peak Hour

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw
Area Type:
Other
Cycle Length: 161
Actuated Cycle Length: 155.2
Natural Cycle: 130
Control Type: Actuated-Uncoordinated
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highway)

Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	${ }_{1}$	中	「	${ }_{1}$	中 ${ }^{+}$		7	＋	「	7	中	
Traffic Volume（vph）	52	523	185	243	930	77	118	543	164	174	137	115
Future Volume（vph）	52	523	185	243	930	77	118	543	164	174	137	115
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	11	12	12	12	12	11	12	11	11
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util．Factor	1.00	1.00	1.00	1.00	0.95		1.00	1.00	1.00	1.00	1.00	1.00
Fit	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）	1687	1810	1599	1662	3401		1770	1881	1546	1671	1749	1546
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（perm）	1687	1810	1599	1662	3401		1770	1881	1546	1671	1749	1546
Peak－hour factor，PHF	0.91	0.91	0.91	0.95	0.95	0.95	0.86	0.86	0.86	0.66	0.66	0.66
Adj．Flow（vph）	57	575	203	256	979	81	137	631	191	264	208	174
RTOR Reduction（vph）	0	0	80	0	3	0	0	0	79	0	0	84
Lane Group Flow（vph）	57	575	123	256	1057	0	137	631	112	264	208	90
Heavy Vehicles（\％）	7\％	5\％	1\％	5\％	4\％	16\％	2\％	1\％	1\％	8\％	5\％	1\％
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Actuated Green，G（s）	9.2	29.4	29.4	26.8	47.0		17.3	47.1	47.1	27.1	56.9	56.9
Effective Green， g （ s ）	11.2	33.4	33.4	28.8	51.0		19.3	49.1	49.1	29.1	58.9	58.9
Actuated g／C Ratio	0.07	0.21	0.21	0.18	0.33		0.12	0.31	0.31	0.19	0.38	0.38
Clearance Time（s）	6.0	8.0	8.0	6.0	8.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap（vph）	120	386	341	306	1109		218	590	485	310	658	582
v／s Ratio Prot	0.03	c0．32		c0．15	c0．31		0.08	c0．34		c0．16	0.12	
v／s Ratio Perm			0.08						0.07			0.06
v／c Ratio	0.47	1.49	0.36	0.84	0.95		0.63	1.07	0.23	0.85	0.32	0.16
Uniform Delay，d1	69.8	61.5	52.4	61.5	51.5		65.1	53.7	39.7	61.6	34.5	32.3
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay，d2	2.9	233.7	0.7	17.7	16.8		5.6	57.0	0.2	19.6	0.3	0.1
Delay（s）	72.7	295.2	53.0	79.2	68.3		70.7	110.7	39.9	81.1	34.8	32.4
Level of Service	E	F	D	E	E		E	F	D	F	C	C
Approach Delay（s）		221.2			70.5			90.9			53.1	
Approach LOS		F			E			F			D	

Intersection Summary			
HCM 2000 Control Delay	106.2	HCM 2000 Level of Service	F
HCM 2000 Volume to Capacity ratio	1.08		16.0
Actuated Cycle Length（s）	156.4	Sum of lost time（s）	F
Intersection Capacity Utilization	92.5%	ICU Level of Service	
Analysis Period（min）	15		

c Critical Lane Group

	1		\square^{4}		\downarrow	＊	\cdots	\％	¢	7	\cdots	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	K	4	「	${ }^{7}$	中 ${ }^{\text {a }}$		7	4	「	${ }^{1}$	\uparrow	F
Traffic Volume（vph）	191	956	104	111	547	141	116	160	99	249	458	171
Future Volume（vph）	191	956	104	111	547	141	116	160	99	249	458	171
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	4900	1900	1900	1900	1900
Lane Width（ft）	12	12	12	11	12	12	12	12	11	12	11	11
Storage Length（ t ）	150		150	150		0	100		100	100		100
Storage Lanes	1		1	1		0	1		1	1		1
Taper Length（ ft ）	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed（mph）		30			30			30			30	
Link Distance（ft）		283			2648			562			661	
Travel Time（s）		6.4			60.2			12.8			15.0	
Peak Hour Factor	0.91	0.91	0.91	0.93	0.93	0.93	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	0\％	0\％	0\％	0\％	1\％	0\％	0\％	0\％	0\％	1\％	0\％	1\％
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	210	1051	114	119	740	0	126	174	108	271	498	186
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	8
Switch Phase												
Minimum Initial（s）	5.0	10.0	10.0	5.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split（s）	11.0	18.0	18.0	11.0	18.0		11.0	18.0	18.0	11.0	18.0	18.0
Total Split（s）	36.0	36.0	36.0	36.0	36.0		36.0	53.0	53.0	36.0	53.0	53.0
Total Split（\％）	22．4\％	22．4\％	22．4\％	22．4\％	22．4\％		22．4\％	32．9\％	32．9\％	22．4\％	32．9\％	32．9\％
Maximum Green（s）	30.0	28.0	28.0	30.0	28.0		30.0	47.0	47.0	30.0	47.0	47.0
Yellow Time（s）	4.0	6.0	6.0	4.0	6.0		4.0	4.0	4.0	4.0	4.0	4.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	－2．0	－4．0	－4．0	－2．0	－4．0		－2．0	－2．0	－2．0	－2．0	－2．0	－2．0
Total Lost Time（s）	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead／Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead－Lag Optimize？	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min	Min	None	Min		None	None	None	None	None	None
v／c Ratio	0.67	1.87	0.21	0.54	0.85		0.55	0.37	0.23	0.75	0.83	0.32
Control Delay	63.2	426.0	10.6	65.7	57.8		65.3	44.5	7.4	64.7	55.3	15.5
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	63.2	426.0	10.6	65.7	57.8		65.3	44.5	7.4	64.7	55.3	15.5
Queue Length 50th（ft）	176	－1428	8	100	326		106	124	0	225	389	42
Queue Length 95th（ tt ）	278	\＃1909	59	177	\＃525		186	213	44	362	\＃646	118
Internal Link Dist（ ft ）		203			2568			482			581	
Turn Bay Length（ ft ）	150		150	150			100		100	100		100
Base Capacity（vph）	447	562	549	432	874		447	721	664	443	697	658
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v／c Ratio	0.47	1.87	0.21	0.28	0.85		0.28	0.24	0.16	0.61	0.71	0.28
Intersection Summary												

2020 Build Weekday Evening Peak Hour

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw
Area Type:
Other

Cycle Length: 161
Actuated Cycle Length: 131.4
Natural Cycle: 130
Control Type: Actuated-Uncoordinated
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capecity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: \quad 3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highway)

2020 Build Weekday Evening Peak Hour

3：NH Route 125 （Calef Highway）\＆NH Route 9 （Littleworth Road）／NH Route 9 （Franklin Pierce Highw

	${ }^{7}$	4	P	4	\downarrow	\cdots	\leqslant	－	\％	4	k	4
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	${ }^{7}$	4	「	${ }^{1}$	中 ${ }^{\text {a }}$		\％	4	「	${ }^{7}$	4	「
Traffic Volume（vph）	191	956	104	111	547	141	116	160	99	249	458	171
Future Volume（vph）	191	956	104	111	547	141	116	160	99	249	458	171
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	11	12	12	12	12	11	12	11	11
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util．Factor	1.00	1.00	1.00	1.00	0.95		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.97		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）	1805	1900	1615	1745	3471		1805	1900	1561	1787	1837	1546
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（perm）	1805	1900	1615	1745	3471		1805	1900	1561	1787	1837	1546
Peak－hour factor，PHF	0.91	0.91	0.91	0.93	0.93	0.93	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	210	1051	114	119	588	152	126	174	108	271	498	186
RTOR Reduction（vph）	0	0	72	0	14	0	0	0	81	0	0	77
Lane Group Flow（vph）	210	1051	42	119	726	0	126	174	27	271	498	109
Heavy Vehicles（\％）	0\％	0\％	0\％	0\％	1\％	0\％	0\％	0\％	0\％	1\％	0\％	1\％
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Actuated Green，G（s）	20.9	34.8	34.8	14.6	28.5		14.8	30.9	30.9	24.6	40.7	40.7
Effective Green，g（s）	22.9	38.8	38.8	16.6	32.5		16.8	32.9	32.9	26.6	42.7	42.7
Actuated g／C Ratio	0.17	0.30	0.30	0.13	0.25		0.13	0.25	0.25	0.20	0.33	0.33
Clearance Time（s）	6.0	8.0	8.0	6.0	8.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap（vph）	315	563	478	221	861		231	477	392	363	599	504
v／s Ratio Prot	c0．12	c0．55		0.07	0.21		0.07	0.09		c0．15	c0．27	
v／s Ratio Perm			0.03						0.02			0.07
v／c Ratio	0.67	1.87	0.09	0.54	0.84		0.55	0.36	0.07	0.75	0.83	0.22
Uniform Delay，d1	50.4	46.1	33.3	53.6	46.8		53.5	40.4	37.3	49.0	40.8	32.0
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay，d2	5.3	396.8	0.1	2.5	7.6		2.6	0.5	0.1	8.1	9.6	0.2
Delay（s）	55.7	442.9	33.4	56.1	54.4		56.1	40.9	37.4	57.1	50.3	32.2
Level of Service	E	F	C	E	D		E	D	D	E	D	C
Approach Delay（s）		349.8			54.6			44.7			48.7	
Approach LOS		F			D			D			D	
Intersection Summary												
HCM 2000 Control Delay		164.8		HCM 2000 Level of Service					F			
HCM 2000 Volume to Capacity ratio		1.16										
Actuated Cycle Length（s）			130.9	Sum of lost time（s）					16.0			
Intersection Capacity Utilization		100．3\％							G			
Analysis Period（min）			15	ICU Level of Service								

c Critical Lane Group

2020 Build Saturday MIdday Peak Hour

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

	\ldots				$\frac{1}{\downarrow}$	\downarrow		\checkmark	7	$\stackrel{\square}{5}$	k	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	\%	\uparrow	「	${ }^{7}$	中t		7	\uparrow	F	*	4	F
Traffic Volume (vph)	109	510	104	133	625	156	148	239	153	141	192	132
Future Volume (vph)	109	510	104	133	625	156	148	239	153	141	192	132
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	11	12	12	12	12	11	12	11	11
Storage Length (t)	150		150	150		0	100		100	100		100
Storage Lanes	1		1	1		0	1		1	1		1
Taper Length (t)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		283			2648			562			661	
Travel Time (s)		6.4			60.2			12.8			15.0	
Peak Hour Factor	0.95	0.95	0.95	0.80	0.80	0.80	0.89	0.89	0.89	0.90	0.90	0.90
Heavy Vehicles (\%)	0\%	1\%	0\%	0\%	1\%	0\%	0\%	0\%	0\%	0\%	1\%	0\%
Shared Lane Trafic (\%)												
Lane Group Flow (vph)	115	537	109	166	976	0	166	269	172	157	213	147
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	8
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	18.0	18.0	11.0	18.0		11.0	18.0	18.0	11.0	18.0	18.0
Total Split (s)	36.0	36.0	36.0	36.0	36.0		36.0	53.0	53.0	36.0	53.0	53.0
Total Split (\%)	22.4\%	22.4\%	22.4\%	22.4\%	22.4\%		22.4\%	32.9\%	32.9\%	22.4\%	32.9\%	32.9\%
Maximum Green (s)	30.0	28.0	28.0	30.0	28.0		30.0	47.0	47.0	30.0	47.0	47.0
Yellow Time (s)	4.0	6.0	6.0	4.0	6.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-4.0	-4.0	-2.0	-4.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min	Min	None	Min		None	None	None	None	None	None
v/c Ratio	0.47	0.95	0.19	0.57	0.83		0.56	0.65	0.40	0.55	0.55	0.35
Control Delay	52.2	66.0	9.3	51.3	42.2		51.1	47.4	16.8	51.3	44.8	13.6
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	52.2	66.0	9.3	51.3	42.2		51.1	47.4	16.8	51.3	44.8	13.6
Queue Length 50th (ft)	73	354	3	105	314		105	167	32	99	130	18
Queue Length 95th (t)	153	\#789	53	179	\#474		202	292	101	196	238	78
Internal Link Dist (ft)		203			2568			482			581	
Turn Bay Length (ft)	150		150	150			100		100	100		100
Base Capacity (vph)	545	568	559	527	1170		545	879	784	545	842	784
Starvation Cap Reductn	0	0	0	0	0		0	O	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.21	0.95	0.19	0.31	0.83		0.30	0.31	0.22	0.29	0.25	0.19
Intersection Summary												

Lanes, Volumes, Timings
AJA
S:Uobs181881Analysis|8188-2020SMBU.syn
Area Type: Other

Cycle Length: 161
Actuated Cycle Length: 108.2
Natural Cycle: 65
Control Type: Actuated-Uncoordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highway)

2020 Build Saturday Mldday Peak Hour
3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

	\%		P	,	\downarrow	d	\checkmark	k	\rangle	\square	k	4
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	\%	\uparrow	"	*	中 ${ }^{\text {a }}$		${ }^{7}$	4	F	${ }_{1}$	4	F
Traffic Volume (vph)	109	510	104	133	625	156	148	239	153	141	192	132
Future Volume (vph)	109	510	104	133	625	156	148	239	153	141	192	132
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	11	12	12	12	12	11	12	11	11
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95		1.00	1.00	1.00	1.00	1.00	1.00
Fit	1.00	1.00	0.85	1.00	0.97		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1805	1881	1615	1745	3474		1805	1900	1561	1805	1818	1561
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1805	1881	1615	1745	3474		1805	1900	1561	1805	1818	1561
Peak-hour factor, PHF	0.95	0.95	0.95	0.80	0.80	0.80	0.89	0.89	0.89	0.90	0.90	0.90
Adj. Flow (vph)	115	537	109	166	781	195	166	269	172	157	213	147
RTOR Reduction (vph)	0	0	71	0	11	0	0	0	90	0	0	90
Lane Group Flow (vph)	115	537	38	166	965	0	166	269	82	157	213	57
Heavy Vehicles (\%)	0\%	1\%	0\%	0\%	1\%	0\%	0\%	0\%	0\%	0\%	1\%	0\%
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3		
Permitted Phases			2						4			8
Actuated Green, G (s)	12.8	28.7	28.7	16.1	32.0		15.8	21.6	21.6	15.3	21.1	21.1
Effective Green, $\mathrm{g}(\mathrm{s})$	14.8	32.7	32.7	18.1	36.0		17.8	23.6	23.6	17.3	23.1	23.1
Actuated g/C Ratio	0.14	0.30	0.30	0.17	0.33		0.17	0.22	0.22	0.16	0.21	0.21
Clearance Time (s)	6.0	8.0	8.0	6.0	8.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	248	571	490	293	1161		298	416	342	289	389	334
v/s Ratio Prot	0.06	c0.29		c0.10	c0. 28		c0.09	c0.14		0.09	0.12	
v/s Ratio Perm			0.02						0.05			0.04
v/c Ratio	0.46	0.94	0.08	0.57	0.83		0.56	0.65	0.24	0.54	0.55	0.17
Uniform Delay, d1	42.8	36.6	26.7	41.2	33.0		41.3	38.3	34.7	41.6	37.6	34.5
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.4	23.8	0.1	2.5	5.2		2.3	3.4	0.4	2.1	1.6	0.2
Delay (s)	44.2	60.4	26.8	43.7	38.2		43.6	41.7	35.0	43.6	39.2	34.7
Level of Service	D	E	C	D	D		D	D	D	D	D	C
Approach Delay (s)		53.1			39.0			40.3			39.3	
Approach LOS		D			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			42.9		CM 2000	evel of S	ervice		D			
HCM 2000 Volume to Capacity ratio			0.72									
Actuated Cycle Length (s)			107.7		um of lost	me (s)			16.0			
Intersection Capacity Utilization			67.9\%		Level of	Service			C			
Analysis Period (min)			15									

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis
AJA

2030 No Build Weekday Morning Peak Hour

3：NH Route 125 （Calef Highway）\＆NH Route 9 （Littleworth Road）／NH Route 9 （Franklin Pierce Highw

	\cdots		P^{4}		$\frac{1}{1}$	ال｜			\rangle	\uparrow	\cdots	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	7	4	「	k	中 ${ }^{\text {W }}$		${ }^{7}$	\uparrow	「	${ }_{1}$	4	「
Traffic Volume（vph）	57	540	206	255	1003	72	114	602	182	193	152	115
Future Volume（vph）	57	540	206	255	1003	72	114	602	182	193	152	115
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width（ t ）	12	12	12	11	12	12	12	12	11	12	11	11
Storage Length（ft）	150		150	150		0	100		100	100		100
Storage Lanes	1		1	1		0	1		1	1		1
Taper Length（ft）	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed（mph）		30			30			30			30	
Link Distance（ft）		283			2648			562			661	
Travel Time（s）		6.4			60.2			12.8			15.0	
Peak Hour Factor	0.91	0.91	0.91	0.95	0.95	0.95	0.86	0.86	0.86	0.66	0.66	0.66
Heavy Vehicles（\％）	7\％	5\％	1\％	5\％	4\％	16\％	2\％	1\％	1\％	8\％	5\％	1\％
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	63	593	226	268	1132	0	133	700	212	292	230	174
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	8
Switch Phase												
Minimum Initial（s）	5.0	10.0	10.0	5.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split（s）	11.0	18.0	18.0	11.0	18.0		11.0	18.0	18.0	11.0	18.0	18.0
Total Split（s）	36.0	36.0	36.0	36.0	36.0		36.0	53.0	53.0	36.0	53.0	53.0
Total Split（\％）	22．4\％	22．4\％	22．4\％	22．4\％	22．4\％		22．4\％	32．9\％	32．9\％	22．4\％	32．9\％	32．9\％
Maximum Green（s）	30.0	28.0	28.0	30.0	28.0		30.0	47.0	47.0	30.0	47.0	47.0
Yellow Time（s）	4.0	6.0	6.0	4.0	6.0		4.0	4.0	4.0	4.0	4.0	4.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	－2．0	－4．0	－4．0	－2．0	－4．0		－2．0	－2．0	－2．0	－2．0	－2．0	－2．0
Total Lost Time（s）	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead／Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead－Lag Optimize？	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min	Min	None	Min		None	None	None	None	None	None
v／c Ratio	0.44	1.61	0.56	0.86	1.02		0.62	1.19	0.38	0.90	0.34	0.26
Control Delay	78.8	326.1	36.7	87.0	83.5		78.4	149.5	21.4	91.4	37.6	12.7
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	78.8	326.1	36.7	87.0	83.5		78.4	149.5	21.4	91.4	37.6	12.7
Queue Length 50th（ ft ）	64	～901	118	273	－682		135	～903	77	302	172	35
Queue Length 95th（ ft ）	115	\＃1143	214	\＃416	\＃881		193	\＃1075	142	289	183	44
Internal Link Dist（ft）		203			2568			482			581	
Turn Bay Length（ ft ）	150		150	150			100		100	100		100
Base Capacity（vph）	343	368	406	338	1110		360	586	561	340	673	670
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v／c Ratio	0.18	1.61	0.56	0.79	1.02		0.37	1.19	0.38	0.86	0.34	0.26
Intersection Summary												

Lanes，Volumes，Timings
AJA

2030 No Build Weekday Morning Peak Hour

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw
Area Type:
Other
Cycle Length: 161
Actuated Cycle Length: 157.5
Natural Cycle: 130
Control Type: Actuated-Uncoordinated
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highway)

	\cdots	\uparrow	[W		+	7	\square	k	4
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	7	\uparrow	\#	${ }^{7}$	中t		\%	\uparrow	7	7	\uparrow	F
Traffic Volume (vph)	57	540	206	255	1003	72	114	602	182	193	152	115
Future Volume (vph)	57	540	206	255	1003	72	114	602	182	193	152	115
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	11	12	12	12	12	11	12	11	11
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95		1.00	1.00	1.00	1.00	1.00	1.00
Fit	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1687	1810	1599	1662	3410		1770	1881	1546	1671	1749	1546
FIt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1687	1810	1599	1662	3410		1770	1881	1546	1671	1749	1546
Peak-hour factor, PHF	0.91	0.91	0.91	0.95	0.95	0.95	0.86	0.86	0.86	0.66	0.66	0.66
Adj. Flow (vph)	63	593	226	268	1056	76	133	700	212	292	230	174
RTOR Reduction (vph)	0	0	81	0	3	0	0	0	79	0	0	75
Lane Group Flow (vph)	63	593	145	268	1129	0	133	700	133	292	230	99
Heavy Vehicles (\%)	7\%	5\%	1\%	5\%	4\%	16\%	2\%	1\%	1\%	8\%	5\%	1\%
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3		
Permitted Phases			2						4			8
Actuated Green, G (s)	9.8	29.4	29.4	27.6	47.2		17.1	47.1	47.1	28.7	58.7	58.7
Effective Green, $g(s)$	11.8	33.4	33.4	29.6	51.2		19.1	49.1	49.1	30.7	60.7	60.7
Actuated g/C Ratio	0.07	0.21	0.21	0.19	0.32		0.12	0.31	0.31	0.19	0.38	0.38
Clearance Time (s)	6.0	8.0	8.0	6.0	8.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	125	380	336	309	1099		212	581	478	323	668	590
v / s Ratio Prot	0.04	c0.33		c0.16	c0.33		0.08	c0.37		c0.17	0.13	
v / s Ratio Perm			0.09						0.09			0.06
v/c Ratio	0.50	1.56	0.43	0.87	1.03		0.63	1.20	0.28	0.90	0.34	0.17
Uniform Delay, d1	70.7	62.7	54.5	62.7	53.8		66.5	54.9	41.4	62.6	34.9	32.4
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	3.2	264.8	0.9	21.7	34.4		5.7	107.8	0.3	27.1	0.3	0.1
Delay (s)	73.9	327.5	55.4	84.4	88.2		72.2	162.6	41.8	89.7	35.2	32.5
Level of Service	E	F	E	F	F		E	F	D	F	D	C
Approach Delay (s)		239.7			87.5			126.6			57.4	
Approach LOS		F			F			F			,	
Intersection Summary												
HCM 2000 Control Delay			125.8		CM 2000	evel of S	ervice		F			
HCM 2000 Volume to Capacity ratio			1.16									
Actuated Cycle Length (s)			158.8		um of lost	ime (s)			16.0			
Intersection Capacity Utilization			98.3\%		CU Level	Service			F			
Analysis Period (min)			15									

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis
AJA

2030 No Build Weekday Evening Peak Hour

3：NH Route 125 （Calef Highway）\＆NH Route 9 （Littleworth Road）／NH Route 9 （Franklin Pierce Highw

	\cdots	\dagger	ρ^{3}		\ddagger	\％	\cdots	，	\rangle	7	k	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	${ }^{7}$	中	「	4	中t		4	4	「	7	4	「
Traffic Volume（vph）	211	1026	216	110	562	137	109	177	110	275	507	123
Future Volume（vph）	211	1026	216	110	562	137	109	177	110	275	507	123
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width（ft）	12	12	12	11	12	12	12	12	11	12	11	11
Storage Length（ft）	150		150	150		0	100		100	100		100
Storage Lanes	1		1	1		0	1		1	1		1
Taper Length（ ft ）	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed（mph）		30			30			30			30	
Link Distance（ ft ）		283			2648			562			661	
Travel Time（s）		6.4			60.2			12.8			15.0	
Peak Hour Factor	0.91	0.91	0.91	0.93	0.93	0.93	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles（\％）	0\％	0\％	0\％	0\％	1\％	0\％	0\％	0\％	0\％	1\％	0\％	1\％
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	232	1127	237	118	751	0	118	192	120	299	551	134
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	8
Switch Phase												
Minimum Initial（ s ）	5.0	10.0	10.0	5.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split（s）	11.0	18.0	18.0	11.0	18.0		11.0	18.0	18.0	11.0	18.0	18.0
Total Split（s）	36.0	36.0	36.0	36.0	36.0		36.0	53.0	53.0	36.0	53.0	53.0
Total Split（\％）	22．4\％	22．4\％	22．4\％	22．4\％	22．4\％		22．4\％	32．9\％	32．9\％	22．4\％	32．9\％	32．9\％
Maximum Green（s）	30.0	28.0	28.0	30.0	28.0		30.0	47.0	47.0	30.0	47.0	47.0
Yellow Time（s）	4.0	6.0	6.0	4.0	6.0		4.0	4.0	4.0	4.0	4.0	4.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	－2．0	－4．0	－4．0	－2．0	－4．0		－2．0	－2．0	－2．0	－2．0	－2．0	－2．0
Total Lost Time（s）	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead／Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead－Lag Optimize？	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min	Min	None	Min		None	None	None	None	None	None
v／c Ratio	0.72	2.04	0.44	0.56	0.91		0.55	0.39	0.24	0.80	0.86	0.22
Control Delay	67.2	501.7	26.1	68.4	66.5		68.1	46.0	9.3	69.3	56.6	9.2
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	67.2	501.7	26.1	68.4	66.5		68.1	46.0	9.3	69.3	56.6	9.2
Queue Length 50th（ ft ）	199	～1589	96	102	343		102	146	3	251	455	11
Queue Length 95th（ ft ）	306	\＃2050	197	176	\＃534		176	235	56	\＃421	\＃755	63
Internal Link Dist（ft）		203			2568			482			581	
Turn Bay Length（ ft ）	150		150	150			100		100	100		100
Base Capacity（vph）	422	552	542	408	827		422	681	633	418	658	628
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v／c Ratio	0.55	2.04	0.44	0.29	0.91		0.28	0.28	0.19	0.72	0.84	0.21
Intersection Summary												

Lanes，Volumes，Timings
AJA

2030 No Build Weekday Evening Peak Hour

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw
Area Type:
Other
Cycle Lengith: 161
Actuated Cycle Length: 137.5
Natural Cycle: 140
Control Type: Actuated-Uncoordinated
~ Volume exceeds capacity, queue is theorefically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highway)

c Critical Lane Group

3：NH Route 125 （Calef Highway）\＆NH Route 9 （Littleworth Road）／NH Route 9 （Franklin Pierce Highw

	k	¢	［		\downarrow	W	\cdots	y	\rangle	F	\cdots	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	${ }^{4}$	\uparrow	F	${ }^{7}$	中t		\％	中	F＇	7	中	「
Traffic Volume（vph）	121	535	115	137	665	157	147	266	169	157	213	135
Future Volume（vph）	121	535	115	137	665	157	147	266	169	157	213	135
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width（ft）	12	12	12	11	12	12	12	12	11	12	11	11
Storage Length（ft）	150		150	150		0	100		100	100		100
Storage Lanes	1		1	1		0	1		1	1		1
Taper Length（ft）	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed（mph）		30			30			30			30	
Link Distance（ ft ）		283			2648			562			661	
Travel Time（s）		6.4			60.2			12.8			15.0	
Peak Hour Factor	0.95	0.95	0.95	0.80	0.80	0.80	0.89	0.89	0.89	0.90	0.90	0.90
Heavy Vehicles（\％）	0\％	1\％	0\％	0\％	1\％	0\％	0\％	0\％	0\％	0\％	1\％	0\％
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	127	563	121	171	1027	0	165	299	190	174	237	150
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	8
Switch Phase												
Minimum Initial（s）	5.0	10.0	10.0	5.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split（s）	11.0	18.0	18.0	11.0	18.0		11.0	18.0	18.0	11.0	18.0	18.0
Total Split（s）	36.0	36.0	36.0	36.0	36.0		36.0	53.0	53.0	36.0	53.0	53.0
Total Split（\％）	22．4\％	22．4\％	22．4\％	22．4\％	22．4\％		22．4\％	32．9\％	32．9\％	22．4\％	32．9\％	32．9\％
Maximum Green（s）	30.0	28.0	28.0	30.0	28.0		30.0	47.0	47.0	30.0	47.0	47.0
Yellow Time（s）	4.0	6.0	6.0	4.0	6.0		4.0	4.0	4.0	4.0	4.0	4.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	－2．0	－4．0	－4．0	－2．0	－4．0		－2．0	－2．0	－2．0	－2．0	－2．0	－2．0
Total Lost Time（s）	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead／Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead－Lag Optimize？	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min	Min	None	Min		None	None	None	None	None	None
v／c Ratio	0.50	1.04	0.22	0.59	0.93		0.57	0.68	0.42	0.58	0.55	0.33
Control Delay	55.3	89.9	11.9	54.5	53.1		54.4	48.9	18.9	54.2	44.1	13.2
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	55.3	89.9	11.9	54.5	53.1		54.4	48.9	18.9	54.2	44.1	13.2
Queue Length 50th（ ft ）	86	~ 440	10	115	370		111	196	43	117	149	20
Queue Length 95th（ ft ）	176	\＃915	69	194	\＃585		213	336	122	226	269	82
Internal Link Dist（ft）		203			2568			482			581	
Turn Bay Length（ ft ）	150		150	150			100		100	100		100
Base Capacity（vph）	521	543	539	504	1110		521	840	754	521	804	754
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v／c Ratio	0.24	1.04	0.22	0.34	0.93		0.32	0.36	0.25	0.33	0.29	0.20
Intersection Summary												

2030 No Build Saturday Midday Peak Hour

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw
Area Type:
Other
Cycle Length: 161
Actuated Cycle Length: 113.7
Natural Cycle: 70
Control Type: Actuated-Uncoordinated
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highway)

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

C Critical Lane Group

HCM Signalized Intersection Capacity Analysis
AJA

2030 Build Weekday Morning Peak Hour

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

	${ }^{*}$		pren			J		,	خ	5	k	\dagger
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	\%	\uparrow	F	\%	中t		\%	\uparrow	$\bar{\square}$	\%	4	F
Traffic Volume (vph)	57	571	206	262	1022	83	124	602	182	193	152	123
Future Volume (vph)	57	571	206	262	1022	83	124	602	182	193	152	123
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.989				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1687	1810	1599	1662	3404	0	1770	1881	1546	1671	1749	1546
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1687	1810	1599	1662	3404	0	1770	1881	1546	1671	1749	1546
Satd. Flow (RTOR)			102		5				115			130
Adj. Flow (vph)	63	627	226	276	1076	87	144	700	212	292	230	186
Lane Group Flow (vph)	63	627	226	276	1163	0	144	700	212	292	230	186
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	-	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	8
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	18.0	18.0	11.0	18.0		11.0	18.0	18.0	11.0	18.0	18.0
Total Split (s)	36.0	36.0	36.0	36.0	36.0		36.0	53.0	53.0	36.0	53.0	53.0
Total Split (\%)	22.4\%	22.4\%	22.4\%	22.4\%	22.4\%		22.4\%	32.9\%	32.9\%	22.4\%	32.9\%	32.9\%
Maximum Green (s)	30.0	28.0	28.0	30.0	28.0		30.0	47.0	47.0	30.0	47.0	47.0
Yellow Time (s)	4.0	6.0	6.0	4.0	6.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-4.0	-4.0	-2.0	-4.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min	Min	None	Min		None	None	None	None	None	None
v/c Ratio	0.44	1.71	0.56	0.87	1.04		0.64	1.20	0.38	0.90	0.35	0.28
Control Delay	78.9	366.7	36.8	88.9	89.5		78.4	151.1	21.5	91.8	38.6	13.0
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	78.9	366.7	36.8	88.9	89.5		78.4	151.1	21.5	91.8	38.6	13.0
Queue Length 50th (ft)	64	-975	118	283	~ 718		147	-903	77	302	174	38
Queue Length 95th (ti)	115	\#1222	214	\#436	\#915		205	\#1075	142	289	186	46
Internal Link Dist (ft)		203			2568			482			581	
Turn Bay Length (tt)	150		150	150			100		100	100		100
Base Capacity (vph)	342	367	405	337	1114		359	584	559	339	660	664
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.18	1.71	0.56	0.82	1.04		0.40	1.20	0.38	0.86	0.35	0.28

Intersection Summary

Cycle Length: 161
Actuated Cycle Length: 157.9
Natural Cycle: 130
Control Type: Actuated-Uncoordinated

Lanes, Volumes, Timings
AJA

2030 Build Weekday Morning Peak Hour

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

2030 Build Weekday Morning Peak Hour
3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

	\%	\uparrow	per	W	\downarrow	l	\checkmark	,	*	\square	k	4
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	\%	\uparrow	「	7	中t		7	\uparrow	7	\%	\uparrow	$\stackrel{1}{7}$
Traffic Volume (vph)	57	571	206	262	1022	83	124	602	182	193	152	123
Future Volume (vph)	57	571	206	262	1022	83	124	602	182	193	152	123
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	11	12	12	12	12	11	12	11	11
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Sald. Flow (prot)	1687	1810	1599	1662	3403		1770	1881	1546	1671	1749	1546
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1687	1810	1599	1662	3403		1770	1881	1546	1671	1749	1546
Peak-hour factor, PHF	0.91	0.91	0.91	0.95	0.95	0.95	0.86	0.86	0.86	0.66	0.66	0.66
Adj. Flow (vph)	63	627	226	276	1076	87	144	700	212	292	230	186
RTOR Reduction (vph)	0	0	81	0	3	0	0	0	80	0	0	81
Lane Group Flow (vph)	63	627	145	276	1160	0	144	700	132	292	230	105
Heavy Vehicles (\%)	7\%	5\%	1\%	5\%	4\%	16\%	2\%	1\%	1\%	8\%	5\%	1\%
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						,			8
Actuated Green, G (s)	9.8	29.3	29.3	28.0	47.5		18.1	47.1	47.1	28.7	57.7	57.7
Effective Green, g (s)	11.8	33.3	33.3	30.0	51.5		20.1	49.1	49.1	30.7	59.7	59.7
Actuated g/C Ratio	0.07	0.21	0.21	0.19	0.32		0.13	0.31	0.31	0.19	0.38	0.38
Clearance Time (s)	6.0	8.0	8.0	6.0	8.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (voh)	125	378	334	313	1101		223	580	477	322	656	580
v / s Ratio Prot	0.04	c0.35		c0.17	c0.34		0.08	c0.37		c0.17	0.13	
v/s Ratio Perm			0.09						0.09			0.07
v/c Ratio	0.50	1.66	0.44	0.88	1.05		0.65	1.21	0.28	0.91	0.35	0.18
Uniform Delay, d1	70.8	62.9	54.7	62.8	53.8		66.1	55.0	41.6	62.8	35.8	33.3
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	3.2	308.0	0.9	23.9	42.3		6.3	108.6	0.3	27.6	0.3	0.2
Delay (s)	74.0	370.9	55.6	86.7	96.1		72.4	163.6	41.9	90.4	36.1	33.5
Level of Service	E	F	E	F	F		E	F	D	F	D	C
Approach Delay (s)		272.7			94.3			126.7			57.8	
Approach LOS		F			F			F			E	
Intersection Summary												
			136.0		M 2000	evel of S	rvice		F			
HCM 2000 Volume to Capacity ratio			1.19									
Actuated Cycle Length (s)			159.1		of lost	me (s)			16.0			
Intersection Capacity Utilization			100.3\%		Level or	Service			G			
			15									

c Critical Lane Group

2030 Build Weekday Evening Peak Hour

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

	\%	\dagger	P	L	$\frac{1}{\square}$	\cdots	\cdots	,	\%	\uparrow	*	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	${ }^{7}$	4	${ }^{+1}$	${ }^{7}$	中 \uparrow		${ }^{7}$	+	T	${ }^{7}$	4	「
Traffic Volume (vph)	211	1051	216	119	598	151	124	177	110	275	507	131
Future Volume (vph)	211	1051	216	119	598	151	124	177	110	275	507	131
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	11	12	12	12	12	11	12	11	11
Storage Length (ft)	150		150	150		0	100		100	100		100
Storage Lanes	1		1	1		0	1		1	1		1
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		283			2648			562			661	
Travel Time (s)		6.4			60.2			12.8			15.0	
Peak Hour Factor	0.91	0.91	0.91	0.93	0.93	0.93	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	1\%	0\%	0\%	0\%	0\%	1\%	0\%	1\%
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	232	1155	237	128	805	0	135	192	120	299	551	142
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	8
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.0	18.0	18.0	11.0	18.0		11.0	18.0	18.0	11.0	18.0	18.0
Total Split (s)	36.0	36.0	36.0	36.0	36.0		36.0	53.0	53.0	36.0	53.0	53.0
Total Split (\%)	22.4\%	22.4\%	22.4\%	22.4\%	22.4\%		22.4\%	32.9\%	32.9\%	22.4\%	32.9\%	32.9\%
Maximum Green (s)	30.0	28.0	28.0	30.0	28.0		30.0	47.0	47.0	30.0	47.0	47.0
Yellow Time (s)	4.0	6.0	6.0	4.0	6.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	-2.0	-4.0	-4.0	-2.0	-4.0		-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min	Min	None	Min		None	None	None	None	None	None
v/c Ratio	0.72	2.16	0.45	0.58	0.99		0.58	0.38	0.24	0.81	0.86	0.23
Control Delay	68.3	552.9	27.2	69.1	80.4		68.8	45.5	9.1	70.8	58.4	10.4
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	68.3	552.9	27.2	69.1	80.4		68.8	45.5	9.1	70.8	58.4	10.4
Queue Length 50th (ft)	201	~1674	99	112	381		118	147	3	255	464	16
Queue Length 95th (ft)	310	\#2159	203	189	\#607		198	234	55	\#430	\#771	72
Internal Link Dist (ft)		203			2568			482			581	
Turn Bay Length (ft)	150		150	150			100		100	100		100
Base Capacity (vph)	417	535	528	403	817		417	673	627	413	651	622
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.56	2.16	0.45	0.32	0.99		0.32	0.29	0.19	0.72	0.85	0.23
Intersection Summary												

2030 Build Weekday Evening Peak Hour

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw
Area Type: Other
Cycle Length: 161
Actuated Cycle Length: 139.1
Natural Cycle: 150
Control Type: Actuated-Uncoordinated
~ Volume exceeds capecity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highway)

2030 Build Weekday Evening Peak Hour
3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

c Critical Lane Group

3：NH Route 125 （Calef Highway）\＆NH Route 9 （Littleworth Road）／NH Route 9 （Franklin Pierce Highw

	\％	\uparrow	P	参	$\frac{1}{\dagger}$	W		y	\rangle	\uparrow	k	4
Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	${ }^{7}$	4	7	${ }^{*}$	中 ${ }^{\text {d }}$		${ }^{4}$	中	ri	${ }^{7}$	4	T
Traffic Volume（vph）	121	559	115	144	686	169	160	266	169	157	213	143
Future Volume（vph）	121	559	115	144	686	169	160	266	169	157	213	143
Lane Util．Factor	1.00	1.00	1.00	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.970				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd．Flow（prot）	1805	1881	1615	1745	3474	0	1805	1900	1561	1805	1818	1561
FIt Permitted	0.950			0.950			0.950			0.950		
Satd．Flow（perm）	1805	1881	1615	1745	3474	0	1805	1900	1561	1805	1818	1561
Satd．Flow（RTOR）			102		17				115			115
Adj．Flow（vph）	127	588	121	180	858	211	180	299	190	174	237	159
Lane Group Flow（vph）	127	588	121	180	1069	0	180	299	190	174	237	159
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	8
Switch Phase												
Minimum Initial（s）	5.0	10.0	10.0	5.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split（s）	11.0	18.0	18.0	11.0	18.0		11.0	18.0	18.0	11.0	18.0	18.0
Total Split（s）	36.0	36.0	36.0	36.0	36.0		36.0	53.0	53.0	36.0	53.0	53.0
Total Split（\％）	22．4\％	22．4\％	22．4\％	22．4\％	22．4\％		22．4\％	32．9\％	32．9\％	22．4\％	32．9\％	32．9\％
Maximum Green（s）	30.0	28.0	28.0	30.0	28.0		30.0	47.0	47.0	30.0	47.0	47.0
Yellow Time（s）	4.0	6.0	6.0	4.0	6.0		4.0	4.0	4.0	4.0	4.0	4.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	－2．0	－4．0	－4．0	－2．0	－4．0		－2．0	－2．0	－2．0	－2．0	－2．0	－2．0
Total Lost Time（s）	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lead／Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead－Lag Optimize？	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	Min	Min	None	Min		None	None	None	None	None	None
v／c Ratio	0.51	1.09	0.23	0.60	0.95		0.59	0.68	0.42	0.58	0.57	0.36
Control Delay	56.0	106.2	12.1	54.8	57.1		54.6	49.4	19.1	54.8	46.1	15.0
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	56.0	106.2	12.1	54.8	57.1		54.6	49.4	19.1	54.8	46.1	15.0
Queue Length 50th（ft）	87	~ 486	10	122	394		122	198	44	118	153	25
Queue Length 95th（ft）	177	\＃977	69	204	\＃623		231	339	123	228	275	93
Internal Link Dist（ft）		203			2568			482			581	
Turn Bay Length（ ft ）	150		150	150			100		100	100		100
Base Capacity（vph）	517	539	535	500	1121		517	834	749	517	797	749
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v／c Ratio	0.25	1.09	0.23	0.36	0.95		0.35	0.36	0.25	0.34	0.30	0.21
Intersection Summary												
Cycle Length： 161												
Actuated Cycle Length： 114.6												
Natural Cycle： 75												
Control Type：Actuated－Uncoordinated												

Lanes，Volumes，Timings
AJA

2030 Build Saturday Mldday Peak Hour

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highway)

3: NH Route 125 (Calef Highway) \& NH Route 9 (Littleworth Road)/NH Route 9 (Franklin Pierce Highw

	${ }^{7}$	4	P	\checkmark	\downarrow	\checkmark	\cdots	\checkmark	7	5	k	4
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	\%	\uparrow	「	\%	$\uparrow \psi^{6}$		\%	\uparrow	「	${ }^{4}$	\uparrow	F
Traffic Volume (vph)	121	559	115	144	686	169	160	266	169	157	213	143
Future Volume (vph)	121	559	115	144	686	169	160	266	169	157	213	143
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	11	12	12	12	12	11	12	11	11
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95		1.00	1.00	1.00	1.00	1.00	1.00
Fit	1.00	1.00	0.85	1.00	0.97		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1805	1881	1615	1745	3475		1805	1900	1561	1805	1818	1561
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1805	1881	1615	1745	3475		1805	1900	1561	1805	1818	1561
Peak-hour factor, PHF	0.95	0.95	0.95	0.80	0.80	0.80	0.89	0.89	0.89	0.90	0.90	0.90
Adj. Flow (vph)	127	588	121	180	858	211	180	299	190	174	237	159
RTOR Reduction (vph)	0	0	73	0	12	0	0	0	88	0	0	89
Lane Group Flow (vph)	127	588	48	180	1057	0	180	299	102	174	237	70
Heavy Vehicles (\%)	0\%	1\%	0\%	0\%	1\%	0\%	0\%	0\%	0\%	0\%	1\%	0\%
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Actuated Green, G (s)	13.9	28.8	28.8	17.7	32.6		17.3	24.6	24.6	16.9	24.2	24.2
Effective Green, $\mathrm{g}(\mathrm{s})$	15.9	32.8	32.8	19.7	36.6		19.3	26.6	26.6	18.9	26.2	26.2
Actuated g/C Ratio	0.14	0.29	0.29	0.17	0.32		0.17	0.23	0.23	0.17	0.23	0.23
Clearance Time (s)	6.0	8.0	8.0	6.0	8.0		6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	251	541	464	301	1115		305	443	364	299	417	358
v / s Ratio Prot	0.07	c0.31		c0.10	c0.30		c0.10	c0.16		0.10	0.13	
v/s Ratio Perm			0.03						0.07			0.05
v/c Ratio	0.51	1.09	0.10	0.60	0.95		0.59	0.67	0.28	0.58	0.57	0.20
Uniform Delay, d1	45.4	40.6	29.8	43.5	37.8		43.7	39.8	35.8	43.9	38.9	35.4
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.6	64.4	0.1	3.2	15.9		3.0	4.0	0.4	2.9	1.8	0.3
Delay (s)	47.0	105.0	29.9	46.7	53.7		46.7	43.8	36.3	46.8	40.7	35.7
Level of Service	D	F	C	D	D		D	D	D	D	D	D
Approach Delay (s)		85.3			52.7			42.5			41.1	
Approach LOS		F			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			56.8		CM 2000	evel of S	ervice		E			
HCM 2000 Volume to Capacity ratio			0.78									
Actuated Cycle Length (s)			114.0		um of lost	me (s)			16.0			
Intersection Capacity Utilization			73.4\%		CU Level of	Service			D			
Analysis Period (min)			15									

c Critical Lane Group

Intersection						
Int Delay, s/veh	1					
Movement W	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\%		F			4
Traffic Vol, veh/h	14	15	614	23	32	1197
Future Vol, veh/h	14	15	614	23	32	1197
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Stop	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	15	16	667	25	35	1301

Major/Minor	Minor1					
Conflicting Flow All	2051	680	0	0	692	0
\quad Stage 1	680	-	-	-	-	-
\quad Stage 2	1371	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-4.12	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-2.218	-	
Pot Cap-1 Maneuver	61	451	-	-	903	-
\quad Stage 1	503	-	-	-	-	-
\quad Stage 2	236	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	52	451	-	-	903	-
Mov Cap-2 Maneuver	52	-	-	-	-	-
\quad Stage 1	503	-	-	-	-	-
Stage 2	203	-	-	-	-	-

		Intersection				
Int Delay, s/veh	4.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\%		t			4
Traffic Vol, veh/h	29	37	1162	21	24	665
Future Vol, veh/h	29	37	1162	21	24	665
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	32	40	1263	23	26	723

Approach	WB	NB	SB
HCM Control Delay, s	35.4	0	0.3
HCM LOS	E		

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT
Capacity (veh/h)	-	-	162	834
HCM Lane V/C Ratio	-	-	-	
HCM Control Delay (s)	-	-	35.4	0.031

Major/Minor	Minor1	Major1		Major2		
Conflicting Flow All	1826	846	0	0	857	0
Stage 1	846	-	-	-	-	
Stage 2	980	-	-	-	-	
Critical Hdwy	6.42	6.22	-	-	4.12	
Critical Hdwy Stg 1	5.42	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	
Follow-up Hdwy	3.518	3.318	-	-	2.218	
Pot Cap-1 Maneuver	85	362	-	-	783	
Stage 1	421	-	-	-	-	
Stage 2	364	-	-	-	-	
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	79	362	-	-	783	
Mov Cap-2 Maneuver	79	-	-	-	-	-
Stage 1	421		-	-	-	-
Stage 2	339	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s	45.6	0	0.3
HCM LOS	E		

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT
Capacity (veh/h)	-	-132	783	-
HCM Lane V/C Ratio	-	-0.338	0.033	-
HCM Control Delay (s)	-	-	45.6	9.8
HCM Lane LOS	-	-	E	A
HCM 95th \%bile Q(veh)	-	-	1.4	0.1
H				

2030 Build Weekday Morning Peak Hour

5: NH Route 125 (Calef Highway) \& South Site Driveway

Approach	WB	NB	SB
HCM Control Delay, s	90.1	0	0.2
HCM LOS	F		

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT	
Capacity (veh/h)	-	-	85	895	-
HCM Lane V/C Ratio	-	-	0.55	0.039	-
HCM Control Delay (s)	-	-	90.1	9.2	0
HCM Lane LOS	-	-	F	A	A
HCM 95th \%tile Q(veh)	-	-	2.4	0.1	-

Intersection						
Int Delay, s/veh	6.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		F			\uparrow
Traffic Vol, veh/h	38	40	1143	35	27	667
Future Vol, veh/h	38	40	1143	35	27	667
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control Stop	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	41	43	1242	38	29	725

Major/Minor	Minor1	Major1	Major2			
Conflicting Flow All	2044	1261	0	0	1280	0
\quad Stage 1	1261	-	-	-	-	-
\quad Stage 2	783	-	-	-	-	-
Critcal Hdwy	6.42	6.22	-	-	-12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-2.218	-	
Pot Cap-1 Maneuver	62	208	-	-	542	-
\quad Stage 1	267	-	-	-	-	-
\quad Stage 2	450	-	-	-	-	-
Platoon blocked, \%			-	-	-	
Mov Cap-1 Maneuver	56	208	-	-	542	-
Mov Cap-2 Maneuver	56	-	-	-	-	-
\quad Stage 1	267	-	-	-	-	-
\quad Stage 2	410	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s	162.8	0	0.5
HCM LOS	F		

Minor Lane/Major Mvmt	NBT	NBRWBL_n1	SBL	SBT
Capacity (veh/h)	-	-90	542	-
HCM Lane V/C Ratio	-	-0.942	0.054	-
HCM Control Delay (s)	-	-162.8	12	0
HCM Lane LOS	-	-	F	B
HCM 95th \%tile Q(veh)	-	-	A.3	0.2

5: NH Route 125 (Calef Highway) \& South Site Driveway

| Intersection | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :--- |

2030 Build Weekday Morning Peak Hour

5: NH Route 125 (Calef Highway) \& South Site Driveway

2030 Build Weekday Evening Peak Hour

5: NH Route 125 (Calef Highway) \& South Site Driveway

Major/Minor	Minor1	Major1	Major2			
Conflicting Flow All	2135	1280	0	0	1299	0
\quad Stage 1	1280	-	-	-	-	-
\quad Stage 2	855	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-2.218	-	
Pot Cap-1 Maneuver	54	202	-	-	533	-
\quad Stage 1	261	-	-	-	-	-
\quad Stage 2	417	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	49	202	-	-	533	-
Mov Cap-2 Maneuver	49	-	-	-	-	-
\quad Stage 1	261	-	-	-	-	-
\quad Stage 2	376	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s 210.6	0	0.4	
HCM LOS	F		

Intersection						
Int Delay, s/veh	2.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Yr		F			4
Traffic Vol, veh/h	31	25	767	34	26	848
Future Vol, veh/h	31	25	767	34	26	848
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	34	27	834	37	28	922

	Minor1					
Major/Minor	Major1	Major2				
Conflicting Flow All	1831	853	0	0	871	0
\quad Stage 1	853	-	-	-	-	-
\quad Stage 2	978	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-2.218	-	
Pot Cap-1 Maneuver	84	359	-	-	774	-
\quad Stage 1	418	-	-	-	-	-
\quad Stage 2	364	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	78	359	-	-	774	-
Mov Cap-2 Maneuver	78	-	-	-	-	-
\quad Stage 1	418	-	-	-	-	-
Stage 2	337	-	-	-	-	-

Guidelines for Major-Road Left-Turn Lane (NORTH).xls
Figure 2-5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.
Guidelines for Major-Road Left-Turn Lane (NORTH).xls
Figure 2-5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.
CALIBRATION CONSTANTS

Guidelines for Major-Road Left-Turn Lane (NORTH)
Figure 2-5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.
2-lane roadway (English)
INPUT

Guidelines for Major-Road Left-Turn Lane (NORTH)
Figure 2-5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

Guidelines for Major-Road Left-Turn Lane (NORTH)
Figure 2-5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.
2-lane roadway (English) INPUT

Guidelines for Major-Road Left-Turn Lane (NORTH)
Figure 2-5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.
2-lane roadway (English)

Guidelines for Major-Road Left-Turn Lane (SOUTH)
Figure 2-5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.
Guidelines for Major-Road Left-Turn Lane (SOUTH)
Figure 2-5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.

2-lane roadway (English)

 INPUT
Guidelines for Major-Road Left-Turn Lane (SOUTH)
Figure 2-5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.
2-lane roadway (English)
INPUT

OUTPUT

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, $\mathbf{s}:$	3.0
Critical headway, $\mathbf{s}:$	5.0
Average time for left-turn vehicle to clear the advancing lane, $\mathbf{s}:$	1.9

Guidelines for Major-Road Left-Turn Lane (SOUTH)
Figure 2-5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.
2-lane roadway (English)

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, \mathbf{s} :	3.0
Critical headway, $\mathbf{s}:$	5.0
Average time for left-turn vehicle to clear the advancing lane, $\mathbf{s}:$	1.9

Guidelines for Major-Road Left-Turn Lane (SOUTH)
Figure 2-5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.
2-lane roadway (English)
INPUT

Guidelines for Major-Road Left-Turn Lane (SOUTH)
Figure 2-5. Guideline for determining the need for a major-road left-turn bay at a two-way stop-controlled intersection.
2-lane roadway (English)
INPUT

-
OUTPUT

Guidelines for Major-Road Right-Turn Lane (NORTH)
Figure 2-6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

n®Wも OZOZ
Guidelines for Major-Road Right-Turn Lane (NORTH)
Figure 2-6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

Figure 2-6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

Guidelines for Major-Road Right-Turn Lane (NORTH)
Guidelines for Major-Road Right-Turn Lane (NORTH)

Guidelines for Major-Road Right-Turn Lane (SOUTH)
Figure 2-6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

Guidelines for Major-Road Right-Turn Lane (SOUTH)

Figure 2-6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

Guidelines for Major-Road Right-Turn Lane (SOUTH)
Figure 2-6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

Guidelines for Major-Road Right-Turn Lane (SOUTH)
Figure 2-6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

Guidelines for Major-Road Right-Turn Lane (SOUTH)
Figure 2-6. Guideline for determining the need for a major-road right-turn bay at a two-way stop-controlled intersection.

[^0]: ${ }^{1}$ Trip Generation, $10{ }^{\text {th }}$ Edition; Institute of Transportation Engineers; Washington, DC; 2017.

[^1]: ${ }^{2}$ Manual on Uniform Traffic Control Devices (MUTCD); Federal Highway Administration; Washington, D.C.; 2009.

[^2]: ${ }^{3}$ A minimum combined travel lane and paved shoulder width of 14 -feet is required to support bicycle travel in a shared traveled-way condition.

[^3]: ${ }^{4}$ Ibid 1.

[^4]: ${ }^{5}$ Ibid 1.
 ${ }^{6}$ Trip Generation Handbook, $3{ }^{\text {rd }}$ Edition, A Recommended Practice of the Institute of Transportation Engineers; Institute of Transportation Engineers; Washington, D.C.; September 2017.

[^5]: ${ }^{7}$ The capacity analysis methodology is based on the concepts and procedures presented in the Highway Capacity Manual; Transportation Research Board; Washington, DC; 2010.

[^6]: ${ }^{8}$ Highway Capacity Manual; Transportation Research Board; Washington, DC; 2010.

[^7]: ${ }^{9}$ A Policy on Geometric Design of Highway and Streets, $7^{\text {th }}$ Edition; American Association of State Highway and Transportation Officials (AASHTO); 2018.

[^8]: ${ }^{\text {a }}$ Recommended minimum values obtained from A Policy on Geometric Design of Highways and Streets, $7^{\text {th }}$ Edition; American Association of State Highway and Transportation Officials (AASHTO); 2018 and based on 60 mph approach speed along NH Route 125.
 ${ }^{\text {b }}$ Values shown are the intersection sight distance for a vehicle turning left or right exiting a roadway under STOP control such that motorists approaching the intersection on the major street should not need to adjust their travel speed to less than 70 percent of their initial approach speed.
 ${ }^{\text {c }}$ With regrading of the embankment along the east side of NH Route 125 north of the Project site roadway.

[^9]: ${ }^{10}$ NCHRP Report 457 - Evaluating Intersection Improvement: An Engineering Study Guide, National Cooperative Highway Research Program; 2001.

[^10]: ${ }^{11}$ Ibid 1.

[^11]: ${ }^{12}$ Ibid 2.

[^12]: N/S Street : Route 125 City/State : Barrington, NH

 Weather : Clear

[^13]: 1) LUC 853 (Convenience Market with Gasoline Pumps), 12 vehicle fueling positions (rate method)
 2) $\mathbf{1 0 \%}$ (AM) and 3% (PM) capture rate method calculated from SGP 2022 No-Build traffic projections
 3) Less 34% of donut shop trips due to the convenience store walk-in customers
 4) LUC 853 pass-by rate $=63 \%(\mathrm{AM}), 66 \%(\mathrm{PM})$; Donut Shop pass-by rate $=90 \%$ per scope meeting.
